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Abstract: In the complex environment of orchards, in view of low fruit recognition accuracy, poor
real-time and robustness of traditional recognition algorithms, this paper propose an improved
fruit recognition algorithm based on deep learning. Firstly, the residual module was assembled
with the cross stage parity network (CSP Net) to optimize recognition performance and reduce the
computing burden of the network. Secondly, the spatial pyramid pool (SPP) module is integrated
into the recognition network of the YOLOVS5 to blend the local and global features of the fruit, thus
improving the recall rate of the minimum fruit target. Meanwhile, the NMS algorithm was replaced
by the Soft NMS algorithm to enhance the ability of identifying overlapped fruits. Finally, a joint loss
function was constructed based on focal and CloU loss to optimize the algorithm, and the recognition
accuracy was significantly improved. The test results show that the MAP value of the improved
model after dataset training reaches 96.3% in the test set, which is 3.8% higher than the original model.
F1 value reaches 91.8%, which is 3.8% higher than the original model. The average detection speed
under GPU reaches 27.8 frames/s, which is 5.6 frames/s higher than the original model. Compared
with current advanced detection methods such as Faster RCNN and RetinaNet, among others, the
test results show that this method has excellent detection accuracy, good robustness and real-time
performance, and has important reference value for solving the problem of accurate recognition of
fruit in complex environment.

Keywords: target detection; recognition algorithm; joint loss function; soft NMS algorithm; global
and local characteristics

1. Introduction

Robots can automatically pick fruits, and solve the problems of high cost, low efficiency,
and labor shortage [1,2]. The efficiency of a robot is related to its speed, accuracy, and
adaptability to complex environments [3,4]. The solution of the above problems depends on
the adoption of advanced fruit recognition theories and algorithms. At present, most of the
existing fruit recognition algorithms are based on the laboratory environment, neglecting
to consider the impact of the actual orchard complex environment on the accuracy and
speed of fruit recognition. Meanwhile, with the development of artificial intelligence
theory and technology, the recognition theory and algorithm based on deep learning are
constantly making new progress. Therefore, it is of great academic significance and practical
application value to study the application of deep learning in the field of fruit recognition
and improve the existing theories and algorithms according to the practical needs.

At present, important progress has been made in the research of fruit recognition
algorithm. Lin et al. [5] studied an image segmentation algorithm by means of Bayesian
classifier and density clustering. On this basis, they proposed an orange recognition method
using support vector machine, which can weaken the influence of illumination variation
on the recognition accuracy, the disadvantage is slow recognition speed and poor real-time
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performance. Song Huaibo [6] put forward a method of apple detection based on convex
Hull theory; the recognition accuracy of apple in occlusion condition is improved, but the
recognition effect is easily affected by changes in lighting and color saturation. The above
recognition methods are too dependent on the features extracted by humans; their results
are susceptible to the influence of the complex environment, the robustness and generaliza-
tion are poor, and there is a certain gap with the actual work needs of picking robots [7,8].
As deep learning continues to make new progress, the advantages of convolution neural
networks (CNN) in extracting multi-level features are increasingly evident; its powerful
representation ability greatly improves the effect of target recognition, and promotes the
development of target recognition technology [9,10]. Its application field covers: motion
action recognition [11], remote sensing scene recognition [12], video moment retrieval with
noisy labels [13], etc. Currently, the common target recognition algorithms based on deep
learning are the region suggestion algorithm and the non-region suggestion algorithm. The
most well-known algorithms of the region suggestion algorithm are RCNN [14] (Regions
with CNN features), Fast RCNN [15] and Faster RCNN [16], etc. Its main idea is to obtain
the suggestion region first, and then make further classification and location prediction in
the current region, this method is called two-order target detection [17,18]. Sun et al. [19]
put forward an novel tomato recognition algorithm using Faster RCNN, in which ResNet50
and K-means clustering are used for feature extraction and adjusting the pre-boxes, re-
spectivel; as a result, the recognition effect is effectively improved, the disadvantage is the
slow recognition speed. Zhang Lei [20] studied the fast RCNN algorithm to realize the
recognition of many kinds of fruits in the natural environment. This algorithm has high
precision and strong generalization ability; however, the detection efficiency of overlapping
occluded fruits is low, and it is easy to determine the overlapping fruits as one. Non-region
suggestion algorithm (SSD [21], Yolo [22], etc.) can directly give classification results and
target position coordinates through a single convolution neural network, also known as
first-order target detection. Tian et al. [23] improved the YOLOV5 algorithm and used
Dense Net as its feature extraction network to accurately identify apples at different stages
of growth. However, the current research on fruit recognition in a wide field of vision is
still insufficient. Zhao Dean et al. [24] improved YOLOV5 algorithm based on solving apple
recognition problem in a complex environment; its recognition speed reaches 60 frames/s,
which has a good real-time performance, but when detecting densely distributed apples,
the F1 value drops obviously; thus, the method does not test well for densely distributed
and wide field apples.

The main contributions of this paper can be summarized as follows: (a) In the complex
environment of orchards, in view of low fruit recognition accuracy, poor real-time and
robustness of traditional recognition algorithms, this paper propose an improved fruit
recognition algorithm based on deep learning. (b) Targeted improvements were made
to the YOLOVS network, and the accuracy and real-time performance of the improved
recognition algorithm are verified by testing in a complex environment. (c) To further verify
the effectiveness and feasibility of the improved algorithm, the performance comparison
test of the algorithms were carried out under different fruit quantities and light conditions;
the test results prove the superiority of the improved algorithm.

The rest of this paper is organized as follows: Data processing is presented in Section 2
and includes “Data collection process and image sources, production of dataset and en-
hanced processing of data”. Section 3 discusses an improved apple recognition algorithm.
Section 4 describes the method and process of model training. Sections 5 and 6 present the
results of the experiment and the final conclusions of the study, respectively.

2. YOLOV5s Network

YOLOVS5 algorithm [25] is an advanced target detection model, which is fast, accurate
and lightweight. The YOLO algorithm uses a single convolutional neural network (CNN)
to process the entire image, dividing it into grids and assigning each grid to detect and
predict the objects in its area. The YOLOV5 algorithm comes in four different versions that
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vary in model size and accuracy, ranging from small (YOLOvb5s) to large (YOLOv5x). In
this paper, we use the YOLOv5s model as the benchmark model for training due to its
balance of size and accuracy.

The YOLOV5s network consists of four main parts. The first part is the input layer,
which processes the input images. This network uses 608 x 608 pixel input images, which
are preprocessed through Mosaic data enhancement, adaptive anchor box calculation,
and adaptive image scaling to improve the training speed and accuracy of the model.
The second part is the backbone network which consists of a series of convolutional
layers, mainly using the CSPParkNet53 network and the Focus network to extract common
features in the image. The third part is the neck network, which is a combination of the
feature pyramid network (FPN) and path aggregation network (PAN). The FPN layers
transmit strong semantic features from the top layers to the bottom layers, while the PAN
layers transmit strong positioning features from the bottom layers to the top layers. This
allows for better transmission of positioning information from the bottom layers to the top
layers, improving the performance of the detection network. The neck network is essential
for achieving high accuracy in object detection, as it helps to combine the semantic and
positional information extracted by the backbone and output layers. The final part is the
predictive output layer, which is responsible for making predictions about the objects in
the input images. The predictive output layer consists of two branches: a classification
branch and a regression branch. The classification branch predicts the class of each object
in the input image, while the regression branch predicts the bounding box coordinates for
each object. The output layer uses the processed features from the neck network to make
these predictions, which are then used to identify and locate the objects in the input image.
Overall, the YOLOV5s network is a powerful and efficient tool for object detection tasks.

3. Data Processing
3.1. Data Collection Process and Image Sources

In total, 2200 frames of apple images with a resolution of 4032 x 3024 pixels were
collected under sunny and cloudy weather during four time periods, that is, morning, noon,
evening and night; illumination conditions include front, side, back and artificial lighting.
The robot picking process was simulated by constantly changing the angle and distance
of shooting. The collected images include different colors, posture, size, illumination,
background, overlap and occlusion. Because the collected apple images are mainly red
Fuji, and the orchard environment is relatively simple, some apple images of different
varieties (Red Fuji, Gala, snake fruit, Qin Guan, etc.) in the complex environment of other
orchards and different maturity periods are collected through the Internet to enhance the
universality of the visual system, and 1800 images are selected. Finally, a total of 4000 apple
images were obtained through field shooting and Internet collection, which were uniformly
saved in a Jpg format. Figure 1 shows some of the collected images.

3.2. Production of Dataset

In order to identify apples in different mature periods, apples are divided into mature
and immature types according to the different growing periods. The training model of
this study adopts Pascal VOC dataset format; with the help of labeling software, the scope
where the target apple is located in the image is manually marked as a rectangular frame,
the category label of mature apple is set as apple, and the category label of immature apple
is set as green apple. After labeling, 3200, 400 and 400 images were randomly selected to
form the training set, verification set and test set, respectively.

3.3. Enhanced Processing of Data

Mosaic data enhancement algorithm [26] is introduced into the input of the model,
that is, four images are read each time, and operations such as random scaling, flipping,
cropping and optical transformation are carried out, respectively; then, four images are
stitched together and transferred into the network with the adjusted tag. It is equivalent to
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passing in four images at a time for learning, which further enriched the background of
the target, and increased the number of images. The calculation of four image data can be
synchronized in the standardized BN; this amounts to scaling up batch processing, and
makes the mean and variance obtained according to BN layer closer to the distribution
of the whole dataset, making the mean and variance obtained according to BN layer
closer to the distribution of the whole dataset. Therefore, the robustness of the model is
improved effectively.

(8) (h) (i)
Figure 1. Apple images in complex scenes. (a) Natural light; (b) Side light; (c) Back light; (d) Immature

bagging; (e) Mature overlapping occlusion; (f) Immature overlapping occlusion; (g) Mature bagging;
(h) Artificial lighting at night; (i) Wide field.

4. Improved Apple Recognition Algorithm
4.1. CSP_X Module [27]

Drawing on the residuals idea of Res Net, residual connections are heavily used in
YOLOv5’s backbone network; the maximum pooling layer is replaced by a3 x 3 convolution
with stride 2 for down sampling. Therefore, the network can be designed deeply, thus
being able to retain more characteristic information, and eliminate network degradation
(such as gradient disappearance and explosion) in training. The above improvements
make the model easier to converge and have stronger feature extraction capabilities. Its
network structure is mainly composed of a series of residual blocks in series. The residual
block structure is shown in Figure 2. In the picking process, real-time performance is an
important indicator. Therefore, it is very necessary to reduce the amount of computation
by making the network more lightweight.

Cspnet (Cross stage parallel network) is an advanced network which can eliminate
gradient information repetition. The reuse of gradient information is avoided, and the
floating points operations (FLOPs) is effectively reduced; in the case of ensuring the
reasoning speed and accuracy, the computation of the model is also reduced. Therefore, the
residual blocks are grouped with CSP Net to form the CSP_X module (see Figure 3). With
the help of the CSP_X module, the input feature map is subsampled twice by the first CBL
module and divided into two branches, the first of which is processed by the other CBL
module; then, through X residual modules and convolution processing, another branch
directly undergoes convolution processing; finally, the results of these two parts are spliced
through channels to obtain the output feature map.
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CBL

BN LEAKY RELU

RESIDUAL BLOCK
CBL

Figure 2. Residual block of YOLOvV5 model. Note: Conv represents convolution; CBL represents
the synthesis module of Conv add Batch Normalization add Lekey ReLU activation function; Each
residual block contains two CBL modules, where 1 x 1 and 3 x 3 is the size of convolution kernel in
Conv; Add is the addition of tensors and does not expand the dimension.

CBL

CBL

RESIDUAL

CONCAT | CBL

Figure 3. CSP_X module. Note: CSPX represents a CSP module with X residual block inside,
the convolution kernel in the first CBL of each CSP is 3 x 3, and stride = 2, so it can perform a
down-sampling operation.

4.2. Spatial Pyramid Pool SPP Module [28]

Although Yolov5 combines the deep and shallow features and enhances the multi-scale
performance of the model, the recognition accuracy for small objects is still insufficient,
and the miss rate is higher. Therefore, in order to accurately identify the small apple target
in a large field of view, it is necessary to pre-position the overall distribution of the apple,
guide the robot to plan the path, adjust the posture, and complete the goal of counting and
estimating the apple yield [29,30]. The SPP (spatial pyramid pool) module is integrated
into YOLOVS, and it is a structure composed of 3 max-pooling layers with different scales,
as shown in Figure 4. The SPP module firstly performs down-sampling operation on the
input characteristic graph through three maximum pooling layers with different pooling
kernel sizes. Then, its result and the original input feature map are spliced by channel.
Finally, the characteristic graph is spliced and sent to the subsequent network, which can
effectively fuse local features and global features, expand the receptive field, enhance the
expressive ability of the characteristic graph, and further improve the recognition accuracy
for micro target.
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Figure 4. Spatial pyramid pooling (SPP) module. Note: Maxpool represents the maximum pool,
where 5 x 5,9 x 9 and 13 x 13 represent the size of the pool kernel of the pool layer, /1 represents
the stride = 1.

4.3. Soft NMS (Non-Maximum Suppression) Algorithm [31]

In the existing object detection algorithms, for the same real object, it is often necessary
to output multiple prediction frames to ensure a recall rate. Because of the existence of
redundant prediction frames, the recognition accuracy will be reduced; therefore, with
the help of NMS algorithm, overlapping prediction frames are filtered to obtain the best
prediction output [32]. For the traditional NMS method, if the prediction score of a frame
is higher, this frame will be given priority, and other frames that overlap with it will be
discarded if they exceed a certain threshold. Although this method is simple and effective,
in the actual picking environment, when the fruits are denser, those with lower scores may
be suppressed, resulting in missed detection. To solve the above problems, the traditional
NMS is improved to a soft NMS algorithm, as follows:

S;, IOU(M, bz) < Nt
5i= ToU(M,b;)? @

S; = S;e” 4 , IOU(M, bz) > N;

where S; is the confidence score of the current prediction frame, M is the prediction frame
with the highest confidence score, b; is the prediction frame in the current category, IoU
represents the ratio of the intersection and union of two prediction frames, N; is a manually
set threshold, generally 0.5; ¢ is the continuous penalty term coefficient. The above formula
indicates that the prediction frame with the highest score is set as a reference frame by Soft
NMS; then, the IoU (intersection over union) is calculated according to the reference frames
and the remaining prediction frames in the current category, and predictive frames with
IoU less than the set threshold are retained. When IoU is greater than the set threshold,
the confidence score of the prediction frame will continuously reduce, instead of directly
setting it to zero, some frames with high scores can be used as correct detection frames in
subsequent calculations. Therefore, the ability of detecting occluded overlapping fruits can
be effectively improved. At the same time, the Soft NMS Algorithm is not more complex
than traditional NMS and is easy to implement.

4.4. Improvement of Network Model

The improved network structure is shown in Figure 5. The backbone network is
composed of five CSPX modules with 1, 2, 8, 8, and 4 residual blocks, respectively, and each
also contains two CBL modules. CBL module is a combination of BN layer, activation layer
and convolution layer, the activation function still uses the Lekey Relu from the original
network. The pixel of the input image is set to 608 x 608, after each CSPX module, the
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feature map is reduced to 50% of its original size. After 32 times down sampling through
the backbone network, seven CBL modules and one SPP module in the neck network, as
well as the final convolution layer, a prediction feature figure y1 with a size of 19 x 19 is
obtained for predicting larger targets; then, after passing through 6 CBL modules and 1 SPP
module, the output feature map is subjected to two times of up sampling operations in turn,
and the results are spliced and fused with the shallow feature map with lower resolution
according to the channel. Finally, two predicted feature maps y1 and y2 with different
scales are obtained (their sizes are 38 x 38 and 76 x 76), which can predict medium-sized
and small objects, respectively; each prediction feature map has 21 channels (each feature
point on the feature map can predict three priori frames, each priori frame performs two
category predictions, one confidence prediction and four position predictions; therefore,
a total of 21-dimensional prediction feature vectors are required). Finally, the prediction
results from the feature maps with three scales are sent to Soft NMS together, and the final
prediction is completed after filtering out the redundant prediction frames.

Neck network Prediction
Backbone network CBLx3 CBLx3 output
onv]
1x1 PPl
21x19x19
Input_ CBLX5 S
| > 1Pl i I |
1 21x38x38 e
CBLx5|
608x608x3 oy I3
» 1x1
‘ 21x76x76

Figure 5. Improved network structure diagram. Note: The number after CSP indicates that the CSPX
module contains several residual blocks; Concat is a feature fusion method based on superposition
of channel numbers; up sample means up sampling the input feature map; y1, y2 and y3 represent
output characteristic diagrams of three different scales, respectively; The Xi representation in the
diagram should have i multiple of same module composition here.

4.5. Optimization of Loss Function
4.5.1. Focal Loss [33]

The problem of sample imbalance exists in first-level networks such as YOLOV5.
Negative samples may interfere with the optimization direction of the model during
training. The weight of all samples is the same in the standard cross entropy loss function;
therefore, if the samples are unbalanced, the negative samples will occupy the dominant
position, and a small number of difficult to detect samples and positive samples will not
work, which will lead to poor accuracy, as shown in Equation (2):

—a(1—p)Tlog(p),y =1
FL(p) = 2
—(1—a)p"log(1—p),else

where p represents the sample’s prediction probability, y represents the sample label, « is
the balance coefficient of the samples, 0 < « < 1; ¢ is a modulation factor of the difficult and
easy sample.

The « is introduced in Equation (2) to balance the weights of the samples, and
(I — p)? can adjust the weights of difficult and easy samples. Taking the prediction
of positive samples (i = 1) as an example, when a border is misclassified, if p is small, then
(1 — p)7 is close to 1, and its loss is hardly affected, when p is close to 1, which shows that
the classification prediction is better and it is a simple sample, (1 — p)? is close to 0, the loss
is reduced, and the contribution of simple sample loss will decrease with the increase in .
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4.5.2. CloU Loss (Complete Cross-Over Loss)

The position loss in the original YOLOV5 loss function is obtained by directly calculat-
ing the square of the deviation between the four prediction offsets and the actual offsets;
it does not take into account that the overlap area and overlap position between the real
box and the predicted box may be different under the same offset loss value. Therefore, we
propose to use CloU Loss (complete IoU Loss) to replace the L2 position loss in the original
loss function. Firstly, the prediction frame can be obtained by inputting the prediction
offset into the priori frame. Then, we directly minimize the distance between the center
points of the prediction box and the real box, and maximize the overlapping area between
the two boxes, as shown below.

LCIOU =1 - CloU (3)

where
d2
ClIoU = IoU — (C2 —+ uv)

4 . w8t an 2
v = 5| arctan_z —arctan

v
(1-ToU) +v

In the above equation, d represents the distance between the center points of the pre-
diction box and the real box, ¢ represents the diagonal distance of the minimum bounding
rectangle of the prediction box and the real box, w8' is the width of the real box and K8 is
the its height.

According to Formula (3), when the predicted box is completely coincident with the
real box, IoU=1,d =0, uv =0, So CloU =1, L¢o,u = 0, and when the distance between the
prediction box and the real box is infinitely far, IoU =0, d2/c¢? =1, CloU = —(1 + uv), so
Lcrou =2 + uv, 0 < Legou < 2 + uv, where v is used to indicate the similarity of the aspect
ratio and u is the weight coefficient. Since CloU Loss comprehensively considers the above
factors, the regression of the target frame is more stable, the convergence rate is faster, and
the position prediction is more accurate. Even if the prediction box does not intersect with
the real box, the back propagation can be completed to optimize the model.

u =

5. Model Training
5.1. Experimental Conditions

Tests were carried out in a deep learning environment on a workstation, configured as
follows: Intel Xeon(R) E5-2650 v4@2.20 Hz x 48 CPU; Running Memory 64 GB; 1 TB Solid
State Drive; 12 GB GTX1080Ti x 2 GPU; Ubuntu 18.04 operating system; NVIDIA drives
450.102.04; Python and Pytorch are 3.8 and 1.7, respectively; CUDA and cuDNN are 11.0
and 7.6.5, respectively.

5.2. Evaluation Index System
Model performance was evaluated via P, R, F1, AP and MAP, as shown in Equations (4)—(8).

TP
P= TP + FP )
TP
R= TP + FN ©®)
2PR
Fl=37R ©)

AR = /0 'P(R)AR @)
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MAP = Zﬁ%‘w (8)
In Formulas (4)—(8), P is the ratio of correct prediction boxes to all prediction boxes,
R is the proportion of correct label frames in all label frames, TP is the number of prediction
boxes correctly matched by labeled boxes, FP represents the number of prediction boxes
with incorrect prediction results, FN indicates the number of label frames that have not
completed the detection task, and AP represents the average accuracy value for each apple
class; MAP is the average accuracy value for both apple classes; F1 represents the harmonic
mean of P and R.
The correct bounding box is a rectangle that accurately covers the outline of the apple
(coverage is 99% or greater).

5.3. Training Process

We use SGD optimization algorithm with momentum; before the training, the im-
proved model was pre-trained using a COCO dataset, the model was initialized using
a pre-trained weight [34], and the Batch scale was set to 16. During training, we use a
small initial value of learning rate at the beginning of training to avoid over fitting. In this
article, the initial value is 0.001; after three rounds of training, it rose to 0.01, and gradually
declined to 0.001 from round 4; the epoch is 300, and the weight decay is 0.0005. After
each epoch is trained, the network weight file is saved, and the monitoring of the model
is carried out in real time by using the Tensor board; each performance metric under the
validation set is recorded. The training lasted for six hours and thirty-two minutes.

5.4. Analysis of Training Data

The loss curve during the iterative training and the performance index curve under
the verification set are shown in Figure 6. Although the number of training rounds set
in this experiment is 300 rounds, the loss curve tends to be stable after about 100 rounds,
which indicates that the model has been fitted at this time. After 150 epochs, the loss
curve fluctuates up, and training losses are still falling; this indicates an over fitting of the
model. The curves of P, R, F1 and MAP in the training process show that the performance
indicators change greatly but the overall trend is rising in the first 20 rounds of training; as
the training progresses, it gradually becomes stable and oscillates in a small range. Since
the model has been fitted in about 100 rounds, and the precision and recall rates of the
two categories are comprehensively considered in the MAP value, this paper takes the
maximum MAP near round 100; the maximum value of MAP was 96.1%, which occurred
in round 109. That is, the weights obtained in this round are taken as the final weights of
the model, where P = 94.1%, R = 90.6%; F1 = 92.3%.

6. Test Results
6.1. Evaluation of Test Results

The resulting model is tested under the test set. The test set contains two types of
apple images in various complex environments. The P-R curve in Figure 7a shown that
the AP values of ripe apples and unripe apples reached 96.4% and 96.3%, respectively; the
MAP is 96.3%, the average detection speed is 27.8 frames/s, and the performance index
meets requirements of the picking robot. F1 represents the harmonic mean of accuracy and
recall, which changes with the change in the confidence threshold, F1 curve is shown in
Figure 7b. When the confidence threshold is 0.674, the maximum value of F1 is 0.92. Since
a large threshold will lead to a decrease in recall rate and an increase in missed detection
rate, the confidence threshold is set to 0.55 after comprehensive consideration of accuracy
rate and recall rate. In this case, the model has the best performance.
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Figure 6. The loss curve and the indexes of the verification set in the training process. (a) The loss
curve; (b) various performance indexes.

6.2. Recognition Results of Different Algorithms

The other five target recognition algorithms are trained under the dataset, and after
the optimal model was obtained, tests are performed on test sets. The average value of the
accuracy, recall rate, F1, AP and detection speeds were shown in Table 1. Among them,
the performance of the improved recognition algorithm is as follows: accuracy P = 91%,
recall rate R = 92.6%, F1 value = 91.8%, AP1 = 96.4%, AP2 = 96.3%; all the performance
indexes are better than those of the other five recognition algorithms. The AP1 and AP2 of
improved YOLOVS5 were increased by 2.2% and 5.5%, respectively, and 1.3% higher than
those of YOLOVS. The above test results show that the improved algorithm has better
comprehensive recognition performance.
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Figure 7. P-R and F1 curve under test set. (a). P-R curve; (b). F1 curve. Note: apple represents the
category of mature apples, green apple represents the category of immature apples, AP represents
the average precision value of a single category, and MAP represents the average precision value of
two categories.

Table 1. Recognition results of six algorithms on the test set.

Detection Algorithm P/% R/% F1/% AP1/% AP2/% Detection Speed F-s~1
Faster RCNN 91.5 73.1 81.0 92.5 85.2 16.5
RetinaNet 89.8 81.8 85.5 92.7 88.6 26.3
CenterNet 90.4 70.3 79.0 90.7 83.6 32.3
YOLOvV5 91.7 92.0 91.8 95.1 95.0 25.6
Improved YOLOvV5 91.0 92.6 91.8 96.4 96.3 27.8

Note: AP1 is the AP value of mature apple, and AP2 is the AP value of immature apple.

The recognition results in Figure 8 show that the improved algorithm can well detect
mature and immature apples in various complex environments such as different illumi-
nation, different occlusion degrees, bagging, and large field of view. The position and
category of the prediction box are more accurate, the rate of missed and false detection is
lower, and the robustness is stronger.
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Figure 8. Detection effect of this algorithm. (a). Natural light; (b) side light; (c) back light;
(d) immature bagging; (e) mature overlapping occlusion; (f) immature overlapping occlusion;
(g) mature bagging; (h) artificial lighting at night; (i) wide field.

6.3. Comparative Experiment under Different Fruit Number

The following is a comparative test under different number of apples. The test set
has a total of 400 images, including 5117 apples, which are divided into four categories
according to the number of apples. Of these, 105 were images of a single apple, 142 images
with multiple apples (each with 2 to 10 apples), 125 images of dense apples (each containing
11 to 30 apples), and 28 images of apples in a large field of view (each contains more than
30 apples). The performance of the two methods under different apple numbers is shown
in Figure 9; this result shows that the two algorithms have better recognition results when
detecting a single apple and multiple apples. When detecting dense apples, the original
YOLOVS5 algorithm can cause missed detection and inaccurate positioning. In a complex
environment, the number of missed and falsely detected apples in YOLOVS5 is significantly
more than that of the improved algorithm.

The performance indexes obtained from the above tests are shown in Table 2. When
detecting a single apple, there is little difference between the improved algorithm and
YOLOVS5. With the increase in fruit quantity, the performance indexes of the two algorithms
decreased. Moreover, the gap in recognition accuracy between YOLOV5 and the algorithm
in this paper is becoming more and more obvious. Among them, when detecting multiple
apples, compared with the improved algorithm, the AP values of the two classes are
reduced by 1.5% and 3.5%, respectively, and the F1 value is 2.0% lower. When detecting
dense apples, the AP values of the two types were 1.8% and 4.0% lower than that of
the proposed algorithm, and the F1 values were 3.7% lower. In the large field of view
environment, the two types of AP values are 2.8% and 6.7% lower than the algorithm in
this paper, and the F1 is 5.7% lower.
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Figure 9. Detection effect of different numbers of apples before and after YOLOv5 improvement.
(a) Original picture; (b) YOLOV3; (c) improved YOLOVS5.

Table 2. Recognition results of different numbers of apples before and after YOLOV5 improvement.

Apples Number Algorithm P/% R/% F1/% AP1/% AP2/%

Sinele YOLOV5 924 98.9 95.5 98.8 99.6

& Improved YOLOV5 98.1 95.7 96.9 98.5 98.8
Multiole YOLOV5 89.6 91.2 90.5 95.3 93.4

P Improved YOLOv5 91.9 93.1 925 96.8 96.9

Intensi YOLOV5 89.9 85.2 87.5 94.2 91.0
niensive Improved YOLOv5 89.6 92.8 91.2 96.0 95.0
Wide field YOLOV5 84.4 82.5 83.0 90.4 85.6
ldae e Improved YOLOv5 85.4 86.6 88.7 93.2 92.3

In summary, the improved algorithm can well identify apples under different quantity,
size, overlap and occlusion environment, and its performance is significantly better than
the original YOLOVS5, especially for apple recognition in dense and large field of view envi-
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ronments, where the performance improvement is even more significant; the effectiveness
of the improved algorithm has been fully verified.

6.4. Comparison Test under Different Light Conditions

In this section, the robustness of the improved algorithm is tested under different
lighting conditions, which include front light, side light, backlight (including evening and
cloudy days, etc.) and artificial lighting at night, as shown in Figure 10, the results show
that the two types of algorithms have better recognition results under different lighting
conditions; however, when the light is extremely poor (such as backlight, evening, etc.), the
prediction frame position is not accurate enough and false detection and missed detection
will occur. The performance indexes obtained from the above tests are shown in Table 3.
The above results show that the performance indexes of the two algorithms have little
difference under the conditions of front light, side light, backlight and artificial light at
night, and good detection results can be achieved, which indicates that this recognition
algorithm has strong robustness to different illumination conditions.

Mature night

Immature side light

Immature natural light Immature 51de light Immature back light Immature night

(c)

Figure 10. Detection effect of apples under different illumination before and after YOLOv5 improve-
ment. (a). Original picture; (b). YOLOV5; (c). Improved YOLOVS.
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Table 3. Recognition results of apples under different illumination.

Light Condition

Detection Algorithm P/% R/% F1/% AP1/% AP2/%

Natural light

YOLOvV5 91.3 95.4 93.3 97.3 96.8
Improved YOLOv5 95.2 94.7 94.9 97.7 97.7

Side light

YOLOvV5 91.6 95.6 93.6 97 .4 97.0
Improved YOLOV5 95.6 94.8 95.2 98.0 97.9

Back light

YOLOv5 90.7 94.5 92.6 96.9 96.0
Improved YOLOV5 94.6 94.0 94.3 97.3 97.2

Night

YOLOvV5 90.8 95.0 92.9 97.0 96.5
Improved YOLOv5 95.0 94.2 94.6 97 .4 97.6
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7. Conclusions

In the complex environment of orchards, in view of low fruit recognition accuracy,
poor real-time and robustness of traditional recognition algorithms, this paper proposes an
improved fruit recognition algorithm based on deep learning. The P of the algorithm in the
test set is 91%, R is 92.6%, F1 is 91.8%, the AP of the two categories are 96.4% and 96.3%,
respectively, and the recognition speed can reach 27.8 frames/s. The overall performance is
better than the five currently known mainstream algorithms and can meet the requirements
of automatic apple picking in accuracy and real time.

To further verify the effectiveness and feasibility of the improved algorithm, the per-
formance comparison test of the algorithms was carried out under different fruit quantities
and light conditions; the test results show that the two types of AP values are improved
by 1.8% and 4.0%, respectively, when recognizing dense apples, and they are improved
by 2.8% and 6.7%, respectively, in the large field of view environment, which proves the
superiority of the improved algorithm. In addition, this target recognition algorithm has
strong robustness to lighting conditions, and the change in light has little influence on its
recognition performance.
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