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Abstract: Determining the loop noise bandwidth and the coherent integration time is essential and
important for the design of a reliable digital phase-locked loop (DPLL) in global navigation satellite
system (GNSS) receivers. In general, designers set such parameters approximately by utilizing
the well-known fact that the DPLL is stable if the normalized bandwidth, which is the product
of the integration time and the noise bandwidth, is much less than one. However, actual limit
points are not fixed at exactly one, and they vary with the loop filter order and implementation
method. Furthermore, a lower limit on the normalized bandwidth may exist. This paper presents
theoretical upper and lower limits for the normalized bandwidth of DPLL in GNSS receivers. The
upper limit was obtained by examining the stability of DPLL with a special emphasis on the digital
integration methods. The stability was investigated in terms of z-plane root loci with and without
the consideration of the computational delay, which is a delay induced by the calculation of the
discriminator and the loop filter. The lower limit was analyzed using the DPLL measurement error
composed of the thermal noise, oscillator phase noise, and dynamic stress error. By utilizing the
carrier-to-noise density ratio threshold which indicates the crossing point between the measurement
error and the corresponding threshold, the lower limit of the normalized bandwidth is obtained.

Keywords: coherent integration time; global navigation satellite system (GNSS) receiver; loop noise
bandwidth; normalized bandwidth; phase-locked loop (PLL); signal tracking loop; stability analysis

1. Introduction

Several traditional signal tracking loop architectures, such as phase-locked loops
(PLLs) for carrier phase tracking, are widely used as engineering standards in modern
digital global navigation satellite system (GNSS) receivers. These architectures ensure
optimal carrier phase tracking loop performance by minimizing phase noise jitter at a
steady state while constraining the transient error for specified changes in the signal phase
at a fixed amount [1,2].

One solution is offered by the variational method for optimization using a Lagrangian
multiplier. An optimum solution for PLLs in the continuous-time domain is given by a
function of the loop noise bandwidth, which can be interpreted as normal filter coefficients
such as decay ratio, damping ratio, and natural frequency [1]. The same method (mini-
mization method) can be applied in the discrete-time domain by directly employing the
z-transform [3]. Finally, the filter order n, the noise bandwidth B, and the coherent integra-
tion time T (i.e., the loop update interval), which determine the number of integrators and
the multiplier coefficients of the digital PLL (DPLL) and its response for different signal
dynamics and noise statistics, should be chosen to achieve the design for specific user
requirements [2]. The optimal solution for the design parameters varies with the expected
environmental conditions of the receiver. For example, dynamic users such as receivers
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within an aircraft and a missile are benefit from a large B and small T because of the large
gain (to alleviate the dynamic stress) and faster update rate. On the contrary, in the case of
the static but weak signal conditions such as indoor users can employ the small B and large
T to raise the post-correlation signal-to-noise ratio while suppressing the noise effect.

A software implementation of this based on a simple numerical integrator for the
PLL of a pseudo-noise spread spectrum receiver to accommodate a given set of dynamics
specifications was previously presented [4]. A systematic survey of the theoretical and
experimental work on this topic for the period between 1960 and 1980 can be found in [5].

Typically, longer T in correlators, which are equivalent to longer loop update intervals
in loop filters, provide the additional processing gain required for the detection and pro-
cessing of signals in harsh environments, specifically weak indoor signals and integrated
navigation systems [6]. The benefits of the longer T using the aiding technique are multi-
path mitigation in the Doppler domain, cross-correlation protection by data wipe-off, and
reduced squaring loss. The use of ancillary sensors with relevant processing facilities was
proposed to extend the T to several seconds by providing better-matched replica signals [7].
However, there is no further processing gain beyond a certain T because of the spatial
and temporal decorrelation of the received signal, the residual instability of the receiver
oscillator, and data bit transitions, all of which result in a narrowing of the bandwidth [8].
The limits on the T due to the spatial decorrelation of multipath signals were derived and
experimentally verified using a generalized multipath scattering model [6]. The results
showed that the processing gain obtained from longer T saturates after the antenna has
moved a certain distance, which is typical for indoor propagation.

In addition, one of the dominant error sources in PLLs is dynamic stress error, which
is a barrier to further reducing the loop bandwidth B. In particular, removing the dynamic
stress for a moving platform receiver using external aiding information would be a logical
first step towards decreasing the B and enhancing the tracking sensitivity in weak signal
environments. Therefore, narrower bandwidths are known to be a good solution in weak
signal processing because they suppress noise effects. However, both longer T and narrower
B are less robust to signal dynamic stress.

Investigation of the trade-off between the sensitivity and the loop update interval
to choose an optimal T was performed for a signal tracking Kalman filter with a special
emphasis on the discrete nature of the loop, where the carrier phase measurements were
asynchronous with the loop update [9].

Furthermore, designing a DPLL relies heavily on transforming a continuous-time
system into a discrete-time system, performed by Laplace to a z-domain mapping. However,
if the loop update interval is large relative to the most significant time constant of the system,
the discrete-time system may not be an accurate representation of the corresponding
continuous-time system. That is, the larger loop update interval makes the system less
stable, and the updated output no longer gives an accurate measure of the output [10].

This means that there is another type of factor, similar to transforming continuous-time
systems into discrete data systems. The DPLL will be equivalent to its analog counterpart
only if the product BT (the so-called normalized loop bandwidth) is close to zero [5,11].
For sufficiently small values of BT (e.g., BT < 0.1), this can provide an adequate starting
point for the analysis and design of DPLLs. However, as BT increases, the deviation of the
equivalent loop noise bandwidth and the closed-loop pole locations of the designed DPLL
from the desired ones in the continuous-time domain eventually leads to the instability of
the loop. Therefore, both the limit on T and B should be considered together [11,12].

Another method (controlled-root method) was proposed to derive the loop filter
constants from the loop roots based on the direct physical meaning of the loop noise
bandwidth and the root-specific decay rate or damping. In this method, the deviation
of discrete-time systems from continuous-time systems for large values of BT is avoided.
However, the maximum achievable BT for a stable loop is limited to 0.4 for a rate-only
feedback-type numerically controlled oscillator (NCO) [11,12]. Note that this condition is
satisfied for most communication systems because their BT value remains within this range.
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However, for some new applications in GNSSs, such as weak signal tracking, T values
larger than one navigation data bit duration (e.g., 20 ms) are preferred for high sensitivity
after the navigation data bit transition is solved correctly. Moreover, the use of pilot signal
components in new GNSSs provides a chance to use the longer T, which will inevitably
require larger BT values.

In this study, although two of the DPLL design methods (minimization, controlled-
root) are introduced above, another DPLL design approach, designing the filter in the
analog domain and then transforming it to the digital domain by using three types of
digital transform methods (step-invariant, impulse-invariant, and bilinear), is used. As
it is simpler than designing directly in the digital domain or applying controlled-root
formulation, it is still widely employed as an engineering standard in many GNSS receiver
designs, especially for high sensitivity. In addition, the computational delay (also called as
transport lag), a time delay due to the calculation process for the loop update, is assumed
not to exist for the first time of the analysis and is considered later.

The paper concentrates exclusively on the theoretical upper and lower limits of BT.
The approach taken here for the upper limit is to choose a value of BT that satisfies the
stability condition based on root loci in the z-domain. Each digital transform method is
analyzed for the utilization of the loop filters and the NCOs. In addition, the lower limits
of BT are obtained considering the effect of the BT on the oscillator quality and dynamic
stress of the DPLL. The contribution of this paper is to provide the baseline for the DPLL
designers by suggesting the upper and lower limits as requirements.

The remainder of this paper is organized as follows. In Section 2, PLLs are briefly
reviewed with a special emphasis on each digital transformation method for the loop filter
and the NCO, considering the effect of the computational delay on the transfer function.
Section 3 describes the stability problem encountered near the upper limit of BT values for
different digital transform methods. The stability of the different digital transformation
methods is tested in terms of root loci, BT margins, Bode plots, and step responses, with
and without the assumption of the computational delay. Section 4 derives the lower limits
of BT for a few typical scenarios in consideration of the oscillator quality and the dynamic
stress of the receiver. In Section 5, the stability issue is numerically tested using a GNSS
software receiver and the paper is concluded in Section 6.

2. Review of Phase-Locked Loops

This section presents a review of the results widely used in PLL design. Specifically,
the mathematical models for PLLs are reviewed in the continuous-time and discrete-time
domains, with a special emphasis on each digital integration method implementing the
loop filter and the NCO.

2.1. Continuous Model

Using the assumptions that the phase error is small enough and that the input noise is
uncorrelated with the incoming waves, the linearized model for a PLL in the continuous-
time domain is presented as shown in Figure 1. The device is composed of a phase detector
(discriminator), a loop filter F(s), and a voltage-controlled oscillator (VCO) V(s) with a
discriminator gain A and VCO gain K, where s = σ + jω denotes the Laplace operator. In

the figure, φ(t) symbolizes the measured input phase at time t,
.̂
φ(t) and φ̂−(t) represent

the estimates of the phase rate and phase, respectively, and n(t) denotes the noise.
The purpose of the loop filter is to reduce the influence of the noise to produce an

accurate estimate of the original signal. First-/second-/third-order loop filters (selected
depending on user requirements) are widely used in GNSS receivers. The loop filter
should be designed to satisfy the filter design criteria, namely minimizing VCO phase
noise jitter due to noise effects (i.e., minimization of the root-mean-square noise error),
and maintaining the transient error in the VCO phase caused by specified changes in the
signal phase (i.e., the minimization of the transient error). These criteria are effectively met
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using the variational method for optimization via the Lagrangian multiplier method for
continuous-time PLLs [1] and discrete-time PLLs [3].
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Figure 1. Linearized phase-locked loop (PLL) model in the continuous-time domain.

The VCO can be uniquely specified using a simple analog integrator represented by
1/s (the Laplace transform of an integrator in the continuous-time domain):

V(s) = 1/s (1)

The closed-loop transfer function of the continuous-time PLL H(s) is given by:

H(s) =
AKV(s)F(s)

1 + AKV(s)F(s)
(2)

Typically, the feedback loop gain AK is assumed to be 1 (i.e., unity gain). Then, the
transfer function in (2) can be rewritten as:

H(s) =
V(s)F(s)

1 + V(s)F(s)
=

F(s)
s + F(s)

(3)

Table 1 presents a summary of first-/second-/third-order tracking loops and their
characteristics. The filter order and the loop filter natural radian frequency ω0 (which is
obtained from B) are determined in the design stage depending on the user requirements.
ai and bi represent the filter coefficients of the i-th-order loop filters [2].

Table 1. Summary of loop filters.

Loop
Order

Loop Filter Transfer
Function, Fi(s)

Closed-Loop Transfer
Function, Hi(s)

Typical Filter
Values Sensitive to Application Examples

First F1(s) = ω0 H1(s) =
ω0

s+ω0
ω0 = 4B Velocity

stress
Aided code tracking
loops

Second F2(s) =
a2ω0s+ω2

0
s H2(s) =

a2ω0s+ω2
0

s2+a2ω0s+ω2
0

ω0 = 1.89B
a2 =

√
2

Acceleration
stress

Aided or low-dynamics
phase-locked loop,
unaided
frequency-locked loop

Third F3(s) =
b3ω0s2+a3ω2

0 s+ω3
0

s2 H3(s) =
b3ω0s2+a3ω2

0 s+ω3
0

s3+b3ω0s2+a3ω2
0 s+ω3

0

ω0 = 1.27B
a3 ≈ 1.1
b3 ≈ 2.4

Jerk stress Unaided phase-locked
loop

2.2. Discrete Model

A block diagram for a DPLL with unity gain is shown in Figure 2. In the figure, F(z)
represents the transfer function of an arbitrary loop filter, and N(z) is the transfer function
of the NCO, where both are digital equivalents of F(s) and V(s), respectively, and can
be affected by the characteristics of the particular digital implementation of the analog
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integrator. Additionally, the computational delay is inserted between the loop filter and
the NCO to model the effect of the inevitable delay due to the calculation processes of
the discriminator and loop filter. The ideal case that does not have such a delay can be
represented by substituting tD = 0. Finally, the computational delay is combined with N(z)
to form the delay-included NCO transfer function ND(z) later.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24 
 

 

2.2. Discrete Model 
A block diagram for a DPLL with unity gain is shown in Figure 2. In the figure, F(z) 

represents the transfer function of an arbitrary loop filter, and N(z) is the transfer function 
of the NCO, where both are digital equivalents of F(s) and V(s), respectively, and can be 
affected by the characteristics of the particular digital implementation of the analog inte-
grator. Additionally, the computational delay is inserted between the loop filter and the 
NCO to model the effect of the inevitable delay due to the calculation processes of the 
discriminator and loop filter. The ideal case that does not have such a delay can be repre-
sented by substituting tD = 0. Finally, the computational delay is combined with N(z) to 
form the delay-included NCO transfer function ND(z) later. 

 
Figure 2. Linearized digital PLL (DPLL) model in the discrete-time domain (assuming unity gain; 
AK = 1). 

Without considering the computational delay, the closed-loop transfer function of 
the DPLL H(z) is given by: 𝐻 𝑧 = 𝑁 𝑧 𝐹 𝑧1 + 𝑁 𝑧 𝐹 𝑧  (4) 

which can be rewritten in polynomial form as: 𝐻 𝑧 = 𝛽 𝑧 + 𝛽 𝑧 + ⋯ + 𝛽𝛼 𝑧 + 𝛼 𝑧 + ⋯ + 𝛼 = ∑ 𝛽 𝑧∑ 𝛼 𝑧  (5) 

where αi and βj are filter coefficients to the n-th order polynomial in the denominator and 
the m-th polynomial in the numerator, respectively, and m and n are the number of zeros 
and poles, respectively (n ≥ m; n = the order of the loop). 

There are three primary categories of methods for obtaining a discrete equivalent of 
a continuous transfer function because of the discrete nature of the system, as described 
in the following sections [13]. 

2.2.1. Hold Equivalent 
The hold equivalence method is to design a discrete system with an input consisting 

of samples of input signals, which has an output that approximates the output of the con-
tinuous-time transfer function whose input is the input signals in the continuous-time do-
main. This design is accomplished by acquiring a sequence of samples and extrapolating 
or holding them to produce a continuous signal. Depending on the order of the holding 
approximation, there are several variations in this method, such as zero-order holding 
and first-order holding. However, this method is only used to model a continuous system, 
because it relies on the time response of the system being unable to faithfully reproduce 
the frequency response, whereas filter design of the loop filter used in this work is based 
on their frequency response characteristics. 

Figure 2. Linearized digital PLL (DPLL) model in the discrete-time domain (assuming unity gain;
AK = 1).

Without considering the computational delay, the closed-loop transfer function of the
DPLL H(z) is given by:

H(z) =
N(z)F(z)

1 + N(z)F(z)
(4)

which can be rewritten in polynomial form as:

H(z) =
βmzm + βm−1zm−1 + · · ·+ β0

αnzn + αn−1zn−1 + · · ·+ α0
=

∑m
j=0 β jzj

n
∑

i=0
αizi

(5)

where αi and βj are filter coefficients to the n-th order polynomial in the denominator and
the m-th polynomial in the numerator, respectively, and m and n are the number of zeros
and poles, respectively (n ≥ m; n = the order of the loop).

There are three primary categories of methods for obtaining a discrete equivalent of a
continuous transfer function because of the discrete nature of the system, as described in
the following sections [13].

2.2.1. Hold Equivalent

The hold equivalence method is to design a discrete system with an input consisting
of samples of input signals, which has an output that approximates the output of the
continuous-time transfer function whose input is the input signals in the continuous-time
domain. This design is accomplished by acquiring a sequence of samples and extrapolating
or holding them to produce a continuous signal. Depending on the order of the holding
approximation, there are several variations in this method, such as zero-order holding and
first-order holding. However, this method is only used to model a continuous system,
because it relies on the time response of the system being unable to faithfully reproduce the
frequency response, whereas filter design of the loop filter used in this work is based on
their frequency response characteristics.
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2.2.2. Pole-Zero Mapping

The idea behind the pole-zero mapping method is to use a set of heuristic rules to
locate the poles and zeros using the map z = esT. Then, the gain of a z-transform is set
to describe a discrete equivalent transfer function that approximates the given transfer
function in the s-plane.

2.2.3. Numerical Integration

To obtain an equivalent discrete model of a PLL that retains the frequency response
of the original continuous-time PLL, designers typically apply a numerical integration
method (also known as the z-transform method). The fundamental concept of this method
is to represent the given continuous-time transfer function as a differential equation and
to derive a difference equation by replacing s in the continuous transfer function with a
function of z.

Table 2 summarizes the three types of numerical integration methods that are of
interest in this paper, including their z-domain and discrete-time domain expressions,
in addition to some differently used terminology in different fields. These methods
are step-invariant (SI), impulse-invariant (II), and bilinear (BL) rules. A detailed digi-
tal implementation of these methods for first-/second-/third-order PLLs is presented in
the Appendix A.

Table 2. Digital equivalences to the analog integrator.

s-Domain:
Continuous-Time

Domain Expression
z-Domain Discrete-Time Domain Expression Rule Terminology

1
s ↔ y(t) =

∫
x(t)dt

1
s = T

z−1 ySI(k) = y(k− 1) + T·x(k− 1) Step-invariant Forward rule,
zero-order holder

1
s = Tz

z−1 yII(k) = y(k− 1) + T·x(k) Impulse-invariant Backward rule, box car
1
s = T

2
z+1
z−1 yBL(k) = y(k− 1) + T

2 [x(k) + x(k− 1)] Bilinear Trapezoid, Tustin

Given a continuous-time transfer function H(s), a discrete equivalent H(z) can easily
be found in these methods by substituting s with its counterpart equation for z, which can
itself be derived from the equations in Table 2. Therefore, each of the approximations in
Table 2 can be viewed as a mapping function from the s-plane to the z-plane. To make
the system stable in graphical interpretation, the region of the stable poles in the s-plane
(i.e., the left half of the s-plane) should be mapped onto the inside of the unit circle in the
z-plane [13].

Table 3 lists the resulting αi and βj in (5) for the first-/second-/third-order DPLLs for
various combinations of digital representations of the integrators in the loop filter F(z) and
NCO N(z). Note that all the systems are a function of ω0T, such that BT determines the
overall filter response.

2.3. Computational Delay

The previous section derived the coefficients of the closed-loop transfer functions
in the discrete domain without considering the computational delay. The computational
delay or transport lag is a time delay between the end of the integration process and the
new NCO input (i.e., phase rate estimate), which is incurred by the calculation process at
the discriminator and the loop filter. The computational delay tD exists in hardware and
real-time software receivers without an appropriate buffering capability to eliminate this
delay and should be considered in the stability analysis [14].
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Table 3. Closed-loop filter coefficients for different digital representations for the integrator in a loop filter and a numerically controlled oscillator (NCO) (zero
computational delay assumed).

Closed-Loop Transfer Function:
H(s)= N(s)F(s)

1+N(s)F(s)

F(s) Transform
Method

N(s) Transform Method

Step-Invariant
s← z−1

T

Impulse-Invariant
s← z−1

Tz
Bilinears← 2

T
z−1
z+1

First-order loop
H1(s) = ω0

s+ω0

ω0 = 4B

-
β0 = Tω0
α1 = 1
α0 = Tω0 − 1

β1 = Tω0
β0 = 0
α1 = Tω0 + 1
α0 = −1

β1 = Tω0
β0 = Tω0
α1 = Tω0 + 2
α0 = Tω0 − 2

Second-order loop

H2(s) =
a2ω0s+ω2

0
s2+a2ω0s+ω2

0

ω0 = 1.89B
a2 =

√
2

Step-invariant
s← z−1

T

β1 = a2Tω0
β0 = T2ω2

0 − a2Tω0
α2 = 1
α1 = a2Tω0 − 2
α0 = T2ω2

0 − a2Tω0 + 1

β2 = a2Tω0
β1 = T2ω2

0 − a2Tω0
β0 = 0
α2 = a2Tω0 + 1
α1 = T2ω2

0 − a2Tω0 − 2
α0 = 1

β2 = a2Tω0
β1 = T2ω2

0
β0 = T2ω2

0 − a2Tω0
α2 = a2Tω0 + 2
α1 = T2ω2

0 − 4
α0 = T2ω2

0 − a2Tω0 + 2

Impulse-invariant
s← z−1

Tz

β1 = T2ω2
0 + a2Tω0

β0 = −a2Tω0
α2 = 1
α1 = T2ω2

0 + a2Tω0 − 2
α0 = −a2Tω0 + 1

β2 = T2ω2
0 + a2Tω0

β1 = −a2Tω0
β0 = 0
α2 = T2ω2

0 + a2Tω0 + 1
α1 = −a2Tω0 − 2
α0 = 1

β2 = T2ω2
0 + a2Tω0

β1 = T2ω2
0

β0 = −a2Tω0
α2 = T2ω2

0 + a2Tω0 + 2
α1 = T2ω2

0 − 4
α0 = −a2Tω0 + 2

Bilinear
s← 2

T
z−1
z+1

β1 = T2ω2
0 + 2a2Tω0

β0 = T2ω2
0 − 2a2Tω0

α2 = 2
α1 = T2ω2

0 + 2a2Tω0 − 4
α0 = T2ω2

0 − 2a2Tω0 + 2

β2 = T2ω2
0 + 2a2Tω0

β1 = T2ω2
0 − 2a2Tω0

β0 = 0
α2 = T2ω2

0 + 2a2Tω0 + 2
α1 = T2ω2

0 − 2a2Tω0 − 4
α0 = 2

β2 = T2ω2
0 + 2a2Tω0

β1 = 2T2ω2
0

β0 = T2ω2
0 − 2a2Tω0

α2 = T2ω2
0 + 2a2Tω0 + 4

α1 = 2T2ω2
0 − 8

α0 = T2ω2
0 − 2a2Tω0 + 4
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Table 3. Cont.

Closed-Loop Transfer Function:
H(s)= N(s)F(s)

1+N(s)F(s)

F(s) Transform
Method

N(s) Transform Method

Step-Invariant
s← z−1

T

Impulse-Invariant
s← z−1

Tz
Bilinears← 2

T
z−1
z+1

Third-order loop

H3(s) =
b3ω0s2+a3ω2

0 s+ω3
0

s3+b3ω0s2+a3ω2
0 s+ω3

0

ω0 = 1.2B
a3 ≈ 1.1
b3 ≈ 2.4

Step-invariant
s← z−1

T

β2 = b3Tω0
β1 = a3T2ω2

0 − 2b3Tω0
β0 = T3ω3

0 − a3T2ω2
0 + b3Tω0

α3 = 1
α2 = b3Tω0 − 3
α1 = a3T2ω2

0 − 2b3Tω0 + 3
α0 = T3ω3

0 − a3T2ω2
0 + b3Tω0 − 1

β3 = b3Tω0
β2 = a3T2ω2

0 − 2b3Tω0
β1 = T3ω3

0 − a3T2ω2
0 + b3Tω0

β0 = 0
α3 = b3Tω0 + 1
α2 = a3T2ω2

0 − 2b3Tω0 − 3
α1 = T3ω3

0 − a3T2ω2
0 + b3Tω0 + 3

α0 = −1

β3 = b3Tω0
β2 = a3T2ω2

0 − b3Tω0
β1 = T3ω3

0 − b3Tω0
β0 = T3ω3

0 − a3T2ω2
0 + b3Tω0

α3 = b3Tω0 + 2
α2 = a3T2ω2

0 − b3Tω0 − 6
α1 = T3ω3

0 − b3Tω0 + 6
α0 = T3ω3

0 − a3T2ω2
0 + b3Tω0 − 2

Impulse-invariant
s← z−1

Tz

β2 = T3ω3
0 + a3T2ω2

0 + b3Tω0
β1 = −a3T2ω2

0 − 2b3Tω0
β0 = b3Tω0
α3 = 1
α2 = T3ω3

0 + a3T2ω2
0 + b3Tω0 − 3

α1 = −a3T2ω2
0 − 2b3Tω0 + 3

α0 = b3Tω0 − 1

β3 = T3ω3
0 + a3T2ω2

0 + b3Tω0
β2 = −a3T2ω2

0 − 2b3Tω0
β1 = b3Tω0
β0 = 0
α3 = T3ω3

0 + a3T2ω2
0 + b3Tω0 + 1

α2 = −a3T2ω2
0 − 2b3Tω0 − 3

α1 = b3Tω0 + 3
α0 = −1

β3 = T3ω3
0 + a3T2ω2

0 + b3Tω0
β2 = T3ω3

0 − b3Tω0
β1 = −a3T2ω2

0 − b3Tω0
β0 = b3Tω0
α3 = T3ω3

0 + a3T2ω2
0 + b3Tω0 + 2

α2 = T3ω3
0 − b3Tω0 − 6

α1 = −a3T2ω2
0 − b3Tω0 + 6

α0 = b3Tω0 − 2

Bilinear
s← 2

T
z−1
z+1

β2 = T3ω3
0 + 2a3T2ω2

0 + 4b3Tω0
β1 = 2T3ω3

0 − 8b3Tω0
β0 = T3ω3

0 − 2a3T2ω2
0 + 4b3Tω0

α3 = 4
α2 = T3ω3

0 + 2a3T2ω2
0 + 4b3Tω0 − 12

α1 = 2T3ω3
0 − 8b3Tω0 + 12

α0 = T3ω3
0 − 2a3T2ω2

0 + 4b3Tω0 − 4

β3 = T3ω3
0 + 2a3T2ω2

0 + 4b3Tω0
β2 = 2T3ω3

0 − 8b3Tω0
β1 = T3ω3

0 − 2a3T2ω2
0 + 4b3Tω0

β0 = 0
α3 = T3ω3

0 + 2a3T2ω2
0 + 4b3Tω0 + 4

α2 = 2T3ω3
0 − 8b3Tω0 − 12

α1 = T3ω3
0 − 2a3T2ω2

0 + 4b3Tω0 + 12
α0 = −4

β3 = T3ω3
0 + 2a3T2ω2

0 + 4b3Tω0
β2 = 3T3ω3

0 + 2a3T2ω2
0 − 4b3Tω0

β1 = 3T3ω3
0 − 2a3T2ω2

0 − 4b3Tω0
β0 = T3ω3

0 − 2a3T2ω2
0 + 4b3Tω0

α3 = T3ω3
0 + 2a3T2ω2

0 + 4b3Tω0 + 8
α2 = 3T3ω3

0 + 2a3T2ω2
0 − 4b3Tω0 − 24

α1 = 3T3ω3
0 − 2a3T2ω2

0 − 4b3Tω0 + 24
α0 = T3ω3

0 − 2a3T2ω2
0 + 4b3Tω0 − 8
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The computational delay can be modeled as an additional delay unit for the amount
of tD located before the NCO [14], which results in the modification of the NCO transfer
function N(z) as:

ND(z) = z−
tD
T N(z) (6)

where the subscript D means the computational delay included. Utilizing the modified
NCO transfer function ND(z), the closed-loop transfer function H(z) of (4) is modified to
contain the computational delay as follows:

HD(z) =
z−

tD
T N(z)F(z)

1 + z−
tD
T N(z)F(z)

=
ND(z)F(z)

1 + ND(z)F(z)
(7)

By assuming that the new NCO input is obtained from the integration results at the
previous epoch of the loop filter, as a typical example, the tD becomes T. Then, the ND(z)
contains unit delay as a computational delay as follows:

ND(z) = z−1N(z) (8)

and is used for the stability analysis of the DPLLs in case of computational delay are considered.

3. Stability Analysis for Upper Limit

In practice, DPLLs are a type of sampled-data loop that is never unconditionally stable;
high gain loops always result in instability because of the inherent computational delay,
which constitutes a major potential drawback of this type of system. Moreover, a stability
problem occurs for DPLLs when the loop bandwidth is insufficiently small relative to the
loop update interval. Therefore, the upper and lower limits on the value of BT that ensure
the stability margin and the gain margin of the DPLLs should be determined. The upper
limits for DPLLs are obtained from the stability analysis in this Section.

3.1. Root Loci

As is well known in control theory, the stability of linear time-invariant systems in the
continuous-time domain can be determined by determining the location of the roots of the
characteristic equation of the system. For bounded-input–bounded-output stability, the
roots of the characteristic equation (i.e., the poles of the system) must all lie in the left half
of the s-plane. Therefore, the stability of the system can be determined by checking the root
locus diagram, which is a pictorial representation of the poles of the closed-loop transfer
function as a function of the loop gain.

The root locus diagrams for discrete-data systems are constructed in the z-plane using
essentially the same properties as those of the continuous-data systems in the s-plane, except
that the relationship between the root locations and stability must be made concerning
the unit circle |z| = 1 in the z-plane [10]. Here, the loci of roots are defined when only BT
varies instead of the loop gain K (unity gain is assumed for the discriminator gain A) to test
the stability of a DPLL as a function of BT. The closed-loop transfer function of the DPLL in
(7) is then rewritten as:

HD(z) =
(z− zm)(z− zm−1) · · · · · · (z− z0)

(z− pn)(z− pn−1) · · · · · · (z− p0)
=

∏m
j=0
(
z− zj

)
∏n

i=0(z− pi)
(9)

where pi and zj represent the poles and zeroes of the system, respectively.
It is obvious that as B increases, the roots of the closed-loop transfer functions in

the s-domain deviate from the origin, but still stay in the left half of the s-plane for all
values (i.e., the system is unconditionally stable). However, for the second- or higher-order
systems, such pole deviation causes oscillation of their step responses.

The left-side figures of Figure 3 illustrate the same effect in the z-plane for the
first-/second-/third-order closed loops as described above but with different numerical
integration methods for N(z) and F(z), and with the assumption of the zero computational
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delays. The trajectory for all cases begins at z = 1 when BT = 0 and then moves to the inside
or outside of the unit circle as BT increases. The presence of roots at |z| = 1 causes the
step response of the system to oscillate with a constant amplitude, and the system becomes
marginally stable. Thus, the DPLL will be unstable for |z| > 1, even if its counterpart in the
continuous-time domain is unconditionally stable. Therefore, the value of BT that makes
the system marginally stable is the upper limit of available BT values for the stable DPLL.
The limit is defined as BTosc which indicates the BT when |z| = 1 (i.e., BT at the crossing
point between the root trajectory and the unit circle) and is the point that makes the system
marginally stable, so the step response begins to oscillate at this point.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24 
 

 

A) to test the stability of a DPLL as a function of BT. The closed-loop transfer function of 
the DPLL in (7) is then rewritten as: 𝐻 𝑧 = 𝑧 − 𝑧 𝑧 − 𝑧 ⋯ ⋯ 𝑧 − 𝑧𝑧 − 𝑝 𝑧 − 𝑝 ⋯ ⋯ 𝑧 − 𝑝 = ∏ 𝑧 − 𝑧∏ 𝑧 − 𝑝  (9) 

where pi and zj represent the poles and zeroes of the system, respectively. 
It is obvious that as B increases, the roots of the closed-loop transfer functions in the 

s-domain deviate from the origin, but still stay in the left half of the s-plane for all values 
(i.e., the system is unconditionally stable). However, for the second- or higher-order sys-
tems, such pole deviation causes oscillation of their step responses. 

The left-side figures of Figure 3 illustrate the same effect in the z-plane for the first-
/second-/third-order closed loops as described above but with different numerical inte-
gration methods for N(z) and F(z), and with the assumption of the zero computational 
delays. The trajectory for all cases begins at z = 1 when BT = 0 and then moves to the inside 
or outside of the unit circle as BT increases. The presence of roots at |z| = 1 causes the step 
response of the system to oscillate with a constant amplitude, and the system becomes 
marginally stable. Thus, the DPLL will be unstable for |z| > 1, even if its counterpart in 
the continuous-time domain is unconditionally stable. Therefore, the value of BT that 
makes the system marginally stable is the upper limit of available BT values for the stable 
DPLL. The limit is defined as BTosc which indicates the BT when |z| = 1 (i.e., BT at the 
crossing point between the root trajectory and the unit circle) and is the point that makes 
the system marginally stable, so the step response begins to oscillate at this point. 

  
(a) (b) 

  

Sensors 2023, 23, x FOR PEER REVIEW 10 of 24 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 3. Root location of the DPLL closed-loop transfer functions with three different integration 
methods for N(z) and F(z) (tD = 0). (a) First-order root loci. (b) First-order root magnitude. (c) Second-
order root loci. (d) Second-order root magnitude. (e) Third-order root loci. (f) Third-order root mag-
nitude. 

The right-side figures of Figure 3 show |z| for the same case as discussed above with 
respect to BT. As mentioned earlier, |z| should be less than 1 for a stable system. For the 
first-order DPLL in Figure 3b, the root loci for SI are outside the unit circle in the z-domain 
for BT > 0.5 (i.e., BTosc = 0.5), whereas those for BL and II converge to values on the unit 
circle (|z| = 1) and the origin (|z| = 0), respectively, as BT increases. A similar phenomenon 
is observed in the second- and third-order cases. Therefore, three types of DPLL systems 
are identified in terms of system stability while varying BT as follows (see Table 4): 
1. Type A—The poles drift outside the unit circle in the z-domain as BT increases. The 

system is stable only when BT ≤ BTosc, otherwise it is unstable; 
2. Type B—All of the poles are within the unit circle but approach |z| = 1 as BT in-

creases. The instability of the system increases as BT increases; 
3. Type C—All of the poles of the system are located inside the unit circle. The system 

is unconditionally stable, even for large BT values. 

  

Figure 3. Root location of the DPLL closed-loop transfer functions with three different integration methods
for N(z) and F(z) (tD = 0). (a) First-order root loci. (b) First-order root magnitude. (c) Second-order root loci.
(d) Second-order root magnitude. (e) Third-order root loci. (f) Third-order root magnitude.



Sensors 2023, 23, 5887 11 of 24

The right-side figures of Figure 3 show |z| for the same case as discussed above with
respect to BT. As mentioned earlier, |z| should be less than 1 for a stable system. For the
first-order DPLL in Figure 3b, the root loci for SI are outside the unit circle in the z-domain
for BT > 0.5 (i.e., BTosc = 0.5), whereas those for BL and II converge to values on the unit
circle (|z| = 1) and the origin (|z| = 0), respectively, as BT increases. A similar phenomenon
is observed in the second- and third-order cases. Therefore, three types of DPLL systems
are identified in terms of system stability while varying BT as follows (see Table 4):

1. Type A—The poles drift outside the unit circle in the z-domain as BT increases. The
system is stable only when BT ≤ BTosc, otherwise it is unstable;

2. Type B—All of the poles are within the unit circle but approach |z| = 1 as BT increases.
The instability of the system increases as BT increases;

3. Type C—All of the poles of the system are located inside the unit circle. The system is
unconditionally stable, even for large BT values.

Table 4. Three types of DPLL systems regarding stability.

Type Descriptions Remarks

A |z| ≤ 1 only when BT ≤ BTosc, otherwise |z| > 1 Conditionally stable only when
BT ≤ BTosc

B |z| ≤ 1 for all BTs, but |z|→ 1 as BT increases The instability increases as BT
increases

C |z| < 1 for all BTs, and |z|~0 as BT increases Unconditionally stable

Figure 4 presents the same plots as Figure 3, but the unit delay is included in the
NCO transfer function as (8) for the assumption of the computational delay (i.e., tD = T
assumed) in this case. Unlike the zero computational delay case, regardless of the used
digital integration method, all the root loci magnitude exceed |z| = 1 as the BT increases.
For instance, as can be seen in Figure 4b, the II and BL of the first-order DPLL, which
are stable for all BTs with zero computational delays, are now stable only at BT ≤ 0.51
(i.e., BTosc = 0.51) because of the computational delay. Similar results can be observed
for the second- and third-order DPLLs. Therefore, it is viewed that the computational
delay in the NCO degrades the stability of the DPLLs. Consequently, such DPLLs are
conditionally stable.

Table 5 summarizes the stability conditions of the BT for different integration methods
in the loop filter and the NCO. For the zero computational delays, the II method plays an
important role in making the system unconditionally stable (Type C) and the SI method
forces the system to be conditionally stable (i.e., Type A). However, as discussed above,
if the unit computational delay is included in the stability analysis, all the methods are
conditionally stable (i.e., Type A) regardless of the filter order or integration method.
Furthermore, all the BTosc for tD = T are located within 0.25 and 0.75 which does not exceed
1, so the results are matched with the well-known rule-of-thumb BT threshold (BT ≈ 1) for
the stable operation of the DPLL.

Table 5. Marginal stability conditions of the BT for different integration methods in the loop filter
and NCO.

Filter Order NCO, N(z) Loop Filter,
F(z)

Zero Computational Delay (tD = 0) Unit Computational Delay (tD = T)

BTosc * Type BTosc Type

First
SI

-
0.51 A 0.26 A

II No limit C 0.51 A
BL |z|~1 when BT >> 1 B 0.51 A
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Table 5. Cont.

Filter Order NCO, N(z) Loop Filter,
F(z)

Zero Computational Delay (tD = 0) Unit Computational Delay (tD = T)

BTosc * Type BTosc Type

Second

SI
SI 0.75 A 0.27 A
II 0.55 A 0.25 A

BL 0.75 A 0.27 A

II
SI 2.05 A 0.75 A
II No limit C 0.55 A

BL |z|~1 when BT >> 1 B 0.75 A

BL
SI 1.5 A 0.41 A
II |z|~1 when BT >> 1 B 0.43 A

BL |z|~1 when BT >> 1 B 0.44 A

Third

SI
SI 0.53 A 0.38 A
II 0.58 A 0.29 A

BL 0.70 A 0.33 A

II
SI 0.57 A 0.53 A
II No limit C 0.58 A

BL |z|~1 when BT >> 1 B 0.70 A

BL
SI 0.53 A 0.51 A
II |z|~1 when BT >> 1 B 0.49 A

BL |z|~1 when BT >> 1 B 0.60 A

* Values for BT should be equal to or less than this value for stability.
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3.2. BT Margin

In system theory, the gain margin is the ratio of the maximum loop gain with stability to
the loop gain at the design point and is used to determine the region of stability. Typically,
the gain margin is obtained using the ratio of the minimum damping parameter that
produces instability to the minimum damping parameter at the design point because
the loop gain is proportional to the damping parameter. A similar concept is utilized to
determine the region of stability of a system that has a unity gain for different values of BT.

Defining the normalized bandwidth margin as the ratio of the maximum BT value
with stability to the BT value at the design point, the margin can be calculated as follows:

BTM =
BTosc

BT
(10)

Note that the normalized bandwidth margin is inversely proportional to BT and that
for the same value of B within the stable region (i.e., BT < BTosc), a larger loop update
interval makes the system reduce the capacity of the sampled output to accurately measure
the true output.

3.3. Step and Frequency Responses

Figure 5 shows an example of the step response of the third-order closed loop function
of DPLLs with the numerical integration combination of N(z) = II and F(z) = SI [Type A in
Figure 5a] and II [Type C in Figure 5b] for three BT values. Since all the DPLL types are the
same when the computational delay is included, zero computational delays are assumed
here to observe the behaviors of the different types. The Type A system oscillates rapidly as
BT increases and becomes unstable when BT = 0.57, which is the value of BTosc for the II-SI
combination when tD = 0 (see Table 5), whereas the Type C system remains stable, even
for BT = 1.

Figure 6 presents the Bode plots of the same case as discussed above with the addition
of F(z) = BL (Type B) and its continuous-time domain counterpart for small and large
BT. When BT is sufficiently small relative to BTosc, the frequency responses of the DPLLs
accurately represent the system, and little distortion is observed for all numerical integration
methods. However, the distortion causes the DPLLs to oscillate at maximum amplitudes at
larger BT when BT approaches the system’s resonant frequency BTosc. This clarifies the
fact that the design parameter for the PLL is the bandwidth of the loop B; however, the
normalized bandwidth BT in DPLL does not reflect the true noise equivalent bandwidth of
the loop as BT increases, and at the same time, the deviation of the actual bandwidth of the
digital system is affected by the type of numerical integration method.
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4. BT Lower Limit

As revealed from the previous section, the BT upper limits exist for each numerical
integration method for the DPLL, where BTs larger than such a limit cannot assure the
stable operation of the DPLL. Similarly, lower limits can exist that the BTs lower than the
limit fails to track the carrier phase successfully. The reason for this is that the gain (i.e.,
BT) of the tracking loop is too small to catch up with the dynamics induced by the receiver
dynamic stress and the oscillator phase noise. Therefore, the BT lower limits can be drawn
by analyzing the DPLL measurement error with its threshold for stable tracking. Here, the
third-order DPLL is considered for the sake of simplicity, however, a similar approach can
be applied to first-/second-order DPLLs analogously.
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4.1. Measurement Error

The DPLL measurement error is the standard deviation of the estimated phase error
in the DPLL, and the thermal noise contributes a huge portion of it. Nevertheless, the
oscillator phase noise and dynamic stress should be taken into account if a low-quality
oscillator is used as the clock source, or the receiver faces large dynamics. The oscillator
phase noise induced by the vibration is not considered in this work for the simplicity of
analysis. The standard deviation of each error source is obtained individually and merged
later to form the overall measurement error which can be compared with the threshold.

4.1.1. Thermal Noise

The thermal noise of the Costas PLL which is used for the phase tracking of the data
channel (i.e., phase transition existing channel) is modeled as [2]:

σt =
180
π

√
B

C/N0

(
1 +

1
2TC/N0

)
[deg] (11)

where C/N0 is the carrier-to-noise density ratio expressed in a linear scale [Hz].

4.1.2. Allan Deviation Phase Noise

An ideal oscillator is represented as a sinusoidal wave, but a realistic oscillator suffers
from phase modulation which has a random characteristic. The phase modulation results
in frequency instability which can be described using the Allan deviation. Finally, the phase
noise of the third-order DPLL induced by the Allan deviation is given by [15]:

σA =
180
π

√√√√2π2 f 2
c

(
π2h−2

3ω3
0

+
πh−1

3
√

3ω2
0

+
h0

6ω0

)
[deg] (12)

where f c is the carrier frequency [Hz] and h−2, h−1, h0 are the clock parameters which
are determined by the quality of the oscillator. As can be observed from the equation,
σA is inversely proportional to the ω0, which is proportional to the B. That is, DPLLs
with sufficient B can effectively suppress the clock jitter, otherwise, the phase tracking
performance is determined by the quality of the oscillator. In this study, two types of
oscillators are utilized for the phase noise analysis, namely a temperature-compensated
crystal oscillator (TCXO) and oven-controlled crystal oscillator (OCXO). Clock parameters
are obtained using the model provided by [15], which are listed in Table 6.

Table 6. Clock parameters for the calculation of the Allan deviation oscillator phase noise.

Oscillator Type h0 [s] h−1 [-] h−2 [1/s]

Temperature-compensated crystal oscillator (TCXO) 1.00 × 10−21 1.00 × 10−20 2.00 × 10−20

Oven-controlled crystal oscillator (OCXO) 2.51 × 10−26 2.51 × 10−23 2.51 × 10−22

4.1.3. Dynamic Stress Error

The DPLL suffers from the dynamic stress error when the receiver-satellite line-of-sight
(LOS) range varies rapidly, for example, if the receiver moves fast. The endurable order of
the dynamic stress is related to the order of the DPLL as described in Table 1. The dynamic
stress error of the DPLL is incurred by the dynamic component that has higher order than
the trackable component of the DPLL and can be generally modeled as [2]:

θe =
dnR/dtn

ωn
0

[deg] (13)
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where n is the loop filter order and dnR/dtn is the LOS dynamic stress [deg/sn] of the n-th
order DPLL. The typically used second-/third-order DPLLs for the GNSS receiver suffer
from the d2R/dt2 and d3R/dt3, which are the acceleration stress and jerk stress, respectively.

4.1.4. Overall Measurement Error

The overall DPLL measurement error is composed of the thermal noise, oscillator
phase noise, and dynamic stress error as follows [2]:

σDPLL =
√

σ2
t + σ2

A +
θe

3
≤ 15 deg (14)

and can be calculated by substituting (11) to (13) into (14). The 3σDPLL must not exceed the
rule-of-thumb DPLL tracking threshold (i.e., 45 deg), which is obtained by the 1/4 of the
pull-in range (i.e., 180 deg) of the Costas PLL discriminator, consequently, σDPLL should be
less than 15 deg to not to loss lock [2].

4.2. Lower Limit

Since the σt in (11) is a function of the C/N0, the resulting σDPLL in (14) varies with the
given C/N0. Figure 7 illustrates the σDPLL curves for the C/N0 for various B and T values,
as an example. Obviously, the measurement error increases as the C/N0 decreases, and
eventually crosses the measurement error threshold line (i.e., horizontal line at 15 deg). As
the DPLL cannot operate above the threshold line, the C/N0 at the crossing point indicates
the minimum C/N0 that the specific DPLL can track, which can be defined as a C/N0
threshold for the DPLL as:

C/N0,thresh = arg min
C/N0∈R

|σDPLL − 15| (15)
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The C/N0 thresholds of third-order DPLL for each measurement error parameter are
calculated to form the C/N0 threshold curves presented in Figure 8. As the B becomes
narrower, the C/N0 threshold declines smoothly, and at some point, it rapidly rises. Such



Sensors 2023, 23, 5887 17 of 24

vertical lines represent the lower limits of the B, which means DPLLs that have Bs smaller
than this limit have insufficient gain to work well in that condition. Note that, as can
be observed from the figure, the lower limit is dependent on the B, not BT, and T has a
negligible impact on the lower limits. Therefore, the lower limits with respect to the B are
induced first and the T is multiplied later to form the BT that is the main interest of this
paper. The BT lower limit is represented as follows:

BTlow = T × Bmin

= T × arg max
B∈(0,∞)

∣∣∣ ∂
∂B (C/N0,thresh)

∣∣∣ (16)

where Bmin is the minimum B [Hz] that the DPLL can operate at specific environmental
conditions. In the case of no dynamic stress (0 g/s case), the B lower limits of TCXO
and OCXO deviate from each other because all the phase noise observed as a dynamic
component at the receiver is dominated by the oscillator phase noise. Clearly, the B limit of
the OCXO is smaller than TCXO, which verifies that the OCXO has better clock performance
than TCXO. One of the reasons why the high-quality oscillator (e.g., OCXO) is preferred for
the application of weak signal processing can be inferred from the figure, as the OCXO can
provide tracking capability down to approximately 15 dB-Hz of C/N0 even for T = 20 ms.
When the dynamic stress exists, the two oscillators have similar effects on the lower limit,
and as the dynamics get stronger, the limits grow because the required gains increase
as well.
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The obtained BT lower limits of third-order DPLL are arranged in Table 7. Figure 9
shows the BT lower limits for various jerk dynamic stresses visually. It can be observed
that shorter T is beneficial in the dynamic environment since the T = 1 ms have nearly the
same BT limits for all jerk values. Additionally, OCXO has more advantages than TCXO
when a longer T is used, as the difference between the BT limits of the oscillators becomes
larger for the longer T.
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Table 7. BT lower limits of third-order DPLL.

Jerk Stress [g/s] Oscillator Type
BT Lower Limit

T = 1 ms T = 4 ms T = 10 ms T = 20 ms

0
TCXO 0.004 0.013 0.032 0.064
OCXO <0.001 0.003 0.007 0.014

1
TCXO 0.007 0.028 0.069 0.137
OCXO 0.006 0.024 0.060 0.120

4
TCXO 0.011 0.041 0.102 0.204
OCXO 0.010 0.038 0.095 0.190

10
TCXO 0.014 0.055 0.136 0.271
OCXO 0.013 0.052 0.130 0.259
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5. Implementation and Caveats

Focusing on the actual implementation of a second-order DPLL, the step-invariant
model for the NCO and loop filter is commonly used. This model is implemented on a
GNSS software receiver. For a simulated binary phase shift keying with a chipping rate
of 1.023 MHz pilot signal with a constant Doppler shift, the carrier phase tracking error is
shown in Figure 10. The largest bandwidth (36 Hz) results in BT = 0.72, which is near the
stability limit (BTosc = 0.75) when tD = 0. In this case, oscillations are visible, but carrier
tracking remains stable.

At first glance, the implementation of a DPLL seems straightforward; however, two
important flaws should be taken care of. Therefore, they are considered and implemented
in the receiver to see the effects on the phase tracking performance of the DPLL.
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5.1. Incorrect Carrier Phase Reference Epoch

The correlator integrates correlation results from t to t + T and dumps it at t + T, then
the phase detector (discriminator) estimates the error between the received true phase and
the estimated phase in the NCO at t + T. The loop filter predicts the next phase and phase
rate for t + 2T and controls the NCO accordingly. However, the phase error obtained at
t + T actually indicates the phase error at t + T/2. This is because the integrated correlator
outputs are the mean values between t and t + T and the resulting phase error is also the
mean phase error during the integration period because it is calculated using the mean
correlation results. Since the NCO rate is constant over that period and the incoming phase
rate is likewise typically assumed to be constant for T in the digital loop, the true and
estimated phase and the phase error change linearly in that duration. Consequently, the
mean phase error reasonably represents the phase error for the midpoint in the integration
process (which is at t + T/2 in this case).

The reference epoch of the estimated phase can be defined differently by each receiver
designer. Defining the phase to represent the start point of the integration has an effect such
as the insertion of a delay for T/2 (half-sample delay). In this work, for the simplicity of
the analysis to easily assess the upper and lower limits of BT, it is assumed that the carrier
phase is defined at the midpoint of the integration interval without any delay, which is
an ideal case. This definition is reasonable because the possible Doppler error does not
affect the carrier phase discriminator value, and the delay effect on carrier measurement
can be compensated later at the measurement extraction module in the baseband process
of receivers.

On the other hand, a real-world implementation of a DPLL might use a carrier phase
value defined at the beginning of the integration interval for convenience. In this case,
a Doppler error affects the carrier phase discriminator output (i.e., the Doppler-based
phase error is the Doppler error multiplied by T/2). If this assumption is used (without
accounting for the Doppler error) in combination with the digitization scheme presented
here, the tracking stability is degraded. This phenomenon is shown in Figure 11. In fact,
the stability drops for a second-order PLL with the SI/SI scheme from BT = 0.75 to BT~0.4
(determined on an empirical basis) when tD = 0.
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numerical integration, tD = 0, C/N0 = 47.7 dB-Hz, and two different carrier phase reference epochs.

5.2. Computational Delay

The computation of the discriminator and the loop filter consumes a certain amount of
time which is defined as the computational delay as described earlier. Proper buffering of
the incoming signal samples can provide the necessary delay to allow an NCO update for
the next integration interval. If buffering is not possible, the NCO update must eventually
be delayed by one integration period (i.e., tD = T). The effect of the computational delay
is shown in Figure 12 for the second-order DPLL with SI/SI integration, using BT = 0.26
which has nearly zero margins when tD = T (BTosc = 0.27). As expected, the result of the
NCO update delay case oscillates while the immediate update case does not. One can
observe the actual degradation of stability by the computational delay. Furthermore, the
result verifies that the obtained BT upper limit by root loci in Section 3 is correct.
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6. Conclusions

In this study, the upper and lower limits of the BT for the DPLL were deduced
theoretically and presented. For the upper limit, the effects of using digital integration
methods on the stability of the DPLLs were investigated using the root loci. Stability
problems in sampled-data loops occurred when BT was not sufficiently small, such that
the sampled-data loops no longer represented their counterparts in the continuous-time
domain, which typically occurs in modern digital GNSS receivers. The computational delay
inherent in the discriminator and loop filter was considered in the analysis. All the types of
DPLLs become conditionally stable when the unit delay is inserted as the computational
delay, while the types vary for the order and integration method when zero computational
delays are assumed.

The lower limits were obtained by analyzing the DPLL measurement error and the
corresponding threshold. The thermal noise, oscillator phase noise using Allan deviation,
and dynamic stress error were taken into account to constitute the measurement errors. The
C/N0 threshold was defined as the C/N0 at the crossing point between the measurement
error and threshold. By observing the C/N0 thresholds for varying B, the point that the C/N0
threshold increases rapidly existed, which is the lower limit. The lower limits are affected
by the oscillator quality and dynamic stress because some amount of gain is required for
the DPLL to track quickly varying phase and/or phase rate stably.

Issues related to the actual implementation of the DPLL were suggested with the
simulation results. As an example, simulation results using second-order DPLL with SI/SI
integration were presented. The phase error oscillates as BT approaches the deduced
upper limits (for both cases with and without the computational delay), which verifies the
previous analysis since it behaves as expected. For the numerical analysis of the lower
limits, an accurate modeling of the oscillator phase noise on the sampled signal is needed
and the dynamic stress, which has a dominant role in determining the lower limits, does
not have random characteristics, so it is hard to observe the effect of it using the Monte
Carlo simulation. Therefore, such detailed simulation and verification have remained as
future works.
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Appendix A

A simple integrator in the continuous-time domain and its corresponding numerical
implementations using SI, II, and BL are given by:

y(t) =
T∫

t=0

x(t)dt (A1)
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and:
ySI(k)= y(k− 1) + T·x(k− 1)

yII(k)= y(k− 1) + T·x(k)

yBL(k)= y(k− 1) +
T
2
[x(k) + x(k− 1)]

(A2)

where x and y are the input and output of the integrator, respectively, as in Table 2, and the
subscripts represent each numerical integration method.

Let us consider a second-order PLL, for example. Figure A1 shows the block diagram
of the linearized model of the second-order PLL in the continuous-time domain, where the
analog integrator is represented by 1/s [2]. In the figure, ε(t) represents the discriminator
output at t, which is obtained by subtracting the phase estimate at the previous loop update
epoch, φ̂−(t), from the phase measurement at t, φ(t). Similarly, the discriminator output is
calculated in the discrete-time domain as follows:

ε(k) = φ(k)− φ̂−(k) = φ(k)− φ̂(k− 1) (A3)
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The discriminator output is multiplied by the multiplier coefficients, which are based
on the natural frequency of the system (i.e., ω0). The output is then processed as shown in
the figure.

The digital implementation of the integrator in F(z) is obtained by applying (A2) to
.̂
φ:

.̂
φSI(k)=

.̂
φ(k− 1) + T·ω2

0ε(k− 1)
.̂
φII(k)=

.̂
φ(k− 1) + T·ω2

0ε(k)
.̂
φBL(k)=

.̂
φ(k− 1) +

T
2
·ω2

0 [ε(k) + ε(k− 1)]

(A4)

The control signal of the NCO, which is the estimate of the phase rate, is obtained by

the summation of
.̂
φ(k) and the output from the component with a2ω0:

.
φin(k) =

.̂
φ(k) + a2ω0ε(k) (A5)

where a2 is the filter coefficient of the second-order PLL.
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The digital implementation of N(z) is obtained by applying (A2) and (A5) to φ̂:

φ̂SI(k)= φ̂(k− 1) + T·
.
φin(k− 1)

= φ̂(k− 1) + T·
.̂
φ(k− 1) + T·a2ω0ε(k− 1)

φ̂II(k)= φ̂(k− 1) + T·
.
φin(k)

= φ̂(k− 1) + T·
.̂
φ(k) + T·a2ω0ε(k)

φ̂BL(k)= φ̂(k− 1) +
T
2

[ .
φin(k) +

.
φin(k− 1)

]
= φ̂(k− 1) +

T
2

[ .̂
φ(k) +

.̂
φ(k− 1)

]
+

T
2
·a2ω0[ε(k) + ε(k− 1)]

(A6)

Similarly, the digital implementation of F(z) and N(z) for the first-/third-order cases can
be obtained. Finally, the digital implementation of the overall DPLL for the combinations
of the three integration methods is listed in Table A1.

Table A1. DPLL implementations for three numerical integration methods.

Filter Order Type DPLL Implementations

First N(z)
SI φ̂SI(k) = φ̂(k− 1) + T·ω0ε(k− 1)
II φ̂II(k) = φ̂(k− 1) + T·ω0ε(k)

BL φ̂BL(k) = φ̂(k− 1) + T
2 ·ω0[ε(k) + ε(k− 1)]

Second

F(z)
SI

.̂
φSI(k) =

.̂
φ(k− 1) + T·ω2

0ε(k− 1)
II

.̂
φII(k) =

.̂
φ(k− 1) + T·ω2

0ε(k)
BL

.̂
φBL(k) =

.̂
φ(k− 1) + T

2 ·ω2
0 [ε(k) + ε(k− 1)]

N(z)
SI φ̂SI(k) = φ̂(k− 1) + T·

.̂
φ(k− 1) + T·a2ω0ε(k− 1)

II φ̂II(k) = φ̂(k− 1) + T·
.̂
φ(k) + T·a2ω0ε(k)

BL φ̂BL(k) = φ̂(k− 1) + T
2

[ .̂
φ(k) +

.̂
φ(k− 1)

]
+ T

2 ·a2ω0[ε(k) + ε(k− 1)]

Third

F(z)
SI

.̂.
φSI(k) =

.̂.
φ(k− 1) + T·ω3

0ε(k− 1)
.̂
φSI(k) =

.̂
φ(k− 1) + T·

.̂.
φSI(k− 1) + T·a3ω2

0ε(k− 1)
II

.̂.
φII(k) =

.̂.
φ(k− 1)+ T·ω3

0ε(k)
.̂
φII(k) =

.̂
φ(k− 1)+ T·

.̂.
φII(k)+ T·a3ω2

0ε(k)

BL
.̂.
φBL(k) =

.̂.
φ(k− 1) + T

2 ·ω3
0 [ε(k) + ε(k− 1)]

.̂
φBL(k) =

.̂
φ(k− 1) + T

2

[ .̂.
φBL(k) +

.̂.
φBL(k− 1)

]
+ T

2 ·a3ω2
0 [ε(k) + ε(k− 1)]

N(z)
SI φ̂SI(k) = φ̂(k− 1) + T·

.̂
φ(k− 1) + T·b3ω0ε(k− 1)

II φ̂II(k) = φ̂(k− 1) + T·
.̂
φ(k) + T·b3ω0ε(k)

BL φ̂BL(k) = φ̂(k− 1) + T
2

[ .̂
φ(k) +

.̂
φ(k− 1)

]
+ T

2 ·b3ω0[ε(k) + ε(k− 1)]

ai, bi: filter coefficients for the i-th order PLL.
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