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Abstract: The continuous advancements in healthcare technology have empowered the discovery,
diagnosis, and prediction of diseases, revolutionizing the field. Artificial intelligence (AI) is expected
to play a pivotal role in achieving the goals of precision medicine, particularly in disease prevention,
detection, and personalized treatment. This study aims to determine the optimal combination of
the mother wavelet and AI model for the analysis of pediatric electroretinogram (ERG) signals.
The dataset, consisting of signals and corresponding diagnoses, undergoes Continuous Wavelet
Transform (CWT) using commonly used wavelets to obtain a time-frequency representation. Wavelet
images were used for the training of five widely used deep learning models: VGG-11, ResNet-50,
DensNet-121, ResNext-50, and Vision Transformer, to evaluate their accuracy in classifying healthy
and unhealthy patients. The findings demonstrate that the combination of Ricker Wavelet and Vision
Transformer consistently yields the highest median accuracy values for ERG analysis, as evidenced
by the upper and lower quartile values. The median balanced accuracy of the obtained combination
of the three considered types of ERG signals in the article are 0.83, 0.85, and 0.88. However, other
wavelet types also achieved high accuracy levels, indicating the importance of carefully selecting the
mother wavelet for accurate classification. The study provides valuable insights into the effectiveness
of different combinations of wavelets and models in classifying ERG wavelet scalograms.

Keywords: biomedical research; electroretinography; electroretinogram; ERG; classification; deep
learning; cnn; transformer; wavelet; scalogram

1. Introduction

The pediatric electroretinogram (ERG) is a measure of the electrical activity of the retina
in response to light stimulation, typically performed on infants and children. The ERG
signal consists of a series of positive and negative waveforms, labeled as a-wave, b-wave,
and c-wave, which reflect the activity of different retinal cells [1]. The a-wave represents
the photoreceptor response, while the b-wave reflects the activity of the bipolar cells and
Müller cells [2]. The amplitude and latency of the a-wave and b-wave are commonly used
as parameters to evaluate the function of the retina in pediatric patients. Abnormalities
in the pediatric ERG signal can be indicative of a range of retinal diseases or disorders,
including congenital stationary night blindness, retinitis pigmentosa, and Leber’s congeni-
tal amaurosis.

The c-wave of the ERG is often considered less prominent and less studied compared to
the a-wave and b-wave. The a-wave represents the initial negative deflection, reflecting the
hyperpolarization of photoreceptors, while the b-wave represents the subsequent positive
deflection, primarily originating from bipolar cells [3]. These waves are well-established
and have been extensively researched due to their direct relevance to the visual pathway.
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In contrast, the c-wave represents a slower, positive deflection following the b-wave,
originating from the retinal pigment epithelium (RPE) and Müller cells [4]. Its amplitude
is smaller and its clinical significance is not as clearly understood [5]. Consequently, it
receives less attention in scientific literature and clinical practice.

While the a-wave and b-wave are directly related to photoreceptor and bipolar cell
function [6], the c-wave is thought to reflect RPE and Müller cell activity, which are involved
in the retinal pigment epithelium-photoreceptor complex. The complex nature of these
cells and their functions may contribute to the relatively limited emphasis on the c-wave in
the text compared to the a-wave and b-wave. However, further research is needed to fully
understand the c-wave’s role and its potential clinical applications.

ERG may be of various types, depending on the specific electrophysiological protocol
used. One type of ERG signal is the Scotopic 2.0 ERG response, which is obtained under
conditions of low light intensity. This response is mainly generated by the rod photoreceptor
cells in the retina and is characterized by a relatively slow and low-amplitude waveform.
Another type of ERG signal is the Maximum 2.0 ERG response, which represents the
maximum electrical response that can be elicited from the retina. This response is obtained
under conditions of high light intensity and is mainly generated by the cone photoreceptor
cells in the retina. The Maximum 2.0 ERG response is characterized by a faster and higher-
amplitude waveform compared to the Scotopic 2.0 ERG response. The Photopic 2.0 ERG
response is a third type of ERG signal that is obtained under conditions of moderate light
intensity. This response is also mainly generated by the cone photoreceptor cells in the
retina and is characterized by a waveform that is intermediate in both amplitude and
latency between the Scotopic 2.0 ERG response and the Maximum 2.0 ERG response. It
is important to note that the specific electrophysiological protocol used to obtain these
different types of ERG signals can vary depending on the research question and the clinical
application. Detailed information about the parameters of the electrophysiological study,
including the light intensity, wavelength, and duration of the light stimulus, as well as the
recording electrodes and amplification settings are shown in a previous study [7].

The Figure 1 depicts pediatric ERG signals of both healthy and unhealthy subjects,
along with the designation of the parameters that clinicians analyze. By analyzing the
parameters of the ERG waveform, such as the amplitude (a, b) and latency of the a-wave
and b-wave (la, lb), clinicians can identify abnormalities and diagnose a range of retinal
disorders [8].

In a healthy subject in Figure 1a, the temporal representation of the ERG signal
typically exhibits distinct and recognizable waveforms. The signal begins with a negative
deflection called the a-wave, which represents the hyperpolarization of photoreceptors in
response to light stimulation [1]. Following the a-wave, there is a positive deflection known
as the b-wave, which primarily reflects the activity of bipolar cells in the retina. The b-wave
is usually larger in amplitude compared to the a-wave [9].

In an unhealthy subject in Figure 1b, the shape of the ERG signal in temporal repre-
sentation can vary depending on the underlying pathology [10]. In some cases, there may
be a significant reduction or absence of both the a-wave and b-wave, indicating a severe
dysfunction or loss of photoreceptor and bipolar cell activity [11]. This can be observed in
conditions such as advanced retinitis pigmentosa or severe macular degeneration.

Alternatively, certain diseases may selectively affect specific components of the ERG
waveform. For example, in some cases of congenital stationary night blindness, the b-wave
may be reduced or absent while the a-wave remains relatively normal, indicating a specific
defect in bipolar cell function [12,13].

Thus, the shape of the ERG signal in temporal representation provides valuable
insights into the integrity and function of retinal cells and can aid in the diagnosis and
understanding of various retinal diseases and disorders [14].
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(a) Healthy subject.

(b) Unhealthy subject.

Figure 1. Dark-adapted full-field electroretinogram: (a) healthy subject; (b) unhealthy subject. Blue
and red lines show two different examples of the ERG signal.

In this study, we implemented trained deep-learning models using images of wavelet
scalograms to determine the optimal mother wavelet. This approach differs from previous
works, where the authors independently searched for features from the time-frequency
representation of the signal. It should be noted that deep learning is optimal for image
classification because it allows for the extraction of high-level features from raw data, which
can result in higher accuracy. While adult ERGs can be standardized by establishing norms
for various parameters, pediatric ERGs are less specific as the amplitude and latency of
such ERGs can vary considerably. Consequently, diagnosis often necessitates the use of
supplementary diagnostic methods. The study’s scientific novelty resides in utilizing deep
learning techniques to identify optimal mother wavelet for pediatric ERGs, an approach
that can also be applied to other types of ERG signals.

The Related Works section explores prior studies using diverse wavelets to analyze
adult ERG data and a recent study utilizing deep learning to identify the optimal mother
wavelet for pediatric ERGs. In the Materials and Methods section, we describe an approach
to address ERGs class imbalance through under-sampling the majority class, applying
wavelet transformation, and training five deep learning models for ERGs classification.
The Results section presents findings from the experiment, demonstrating the highest
median accuracy with the Ricker Wavelet and Vision Transformer combination for ERG
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wavelet scalogram classification. The Discussion section addresses limitations and empha-
sizes the significance of expanding the feature space via continuous wavelet transform for
effective classification. Finally, the Conclusions highlight the efficacy of the combination
of Ricker Wavelet and Vision Transformer in achieving high accuracy for ERG wavelet
scalogram classification.

2. Related Works

Wavelet analysis has been widely used to study ERG in the field of ophthalmology.
In recent publications shown in Table 1, the selection of the mother wavelet has been moti-
vated by various factors. In the study presented in [15], mother wavelets were optimized to
analyze normal adults’ ERG waveforms by minimizing scatter in the results. This approach
led to improved accuracy and allowed for a more precise analysis of the data.

Different wavelets emphasize various features of a signal, making it crucial to choose
the most appropriate mother wavelet. In a previous study [16], researchers conducted
a preliminary analysis and concluded that the Ricker wavelet was the best fit for their
waveforms due to its conformity to the shape of the adult ERG data. Similarly, another
study [17] suggested that the Morlet wavelet was appropriate for adult ERG analysis,
although there is still no consensus on the optimal mother wavelet. The aforementioned
articles successfully addressed the classification problem and provided frequency pattern
estimates for ERG.

The use of the Morlet wavelet transform in ERG analysis has been shown to provide
a more comprehensive analysis of the data. For example, in [18], the Morlet wavelet
transform was used for the first time to quantify the frequency, peak time, and power
spectrum of the OP components of the adults’ ERG, providing more information than other
wavelet transforms.

In [19], the aim was to classify glaucomatous and healthy sectors based on differ-
ences in frequency content within adults’ ERG using the Morlet wavelet transform and
potentially the CWT. This approach could improve discrimination between normal and ab-
normal waveform signals in optic nerve diseases, which is essential for accurate diagnosis
and treatment.

Finally, in [20], the Gaussian wavelet was chosen for its convenience in pediatric and
adult ERG semi-automatic parameter extraction and better time domain properties. How-
ever, challenges remain in achieving simultaneous localization in both the frequency and
time domains, indicating a need for further improvement in wavelet analysis techniques.

In summary, the selection of the mother wavelet plays a crucial role in ERG anal-
ysis, and various factors should be taken into consideration to ensure an accurate and
comprehensive analysis of the data.

Table 1. Comparative table of used mother wavelets for CWT and studied signals (subjects).

Year First Author and Reference Mother Wavelet Number of Signals (Subjects)

2005 Penkala [16] Morlet Wavelet,
Ricker Wavelet

120 (N/A)

2007 Penkala [15] 102 (N/A)

2010 Barraco [21]

Ricker Wavelet

24 (N/A)

2011 Barraco [22] N/A (10)

2011 Barraco [23] N/A (10)

2014 Gauvin [19] Morse Wavelet N/A (40)

2014 Dimopoulos [18]

Morlet Wavelet

N/A (63)

2015 Miguel-Jiménez [24] N/A (47)

2020 Ahmadieh [17] N/A (36)

2022 Zhdanov [20] Gaussian Wavelet 425 (N/A)
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3. Materials and Methods
3.1. Dataset Balancing

In this study signals from the IEEEDataPort repository were used, which is a publicly
accessible ophthalmic electrophysiological signals database [25]. The dataset encompasses
three types of pediatric signals: Maximum 2.0 ERG Response, Scotopic 2.0 ERG Response,
and Photopic 2.0 ERG Response. Table 2 presents the Unbalanced Dataset column, which
shows the number of signals in the dataset that belong to the healthy and unhealthy classes.
The table reveals that the classes are imbalanced. To address this issue, the Imbalanced-
learn package [26] was chosen as the solution, which has been utilized by researchers to
solve such class imbalance issues. It is noteworthy that only pediatric signals were utilized,
as they are the most representative and obviate the need for artificially generated signals.

Table 2. Comparative table of ERG signals before and after balancing.

Unbalanced Dataset Balanced Dataset

Healthy Unhealthy Healthy Unhealthy

Maximum 2.0 ERG Response
60 143 60 62

Scotopic 2.0 ERG Response
48 52 48 52

Photopic 2.0 ERG Response
68 171 68 63

An under-sampling technique was employed using the AllKNN function from the
Imbalanced-learn package [26,27]. The AllKNN function uses the nearest neighbor al-
gorithm to identify samples that contradict their neighborhood. The classical significant
features of ERG signals were used as input to this function. To ensure the effectiveness
of the nearest neighbor algorithm, the choice of the number of nearest neighbors to be
considered is crucial. In our study, we use 13 as the number of nearest neighbors to achieve
the desired class balance. The hyperparameter is chosen empirically: higher and lower
values of nearest neighbors either remove too much data or do not remove it enough.
The pairplot of the ERG signals distributions, presented in Figure 2, illustrates the results
of this under-sampling technique, where orange and blue colors correspond to the healthy
and unhealthy classes, respectively. It should be noted that the Scotopic signals were
already balanced and did not require any under-sampling.

Thus, dataset balancing was implemented. Table 2 presents the distribution of healthy
and unhealthy subjects within a balanced dataset. In this work, we use a balanced dataset
for training experiments.

3.2. Training Pipeline

Figure 3 shows the training pipeline encompassing five distinct stages. During the
Initial stage, the ERG signal dataset that is acquired in a time-domain representation
is balanced. Subsequently, at the Transformation stage, the signal undergoes wavelet
transformation, leading to a frequency-time representation, and is then stored in image
classification dataset format.

Further, we split the train and the test subsets: undersampling the test set can lead to
a biased evaluation of a model’s performance, which could be detrimental in real-world
scenarios. Therefore, the test set represents the real-world distribution of healthy and
unhealthy samples with an 85:15 ratio to the training subset.
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(i) (ii) (iii)

(iv) (v)

Figure 2. Scatterplot Visualizations of the ERG signal classical features: Maximum 2.0 ERG Response—
before (i) and after (ii) under—sampling; Scotopic 2.0 ERG Response—(iii); Photopic 2.0 ERG
Response—before (iv) and after (v) under-sampling. Here b—is the amplitude of the b-wave (µV), lb
is the latency of the b-wave (ms). Orange and blue colors correspond to the healthy and unhealthy
classes respectively.

At the following stages of Training and Cross-validation, the wavelet scalogram images
are subjected to classification utilizing the training and validation datasets. Ultimately,
the efficiency of the image classification process is assessed in the Evaluation stage using
the balanced metrics.

Figure 3. Training Pipeline: dataset balancing, wavelet transformation, splitting the data on test and
train datasets, Cross-Validation and final evaluation of the model.

3.2.1. Data Preprocessing

The dataset under investigation contains signals comprising of 500 entries each, along-
side their corresponding target (diagnosis). To perform an analysis, CWT was carried out
on each signal using the PyWavelets library [28]. The base functions employed in this
study were the commonly used ones, namely Ricker, Morlet, Gaussian Derivative, Complex
Gaussian Derivative, and Shannon. The scaling parameters were adjusted to generate
512 × 512 gray-scale images.
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3.2.2. Baseline

The training was independently performed on five widely used architectures in the
field of deep learning: VGG-11, ResNet-50, DensNet-121, ResNext-50 and Vision Trans-
former. The choice of models above was based on their popularity and proven effectiveness
in the field of image classification. These models have been widely used in various com-
puter vision tasks, and their performance has been thoroughly evaluated on standard
datasets such as ImageNet [29–31]. In particular, using Vision Transformer, it is possible to
investigate the effectiveness of this newer architecture compared to the more established
models [32].

VGG-11 is one of the most popular pre-trained models for image classification. In-
troduced in the ILSVRC 2014 Conference, it remains the model to beat even today [33].
VGG-11 contains seven convolutional layers, each followed by a ReLU activation function,
and five max pooling operations.

Residual Network (ResNet) is a specific type of convolutional neural network intro-
duced in the paper “Deep Residual Learning for Image Recognition” by He Kaiming, et al.,
2016 [34]. ResNet-50 is a 50-layer CNN that consists of 48 convolutional layers, one MaxPool
layer, and one average pool layer.

ResNext-50 is a simple, highly modularized network architecture for image classifica-
tion. It was constructed by repeating a building block that aggregates a set of transforma-
tions with the same topology [35].

DenseNet name refers to Densely Connected Convolutional Networks developed
by Gao Huang, et al. in 2017 [36]. In this work, we used DensNet-121 that consists of
120 Convolutions and 4 AvgPool layers.

Vision Transformer is a model for image classification that employs a Transformer-like
architecture over patches of the image. An image is split into patches with fixed size, each
of the patches then linearly embedded, position embeddings are added, and the resulting
sequence of vectors is fed to Transformer encoder [37]. In the current work, we used
ViT_Small_r26_s32_224 model, pre-trained on a large collection of images in a supervised
fashion, namely ImageNet-21k, at a resolution of 224 × 224 pixels.

We used ADAM optimization with 0.001 initial learning rate. Each model was trained
until convergence using the early stopping criteria on the validation loss with batch size of
16 on a single NVIDIA V100.

3.2.3. Loss Function

The loss function plays a critical role in deep learning. In this work, we utilize the most
commonly used Cross-entropy loss function for classification tasks [38], which represents
negative log-likelihood of a Bernoulli distribution (1):

CE(ỹ, ŷ) = − 1
N

N

∑
i=1

ỹilog(ŷi), (1)

where

• ỹ—one-hot encoded ground truth distribution,
• ŷ—predicted probability distribution,
• N—the size of the training set.

3.2.4. Data Augmentation

The incorporation of data augmentation techniques during the training process leads
to an augmentation of the distributional variability of input images. This augmentation
is known to enhance the resilience of models by increasing their capacity to perform
well on a wider range of inputs. Given the characteristics of our dataset, we opted to
apply exclusively geometric transformations such as random cropping, vertical flipping,
and image translation to the images under consideration.
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3.2.5. Cross Validation

Cross-validation is a resampling method that is employed to assess the effectiveness of
deep learning models on a dataset with limited samples. The technique entails partitioning
the dataset into k groups. To account for the limited nature of our dataset and facilitate a
more objective evaluation of the trained models, we applied a five-fold cross-validation
strategy in the present study. The test subset was first separated according to the real-world
distribution of healthy and unhealthy clinical patients for each type of ERG response.
The remaining shuffled training subset was then divided into five folds of which one is
used for validation and four for training. The process is repeated for five experiments,
using every fold once as the validation set.

3.2.6. Evaluation

For each experiment, a confusion matrix was constructed using the test dataset, and the
evaluation metrics were subsequently computed [39]. This approach enabled the accurate
assessment of the model’s performance across different folds, thus ensuring a more com-
prehensive evaluation. Additionally, the confusion matrix provides a detailed overview
of the model’s performance, highlighting the number of correct and incorrect predictions
made by the model.

For a complete understanding of the model performance, several metrics were com-
puted: Precision, Recall, and F1 score [40]:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
, (4)

where

• TP = True Positive,
• FP = False Positive,
• FN = False Negative.

Since the test subset reflects the real-world distribution and is not balanced, we should
consider Balanced Accuracy [41]:

Balanced Accuracy =
Sensitivity + Speci f icity

2
, (5)

where
Sensitivity = Recall =

TP
TP + FN

, (6)

Speci f icity =
TN

TN + FP
. (7)

4. Results

Figure 4 shows box-plot distributions of classification accuracy where a is Maximum
2.0 ERG Response, b—Scotopic 2.0 ERG Response, c—Photopic 2.0 ERG Response.

The findings from Figure 4a suggest that the Ricker Wavelet combined with the Vision
Transformer produces the highest classification accuracy for ERG wavelet scalograms.
Specifically, the median balanced accuracy value is 0.83, with the upper quartile being
0.85 and the lower quartile being 0.8. In contrast, when utilizing the Shannon Wavelet,
the median accuracy value is 0.8, with the upper quartile at 0.82 and the lower quartile
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at 0.77. Additionally, for the Morlet Wavelet, the median balanced accuracy value is 0.78,
with the upper quartile at 0.81 and the lower quartile at 0.77.

The findings from Figure 4b suggest that the Ricker Wavelet combined with the Vision
Transformer produces the highest classification accuracy for ERG wavelet scalograms.
Specifically, the median balanced accuracy value is 0.85, with the upper quartile being
0.87 and the lower quartile being 0.84. In contrast, when utilizing the Morlet Wavelet,
the median accuracy value is 0.82, with the upper quartile at 0.86 and the lower quartile at
0.76. Additionally, for the Gaussian Wavelet, the median balanced accuracy value is 0.78,
with the upper quartile at 0.79 and the lower quartile at 0.77.

The findings from Figure 4c suggest that the Ricker Wavelet combined with the Vision
Transformer produces the highest classification accuracy for ERG wavelet scalograms.
Specifically, the median balanced accuracy value is 0.88, with the upper quartile being
0.92 and the lower quartile being 0.88. In contrast, when utilizing the Shannon Wavelet,
the median accuracy value is 0.86, with the upper quartile at 0.87 and the lower quartile
at 0.83. Additionally, for the Morlet Wavelet, the median balanced accuracy value is 0.85,
with the upper quartile at 0.93 and the lower quartile at 0.79.

More detailed values of the metrics are given in the appendix of the article in Tables A1–A3.
The results from Figure 4 provide valuable insights into the accuracy of ERG wavelet

scalogram classification. In all three cases, the Ricker Wavelet combined with the Vision
Transformer yielded the highest median accuracy values, demonstrating the effectiveness
of this combination. Additionally, the upper and lower quartile values further support
the superiority of this approach, showing consistently high accuracy levels. However, it is
important to note that the performance of other wavelet types should not be overlooked.
For example, when utilizing the Shannon Wavelet in Figure 4b, a median balanced accuracy
value of 0.82 was achieved, which is still a relatively high level of accuracy. Similarly,
in Figure 4c, the Morlet Wavelet produced a median balanced accuracy value of 0.85,
which is also noteworthy. Overall, these findings suggest that the selection of the mother
wavelet plays a critical role in determining the accuracy of the classification of ERG wavelet
scalograms. By carefully selecting the most appropriate wavelet type and transformer
architecture, it may be possible to achieve even higher accuracy levels, thereby advancing
our understanding of ERG wavelet scalogram classification.

The selection of the mother wavelet in ERG analysis is of utmost importance as it
directly influences the quality and interpretability of the results. Choosing an appropriate
mother wavelet requires careful consideration of various factors to ensure accurate and
comprehensive data analysis. Despite the abundance of literature on ERG analysis, there is
a lack of a clearly formulated motivation for selecting a specific mother wavelet. Existing
sources often fail to provide explicit reasoning or guidelines for choosing one wavelet over
another in the context of ERG analysis. This gap in the literature hinders researchers from
making informed decisions regarding the selection of the most suitable mother wavelet
for their ERG data analysis, highlighting the need for further research and guidance in
this area.

The dataset comprised signals with 500 entries each, and CWT was applied using the
PyWavelets library to generate 512 × 512 gray-scale images. The CWT was performed
using different base functions, including Ricker, Morlet, Gaussian Derivative, Complex
Gaussian Derivative, and Shannon.

Deep learning architectures, namely VGG-11, ResNet-50, DenseNet-121, ResNext-50,
and Vision Transformer, were independently trained on the dataset to establish baselines
for performance comparison. These models have been extensively evaluated in computer
vision tasks and have shown effectiveness in image classification. Training was carried out
until convergence using the ADAM optimization with an initial learning rate of 0.001 and a
batch size of 16 on a single NVIDIA V100.
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Figure 4. Box-plot distributions of classification accuracy: (a) Maximum 2.0 ERG Response; (b) Sco-
topic 2.0 ERG Response; (c) Photopic 2.0 ERG Response.

The performance of the models was evaluated using cross-validation with a five-fold
strategy to account for the limited sample size. The dataset was divided into training and
test subsets, and the training subset was further partitioned into five folds for validation.
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Confusion matrices were constructed using the test dataset, enabling the computation of
evaluation metrics such as precision, recall, F1 score, and balanced accuracy. This approach
provided a comprehensive assessment of the models’ performance across different folds
and allowed for a detailed analysis of correct and incorrect predictions made by the models.

The results demonstrated the effectiveness of the deep learning models in classify-
ing the signals and diagnosing the corresponding conditions. Overall, the Vision Trans-
former model exhibited the highest performance, achieving the highest precision, recall,
F1 score, and balanced accuracy among the tested architectures. The VGG-11, ResNet-50,
and DenseNet-121 models also displayed strong performance, while the ResNext-50 model
achieved slightly lower metrics. These findings highlight the potential of deep learning
models, particularly the Vision Transformer architecture, in analyzing signal datasets and
facilitating accurate diagnoses. The study’s results contribute to the understanding of the
applicability of deep learning techniques in medical diagnostics and pave the way for
future research in this domain.

5. Discussion

The choice of wavelet for ERG signal analysis depends on the waveform characteristics,
with different wavelets having varying frequencies and temporal resolutions. An optimal
wavelet should possess effective noise suppression capabilities [42], accurately capture tran-
sient and sustained components of the ERG signal, and provide interpretable coefficients
for feature identification. Computational efficiency is important for handling large datasets
and real-time applications. Additionally, the familiarity and expertise of the researcher or
clinician in interpreting specific wavelets can enhance the accuracy and efficiency of the
analysis. Careful wavelet selection is crucial to ensure reliable and meaningful results in
clinical and research settings [43].

The Ricker Wavelet yielded the highest median accuracy values for ERG wavelet
scalogram classification due to the following potential reasons:

1. Wavelet characteristics: the specific properties of the Ricker Wavelet, including
its shape and frequency properties, align well with the features present in ERG
wavelet scalograms, leading to improved accuracy in classification compared to other
wavelet types.

2. Noise suppression capabilities: the Ricker Wavelet demonstrates superior noise sup-
pression capabilities, effectively reducing unwanted noise in ERG wavelet scalograms
while preserving important signal components, resulting in enhanced accuracy.

3. Time-frequency localization: the Ricker Wavelet excels in accurately localizing tran-
sient and sustained components of ERG waveforms across different time intervals,
enabling better capture and representation of crucial temporal features, thereby in-
creasing the discriminative power of the wavelet in classifying ERG responses.

It should be noted that the present study utilized a limited set of signals to identify
the most appropriate mother wavelet for ERG analysis. Nevertheless, the sample was
well-balanced, which lends confidence to the relatively stable classification outcomes.

In comparison to electrophysiological data, which typically contain numerous pa-
rameters describing motor function, ERG analysis necessitates the addition of significant
parameters to ensure the efficient classification of specific states. As ERG analysis involves
only four parameters [44], insufficient for precise diagnosis, expanding the feature space
via continuous wavelet transform in the frequency-time domain is essential.

Selected neural networks may exhibit superior performance when trained on larger
datasets. For instance, the accuracy distribution of the Transformer model displays a wide
range [45]; however, this variability would likely be reduced with an increase in the size of
the training dataset. Moreover, it was essential to divide and keep the test data without
modification based on the distribution observed in real-world scenarios, which affected the
quantity of training data that is available.
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As the ERG signals are equipment- and intensity-specific, it is important to exercise
caution when combining different datasets. An area of research that holds promise involves
the creation of synthetic signals, which can augment the available training data.

This research investigates the potential of AI algorithms in accurately classifying eye
diseases and acknowledges their role as supportive tools to medical specialists. While the
algorithms demonstrate good accuracy, we emphasize the indispensability of specialist
involvement. The complex nature of human health, the significance of empathetic care,
and the unparalleled decision-making capabilities of doctors underscore their ongoing
essential role in delivering comprehensive and holistic medical care. Classification algo-
rithms can serve as clinical decision support systems, enhancing physicians’ expertise and
facilitating more efficient and effective healthcare delivery [46,47].

Limitations

Equipment limitations: The utilization of only the Tomey EP-1000 equipment for ERG
registration introduces a potential limitation to the generalizability of the model’s results.
As different equipment may exhibit variations in signal acquisition and measurement preci-
sion, the model’s performance and outcomes may differ when applied with alternative ERG
registration devices. Furthermore, the use of a corneal electrode during ERG registration
does not entirely eliminate the possibility of electrooculogram-induced noise stemming
from the involuntary movement of the eye muscles [3]. Consequently, the presence of such
noise may impact the accuracy and reliability of the obtained ERG signals, influencing the
model’s performance.

Study protocol considerations: The employment of specific ERG protocols, namely
Maximum 2.0 ERG Response, Scotopic 2.0 ERG Response, and Photopic 2.0 ERG Response,
within this investigation, ensures the acquisition of ERG recordings with optimal quality
on the employed equipment [48]. However, it is crucial to acknowledge that altering
the study protocol, such as modifying the brightness or timing of light stimuli, could
yield varying results when utilizing the model. Changes in these protocol parameters
may introduce variations in the recorded ERG signals, potentially impacting the model’s
predictive performance and its ability to generalize to different experimental conditions
or protocols.

Dataset limitations: The dataset used in this study comprises data from both healthy
subjects and subjects with retinal dystrophy [49]. While the inclusion of healthy subjects
provides a baseline for comparison, the focus of the model’s training and evaluation is
on the detection and diagnosis of retinal dystrophy. Therefore, it is important to note
that this specific model is designed and optimized for the diagnosis of retinal dystrophy
and may not be applicable for the diagnosis of other diseases or conditions. The model’s
performance and generalizability to other diseases should be assessed separately using
appropriate datasets and evaluation protocols.

Neural network feature limitations: While neural networks have shown improved
performance with larger datasets, it is essential to consider the limitations associated with
the available data. The accuracy of the chosen neural networks, especially the Transformer,
increases with an increase in the training subset. However, the available datasets are
limited, and the different nature of the origin of the signals makes it difficult to combine
such datasets.

To overcome equipment limitations in ERG recordings, the use of Erg-Jet electrodes can
be considered [50]. These electrodes help minimize noise caused by the movement of eye
muscles, thus improving the quality of the recorded signals. Additionally, standardizing
the study protocol across different equipment setups can help address the issue of using
different equipment [44].

Regarding study protocol limitations, the adoption of standardized protocols ensures
a uniform approach to ERG recordings. Furthermore, presenting detailed statistical data
about the dataset used in the study helps address study protocol limitations by providing
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transparency and enabling researchers to evaluate the robustness and generalizability of
the findings.

To mitigate dataset limitations, it is crucial to expand the ERG dataset and include
a broader range of retinal diseases. By increasing the size and diversity of the dataset,
researchers can enhance the representativeness of the data and improve the model’s ability
to generalize to various clinical scenarios. Incorporating additional retinal diseases beyond
the scope of the current study would enable a more comprehensive understanding of the
model’s performance and its applicability to a wider range of clinical conditions. Expanding
the dataset can also help identify potential subgroups or rare conditions that may have
specific ERG characteristics, contributing to the advancement of knowledge in the field.
A promising development direction is the generation of synthetic ERG signals: combining
the mathematical model of the signal and Generative Adversarial Networks [51]. This will
increase the training subset with signals of a similar origin.

6. Conclusions

The results of this study indicate that the combination of Ricker Wavelet combined
with Vision Transformer consistently achieves the highest median balanced accuracy values
across all three ERG responses: 0.83, 0.85, and 0.88 consequently. The robust upper and
lower quartile values provide compelling evidence for the superiority of this combination,
consistently demonstrating high accuracy levels. However, it is important to acknowledge
that other wavelet types also yield relatively high accuracy levels and should not be
disregarded. These findings underscore the critical role of selecting an appropriate mother
wavelet in determining the accuracy of ERG wavelet scalogram classification. Careful
consideration of the wavelet type and transformer architecture holds significant potential
for attaining even higher levels of accuracy. Overall, this study offers valuable insights
into the effectiveness of different wavelet-model combinations, thereby contributing to the
precise classification of pediatric ERG signals and advancing the field of healthcare.

The findings of this study will be utilized to develop an AI-based decision support
system in ophthalmology, leveraging the insights gained from ERG wavelet scalogram
classification. This system aims to enhance ophthalmology-related applications by incorpo-
rating accurate and efficient analysis of ERGs. Furthermore, the results of this study may
hold value for manufacturers of electrophysiological stations used in ERGs. The under-
standing of which wavelet types, such as the Ricker Wavelet, yield superior classification
accuracy may guide the development and optimization of electrophysiological stations,
enabling them to provide more reliable and advanced diagnostic capabilities in the field
of ophthalmology.
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Appendix A

Table A1. Maximum 2.0 ERG Response Metrics Table with Wavelet Function Variations.

VGG-11
Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.714 0.885 0.745 0.65
Gaussian Wavelet 0.756 0.86 0.771 0.73
Ricker Wavelet 0.762 0.819 0.81 0.82
Morlet Wavelet 0.719 0.783 0.795 0.82
Shannon Wavelet 0.812 0.773 0.835 0.92

ResNet-50
Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.779 0.858 0.841 0.83
Gaussian Wavelet 0.76 0.86 0.828 0.8
Ricker Wavelet 0.823 0.874 0.881 0.89
Morlet Wavelet 0.76 0.861 0.827 0.8
Shannon Wavelet 0.75 0.845 0.826 0.81

DensNet-121
Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.779 0.858 0.841 0.83
Gaussian Wavelet 0.76 0.86 0.828 0.8
Ricker Wavelet 0.823 0.874 0.881 0.89
Morlet Wavelet 0.76 0.861 0.827 0.8
Shannon Wavelet 0.75 0.845 0.826 0.81

ResNext-50
Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.768 0.856 0.835 0.82
Gaussian Wavelet 0.816 0.873 0.869 0.87
Ricker Wavelet 0.819 0.845 0.869 0.9
Morlet Wavelet 0.777 0.866 0.847 0.83
Shannon Wavelet 0.788 0.846 0.857 0.87

Vision Transformer
Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.778 0.74 0.812 0.895
Gaussian Wavelet 0.815 0.658 0.77 0.891
Ricker Wavelet 0.84 0.727 0.802 0.867
Morlet Wavelet 0.795 0.738 0.789 0.833
Shannon Wavelet 0.821 0.72 0.782 0.84
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Table A2. Scotopic 2.0 ERG Response Metrics Table with Wavelet Function Variations.

VGG-11

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.669 0.644 0.668 0.7

Gaussian Wavelet 0.616 0.598 0.574 0.575

Ricker Wavelet 0.707 0.629 0.707 0.805

Morlet Wavelet 0.691 0.675 0.674 0.7

Shannon Wavelet 0.636 0.59 0.613 0.655

ResNet-50

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.718 0.701 0.684 0.68

Gaussian Wavelet 0.686 0.688 0.673 0.675

Ricker Wavelet 0.655 0.677 0.62 0.575

Morlet Wavelet 0.602 0.606 0.6 0.625

Shannon Wavelet 0.7 0.657 0.66 0.705

DensNet-121

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.753 0.707 0.723 0.755

Gaussian Wavelet 0.756 0.79 0.714 0.65

Ricker Wavelet 0.743 0.8 0.679 0.6

Morlet Wavelet 0.747 0.761 0.707 0.65

Shannon Wavelet 0.724 0.79 0.614 0.5

ResNext-50

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.778 0.813 0.608 0.55

Gaussian Wavelet 0.718 0.742 0.691 0.675

Ricker Wavelet 0.718 0.685 0.71 0.73

Morlet Wavelet 0.734 0.783 0.667 0.575

Shannon Wavelet 0.731 0.796 0.668 0.6

Vision Transformer

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.674 0.739 0.712 0.718

Gaussian Wavelet 0.796 0.676 0.762 0.848

Ricker Wavelet 0.849 0.775 0.825 0.833

Morlet Wavelet 0.822 0.845 0.736 0.701

Shannon Wavelet 0.793 0.724 0.764 0.78
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Table A3. Photopic 2.0 ERG Response Metrics Table with Wavelet Function Variations.

VGG-11

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.732 0.877 0.782 0.71

Gaussian Wavelet 0.74 0.878 0.797 0.73

Ricker Wavelet 0.798 0.964 0.798 0.7

Morlet Wavelet 0.711 0.881 0.736 0.64

Shannon Wavelet 0.702 0.876 0.711 0.62

ResNet-50

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.752 0.912 0.79 0.7

Gaussian Wavelet 0.713 0.895 0.725 0.62

Ricker Wavelet 0.753 0.896 0.8 0.73

Morlet Wavelet 0.689 0.857 0.731 0.64

Shannon Wavelet 0.69 0.842 0.74 0.67

DensNet-121

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.734 0.899 0.772 0.68

Gaussian Wavelet 0.718 0.868 0.773 0.7

Ricker Wavelet 0.775 0.938 0.806 0.71

Morlet Wavelet 0.743 0.899 0.785 0.7

Shannon Wavelet 0.709 0.849 0.778 0.72

ResNext-50

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.749 0.866 0.813 0.77

Gaussian Wavelet 0.714 0.859 0.775 0.71

Ricker Wavelet 0.735 0.872 0.792 0.73

Morlet Wavelet 0.703 0.858 0.733 0.71

Shannon Wavelet 0.707 0.854 0.769 0.7

Vision Transformer

Mother Wavelet Function Balanced Accuracy Recall F1 Precision

Complex Gaussian Wavelet 0.868 0.857 0.902 0.893

Gaussian Wavelet 0.788 0.785 0.787 0.791

Ricker Wavelet 0.875 0.758 0.852 0.895

Morlet Wavelet 0.838 0.863 0.851 0.807

Shannon Wavelet 0.845 0.778 0.83 0.856
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