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Abstract: The production of textiles has undergone a considerable transformation, progressing from
its primitive origins in hand-weaving to the implementation of contemporary automated systems.
Weaving yarn into fabric is a crucial process in the textile industry that requires meticulous attention
to output quality products, particularly in the tension control section. The efficiency of the tension
controller in relation to the yarn tension significantly affects the quality of the resulting fabric, as
proper tension control leads to strong, uniform, and aesthetically pleasing fabric, while poor tension
control can cause defects and yarn breakage, leading to production downtime and increased costs.
Maintaining the desired yarn tension during textile production is crucial, although it poses several
problems, such as the continuous diameter change of the unwinder and rewinder sections leading to
system change. Another problem faced by the industrial operation is maintaining proper tension on
the yarn while changing the roll-to-roll operation velocity. In this paper, an optimized method for
controlling yarn tension through the cascade control of tension and position, incorporating feedback
controllers, feedforward, and disturbance observers, has been proposed to make the system more
robust and suitable for industrial use. In addition, an optimum signal processor has been designed to
obtain sensor data with reduced noise and minimal phase difference.

Keywords: roll-to-roll control; tension–position cascade control; control schematic with disturbance
observer; signal processing with Kalman filter; robustness control

1. Introduction

The evolution of textile production from its origins in hand-weaving to contemporary
automated systems involves a long and complex history that spans different regions and
periods of the world [1]. A crucial element of modern textile production is the loom
system [2], which enables the transformation of yarn into fabric by interlacing warp and
weft threads. The loom system comprises a frame, a shedding mechanism, a reed, and a
take-up mechanism. The frame secures the yarn, while the shedding mechanism creates a
space between the warp and weft threads for the shuttle to pass through. The reed regulates
the tension of the yarn, and the take-up mechanism collects the fabric as it is produced.

In the textile industry, weaving is a vital process [3] that demands meticulous attention
to detail. One of the most important factors in this process is tension control, which refers
to the capacity to adjust the tension of the yarn during weaving. The quality of the fabric
produced by an industrial loom system is directly related to the level of tension control [4,5].
When the yarn is woven with optimal and consistent tension, the resulting fabric is durable,
uniform, and aesthetically pleasing. On the other hand, poor tension control can cause
fabric defects, such as irregularities in the weave, which compromise the quality of the final
product. Tension control is also essential for preventing yarn breakage during weaving.
When the tension of the yarn is not properly adjusted, it can snap or break, leading to
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production interruptions and increased costs. By maintaining the appropriate level of
tension, the loom can operate efficiently and reduce the risk of yarn breakage.

To maintain the desired tension in the yarn, researchers face several problems [4], such
as first of all if the reel continues with a fixed yarn velocity, the rotational velocity of the
unwinder section will increase after a certain time because the yarn cake diameter of that
section will reduce with the time. To avoid this problem, if the velocity of the rewinder
increased initially, it may cause high tension on the yarn and result in a torn and bad
product. Traditionally, to overcome this problem, mechanical controllers such as brakes or
rotational weights are used. In addition, with the improvement of motor control techniques,
scientists have tried to solve this problem through velocity control of the rewinder and
unwinder motor. However, controlling tension with only the velocity of control generates
a new problem due to the vibration [6] of the motor, which has been solved by adding
a vibration controller with the velocity controller. In several studies, a tension control
approach was adopted with the help of a load sensor, and in order to avoid the noise and
disturbance generated by the sensor and system dynamics, the Kalman filter [7] and a
disturbance observer were used.

In this paper, we have studied a new method of controlling yarn tension through the
cascade control [8,9] of tension as the outer loop and position as the inner loop. As the
rolling velocity of the yarn is equally important as the yarn tension for mass production,
this method will be helpful for industrial use. To reduce the noise generated by the load
sensor, an optimized signal processor was designed with the help of the Kalman filter. In
this study, each control loop [10] was structured with a feedback controller, a feedforward to
eliminate phase delay and boost the system at the initial position, and lastly, a disturbance
observer to make the system more robust so it can withstand dynamic change behavior.

2. Roll-to-Roll Tension Modeling

In this section, we will conduct an analysis of the system modeling for roll-to-roll
equipment. Additionally, we will propose a method for determining the system dynamics
through experimentation and, subsequently, validate the optimal dynamics model.

2.1. System Dynamics Modeling

In order to determine the system dynamics [11–13] of the roll-to-roll equipment, we
have developed a schematic representation (Figure 1) that outlines the various components
and stages involved in the roll-to-roll system. The yarn is initially unwound from the
unwinder section at an angular velocity of

.
θu. Subsequently, it passes through several

bearings and a single load sensor, before being fed into the rewinder section at an angular
velocity of

.
θr. As we are going to design the cascade control [14,15] of tension and position,

we have to find a relation between them where the tension will be our input and we should
obtain the position as an output from the system.
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The load signal output FT varies depending on the web tension force f:

FT(t) = 2f(t)cosθ+ Fd(t) (1)

Here, Fd is an external disturbance.
Again, we know that for the yarn elasticity, the tension force depends on the elasticity

constant of the yarn and the movement from the steady position.

f(t) = kθr(t) (2)

Thus, from Equation (1) we can find:

FT(t) = 2kθr(t).cosθ = Kθr(t) (3)

Now, the transfer function of the system from the input tension force (FT) to the
position output (θr) is:

P(s) =
θr(s)
FT(s)

=
1
K

(4)

We posit that the physical distance between the actuator of the rewinder and unwinder
and the load cell induces a signal delay in the system. To compensate for this delay, we
suggest augmenting the nominal model with a dynamic model such as a first-order low-
pass filter.

Thus, we can rewrite the nominal transfer function as:

Pn(s) =
1

K(τns + 1)
(5)

2.2. System Identification for the Tension Model

One of the essential steps in the model-based control design process is to obtain a
suitable nominal model of the system. The quality of the nominal model affects the per-
formance of the feedback, feedforward, and disturbance observer in the signal processing
and control design, which will be elaborated in the subsequent sections. A step input
with a varying position was applied to determine the dynamic model of the system, and
the nominal model was derived from the load cell output data. The data sample was
selected from the range of 0~1 N, which corresponds to the experimental scope, as shown
in Figure 2.
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2.3. System Identification for the Motor

A model-based approach was employed to design the position controller, which
necessitated the acquisition of an accurate nominal model of motor dynamics. A chirp
signal with a frequency range of 0~50 Hz was applied for 50 seconds, and the output data
were captured by the motor encoder. A fast Fourier transform was performed on the input–
output data to facilitate the analysis, and a Bode plot of the motor system was produced.
The Bode plot in Figures 3 and 4 indicates that the system exhibited first-order dynamics.
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3. Signal Processor

As shown in Figure 2, the load sensor introduces a considerable amount of noise [16]
that affects the precision of the control system. A noise filter can alleviate this problem,
although it also introduces a trade-off between noise attenuation and phase lag. High noise
attenuation may lead to a large phase lag and thus compromise the system’s stability. To
address this challenge, this study developed an optimal Kalman filter that can achieve a



Sensors 2023, 23, 5494 5 of 13

desirable noise reduction within a tolerable range without sacrificing the phase lag. Figure 5
illustrate overall control architecture for the experimental system. The Kalman filter was
designed by formulating the state space model of the tension nominal plant and estimating
the state variables of the system through the Kalman filter using the measured values.
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The transfer function of the system from the tension input τ to the load cell sensor
output FT can be calculated as follows:

f(t) =
τ(t)
Rr

(6)

From Equations (1)–(6), it can be expressed as:

F(t)
τ(t)

= 2cosθRr + Fd (7)

Acknowledging the system delay, the nominal plant can be written as:

Ptension(s) =
2cosθRr

τns + 1
+ Fd(s) (8)

τn = 2*π*5

A state-space representation is required for the nominal plant in order to perform
the Kalman filter computation. This involves expressing the system dynamics as a set of
first-order differential equations that relate the state variables to the inputs and outputs of
the plant.

.
x(t) = − 1

τn
x(t) +

2 cos θRr

τn
u(t) + w(t) (9)

y(t) = x(t) + v(t)[Here, A = − 1
τn

, B =
2cosθRr

τn
, C = 1] (10)

The Kalman filter algorithm [17] comprises two distinct stages, namely the prediction
process and the correction process. To predict the future value of X̂k as time progresses
from tk to tk+1, the algorithm utilizes the system model variables A and Q. A represents the
system matrix, while Q denotes the covariance matrix of W. The system model variables,
including A, Q, R, and H, significantly affect the performance of the Kalman filter. In
this study, the system matrix A and the observation matrix H are assumed to be constant
because they are related to the nominal model. The noise covariance matrices Q and R
should be theoretically computed from the noise characteristics, although it is practically
challenging to determine Q and R from multiple errors. Therefore, this study adopted



Sensors 2023, 23, 5494 6 of 13

a trial-and-error method to obtain Q and R. Equations (11) and (12) show the predicted
variables of the Kalman filter algorithm.

X̂*
k = A ˆXk−1 + Buk (11)

P*
k = APk−1AT + Q (12)

The correction step of the Kalman filter involves computing the final estimate of the
state vector (x̂k) based on the system model parameters H and R, the prior estimate (x̂*

k),
and the current observation Zk multiplied by the Kalman gain Kk. The equation for the
final estimate is given by:

x̂k = X̂*
k + Kk

(
Zk − HX̂*

k

)
(13)

The calculation method for the Kalman gain Kk is the following:

Kk = P*
kHT

(
HP*

kHT + R
)−1

(14)

In this context, Pk denotes the error covariance, which measures the discrepancy
between the estimated and the true values. The error covariance can be computed as
follows:

Pk = (I − KkH)P*
k (15)

The algorithms presented in this paper were applied to the signal filtering problem,
and the results are illustrated in Figure 6. The figure demonstrates the superior performance
of the proposed methods over the conventional low-pass filter in terms of noise reduction
and signal preservation.
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4. Control Design

The aim of this research was to develop a precise and robust tension control system and
to adjust the speed of the unwinder and rewinder motors for optimal looming performance.
To achieve this, a cascade control [18,19] strategy was implemented, which integrated
individual feedback loops for both tension and velocity as well as a disturbance observer
(DOB) to enhance the robustness.
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Tension–Position Cascade Control Model

This study proposes a hierarchical cascade control architecture for a yarn tension
control system. The architecture consists of two loops: an outer tension control loop and an
inner position control loop. The outer loop receives the desired yarn tension as an input
and generates a position signal to regulate the position of the inner loop. The inner loop
controls the yarn tension by following the position signal from the outer loop, which is
filtered with a low-pass filter to eliminate high-frequency noise. Additionally, the reference
position for the inner loop is obtained by discretely integrating the reference velocity signal
and adding it to the connection signal from the outer loop.

The proposed cascade control design is applied to the rewinder motor, which requires
precise regulation of the yarn tension. The unwinder motor uses an independent position
control architecture that has the same reference input as the rewinder section. The details
of this control scheme are presented in Figure 7, which includes the feedback, feedforward
and disturbance observer design (with optimized gain [20,21]) for each loop. Moreover, a
Kalman filter and several low-pass filters are integrated to suppress high-frequency noise
and disturbance.
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5. Experiment and Analysis

This section presents the experimental setup of the roll-to-roll process and the analysis
of the performance of the proposed control architecture. The experimental setup consists of
the components and parameters of the roll-to-roll system, while the control architecture
includes the design and implementation of the control system discussed above.

5.1. Experimental Setup

Figure 8 depicts the experimental configuration of the system. The rewinder and
unwinder sections of the setup employed two servo motors (APMC-FAL01AM8K) with
a power rating of 100 W, which were operated via the L7SA001 motor driver. The torque
control mode of the motor driver was utilized to achieve compatibility with the control
design framework presented in the previous section. The load sensor employed in the
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experiment was the M3200 model, which demonstrated the capacity to detect forces up
to 50 N with adequate precision. The QUANSER board (a microcontroller provided by
National Instruments; model: QPIDe) served as the primary control unit and was capable
of providing an analog output of ±10 V [22] while offering a 19-bit resolution and high
precision for the analog input, which meant a highly precious PWM [23] signal could be
generated for the motor input. The QUANSER board was programmed using MATLAB
and operated via the external mode option provided by MATLAB.
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The real experimental setup is illustrated in Figure 9, which shows the positions of the
rewinder and unwinder section and the load cell sensor.
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5.2. Experimental Results and Analysis

To perceive the efficacy of the control design in terms of tension and position tracking,
a trapezoidal tension profile input was applied to the system with a magnitude of 0.5 N.
The velocity profile closely imitated the tension profile, with a maximum velocity of 19 rpm.
It is noticeable that the velocity of the rewinder and unwinder motors differed, as the
input profile of the rewinder motor was regulated via the tension control loop. The tension
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control performance of the outer loop with a proportional–integral feedback control scheme,
without the use of a Kalman filter, is presented in Figure 10a. The results indicate that the
tension performance was relatively poor, as the sensor noise had a direct impact on the
performance. The inclusion of a disturbance observer led to a certain decrease in the tension
error, as shown in Figure 10a. However, when the magnitude of the input signal increased
or decreased, the tension error exhibited a significant increase, which is not particularly
suitable for practical use. As soon as the Kalman filter was added as the load cell’s signal
processor, the performance improved significantly, which is shown in Figure 10b.
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As a further experiment, a gradually increasing trapezoidal tension profile, followed
by a decreasing tension profile, were applied. The range of the tension profile varied
between 0.1 N and 1 N. Figure 11 illustrates the control performance of the outer tension
control loop as well as the inner loop’s position control performance.
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In Figure 12, a peak error of 0.02 N can be seen, while the RMS error is 0.008. However,
for the inner loop position control, both the peak and RMS errors were high for the rewinder
motor due to the processing time and phase delay of the cascade control loops.
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6. Conclusions

The aim of this paper was to evaluate different performance measures for yarn tension
control, rotational equipment position control, and sensor data processing. Tension control
is a crucial factor in ensuring fabric quality, and thus, it received significant attention in this
paper. Moreover, the velocity control of the rewinder and unwinder was also emphasized
due to its relevance to the industrial production time. Considering the changing dynamics
of the system, a robust tension–position cascade control method using a disturbance
observer was proposed. The performance of each control loop was tested using real
roll-to-roll experimental equipment, and the results were satisfactory for industrial use.
Additionally, an adaptive signal processing filter was designed to eliminate sensor noise,
which had a negligible phase delay. Future research could explore the use of reinforcement
learning control algorithms to improve the performance of tension control at a more
precise level.
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Appendix A. Symbols and Definitions

This appendix consists of a list (Table A1) of all the symbols used in this paper along
with their definitions.

Table A1. List of symbols and their definitions.

Variable Definition

FT Load sensor signal output
f Tension force of the yarn
θ Angle between the reference axis of the load sensor and the yarn

Fd External disturbance
k Elasticity constant of the yarn
θr Angular position of the rewinder motor
.
θr Angular velocity of the rewinder motor
θu Angular position of the unwinder motor
.
θr Angular velocity of the unwinder motor
Rr Radius of the rewinder pully
Ru Radius of the unwinder pully

tweb Thickness of the yarn
Pn Nominal plant of the system
τn Cutoff frequency of the nominal plant’s low-pass filter
τ Input tension (reference)
s Wheel radius
r Roller radius
A State matrix or system matrix
B Input matrix
C Output matrix
D Feedthrough matrix
Q Covariance of the process noise
R Covariance of the observation noise
H Observation matrix
X̂k Estimated value at time k
X̂*

k Predicted future value at time k
Zk Current observation at time k
Kk Kalman gain at time k
P*

k Predicted error covariance at time k
Pk Estimated error covariance at time k
I Identity matrix
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