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Abstract: Appropriate maintenance of industrial equipment keeps production systems in good health
and ensures the stability of production processes. In specific production sectors, such as the electrical
power industry, equipment failures are rare but may lead to high costs and substantial economic
losses not only for the power plant but for consumers and the larger society. Therefore, the power
production industry relies on a variety of approaches to maintenance tasks, ranging from traditional
solutions and engineering know-how to smart, AI-based analytics to avoid potential downtimes. This
review shows the evolution of maintenance approaches to support maintenance planning, equipment
monitoring and supervision. We present older techniques traditionally used in maintenance tasks and
those that rely on IT analytics to automate tasks and perform the inference process for failure detection.
We analyze prognostics and health-management techniques in detail, including their requirements,
advantages and limitations. The review focuses on the power-generation sector. However, some of
the issues addressed are common to other industries. The article also presents concepts and solutions
that utilize emerging technologies related to Industry 4.0, touching on prescriptive analysis, Big Data
and the Internet of Things. The primary motivation and purpose of the article are to present the
existing practices and classic methods used by engineers, as well as modern approaches drawing
from Artificial Intelligence and the concept of Industry 4.0. The summary of existing practices and
the state of the art in the area of predictive maintenance provides two benefits. On the one hand, it
leads to improving processes by matching existing tools and methods. On the other hand, it shows
researchers potential directions for further analysis and new developments.

Keywords: power industry; energy production; predictive maintenance (PdM); prognostics and
health management (PHM); smart maintenance; Industry 4.0

1. Introduction

Maintenance is an indispensable part of almost every production process in industry.
The knowledge base and current procedures in this area have evolved since the first
industrial revolution. Thus, how can modern technology support current maintenance
practices and what benefits does it provide? According to a Delloite report, inappropriate
maintenance strategies can reduce overall production capacity by 5 to 20 percent [1].
Likewise, McKinsey forecasts that digital maintenance in the industry can increase asset
availability by 5 to 15 percent and reduce maintenance costs by 18 to 25 percent [2]. The top
use cases of modern technologies in the industry relate to maintenance. These are predictive
maintenance and inspection quality [3]. The main value drivers for using these approaches
are as follows [4]:
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• Uptime improvement;
• Cost reduction;
• Improved safety, health, environment and quality;
• Extension of asset life.

Digitization and transformation of predictive processes allow a better understanding
of the occurring processes and enable more accurate and justified decisions that rely less on
intuition. Furthermore, knowledge from integrated data sources and advanced analytics
enables implementing new maintenance strategies, better work and inventory planning,
increased production efficiency and increased safety levels.

The power industry has undergone important transformations in recent years, driven
by new energy sources, climate changes and ecological factors. This sector can therefore
benefit from modern approaches to keep equipment working properly and avoid con-
tamination of the environment and to prevent failures that may have serious ecological
consequences. This review presents maintenance techniques and strategies that can help
prevent failures and reduce the risk of such problems in the power industry.

In this article, we consider the issue of digital transformation in the maintenance
arena with a particular focus on the energy industry. The review will explore how we can
improve maintenance by considering opportunities offered by Industry 4.0. The scope
includes applications in the energy industry or those that can be adapted from other
industry sectors, both in the area of centralized units such as power plants and distributed
renewable energy installations.

1.1. Energy Industry

Power engineering is the branch of the industry dealing with the production and
distribution of electric and thermal energy. Based on the generation method, we can divide
the production of energy into conventional (thermal, gas power plants) and unconventional
(wind farms, photovoltaic panels, hydroelectric power plants). Generation methods are
strongly linked to energy sources, which can be renewable (water, wind, solar, biomass)
and non-renewable (natural gas, coal). The structure of generating assets should ensure
high availability and reliability since electricity cannot be stored, i.e., the current temporary
production should correspond to the actual demand of recipients. A particular challenge is
to increase the share of renewables due to environmental requirements, which necessitates
new maintenance techniques for these facilities and unique operating characteristics.

Depending on the type of plant, the maintenance process has to face different typical
faults and different operation specifics. In the case of a thermal power plant, most of the
equipment is concentrated in a small area. Then, the maintenance process is particularly
directed at maintaining the equipment involved in production, such as boilers, feed pumps,
turbines and generators. Typical faults can be primarily divided into:

• Mechanical faults: bearing damage, vibration, heating;
• Automation system faults: control system malfunctions, tripping of safety systems;
• Water and oil leaks from machinery and pipes;
• Fuel supply failures: mills, conveyor belts.

Renewable energy sources and distribution networks are characterized by dispersed
distribution, which entails the need for rational planning of maintenance work and moni-
toring asset health. The cost of inspection and maintenance work in the case of, for example,
a wind turbine is associated with higher costs related to safety, logistics and necessary ca-
pacities.

Data resources that can be used for maintenance analysis include groups of systems
ranging from enterprise to automation control systems. Considering business levels, we
can distinguish the following types of layers in the functioning systems (Figure 1):
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Figure 1. Pyramid of system levels.

• ERP (Enterprise Resource Planning): A group of systems operating at the corporate
level, including the systems supporting the implementation of planning, financial
and procurement processes of the company.

• MES (Manufacturing Execution System): Systems in this class operate mainly on data
from Operational Technology (OT) systems (SCADA, DCS) and are used to monitor
and optimize the production process.

• SCADA (Supervisory Control And Data Acquisition): Systems designed to facilitate
operator monitoring and control of the production process in real time. This is also a
type of HMI (human–machine interface) that allows the operator to interact with the
device.

• DCS/PLC (distributed control system/programmable logical controller): Devices con-
trolling the production process in a network connecting sensors, actuators and human–
machine interface. They automatically output control signals to devices using data
from lower levels.

• Sensors/Actuators: The lowest layer responsible for executing the manufacturing pro-
cess. It gathers data from sensors, manipulates control signals in real-time networks.

The collection of all data includes both human-created records and machine-generated
repositories and logs, which raises some challenges for the data analysis (e.g., variety and
volume that underlie Big Data challenges; see Section 5.2). However, multi-level integration
of different systems also opens up new possibilities for insights, transforming existing data
assets into real value.

1.2. Related Reviews

Although several review papers cover the industrial applications of Industry 4.0 con-
cepts such as predictive maintenance, Big Data and simulation, none covers the traditionally
used and modern techniques for maintenance in the energy sector in such a comprehensive
manner. A summary and comparison of our review with other papers published in related
areas are presented in Table 1. We assumed the following criteria for the comparison:

• Strategy: whether it shows the impact of the presented content on management
processes, e.g., strategy formulation or potential change of current processes.

• Methods: whether it presents a detailed description and categorization of methods and
algorithms, considering their application, data sources, advantages and disadvantages.

• Diagnosis: whether it includes a description of methods and applications in areas
such as fault detection and identification, pattern recognition and root cause analysis.

• Prediction: whether it covers methods and applications in areas such as predictive
health management, remaining useful life.

• Prescription: whether it describes advanced analysis applications in the prescriptive
area, including techniques such as simulation, digital twin, process optimization.

• Area: whether it presents industries covered by the review.
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The papers compared in Table 1 frequently address various issues of Industry 4.0
and predictive maintenance. For example, Carvalho et al. [5], Diez-Olivan et al. [6] and
Zonta et al. [7] focus mainly on predictive maintenance (PdM) applications in a wide
range of industries. In contrast, Sikorska et al. [8] analyze the methods of remaining
useful life, categorizing the features of the approaches in the context of resources and
customer requirements. Gao et al. [9,10] focus on presenting FDI methods (fault detection
and identification) and describing them in detail, classifying them as model-based and
knowledge-based (data-driven). In the area of diagnostics, a comprehensive review of the
papers focusing on root cause analysis is presented by Sole [11]. Only a few papers focus
on the energy generation field, but even those are specific to particular sources of energy.
For example, Fausing et al. [12] gives an overview of predictive maintenance applications
in thermal power plants, while Chao et al. [13] and Ngarayana et al. [14] focus on nuclear
power plants.

Table 1. Related articles with a focus on smart maintenance in the industry (including power-
generation industry).

Reference Year
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Area Contribution

Sikorska et al. [8] 2011 #    # Industry A comprehensive review of methods related to RUL. Clas-
sification of algorithms and presentation of their strengths
and weaknesses to facilitate the selection of the suitable
model for the specific business required.

Gao et al. [9,10] 2015 #   # # Industry Survey of fault-diagnosis and fault-tolerance techniques.
Classification of methods as model-based, signal-based
and knowledge-based (data-driven).

Sole et al. [11] 2017 H#   # # Industry An overview focused on the root cause analysis problem,
taking particular account of requirements, performance
and scalability aspects.

Diez-Olivan et al. [6] 2019 # #    Industry A review of applications of data-driven predictive algo-
rithms in the industry within the I4.0 paradigm (categoriza-
tion into descriptive, predictive and prescriptive analysis).

Carvalho et al. [5] 2019 H#  H# H# # Industry A review of ML methods applied to predictive mainte-
nance. Focuses on methods, devices and data sources
used.

Zhang et al. [15] 2019 #  H# H# # Industry Focuses on data-driven PdM methods and their applica-
tions.

Saufi et al. [16] 2019 #   # # Rotating machinery A review of deep learning-based methods for fault detec-
tion and diagnosis.

Merkt [17] 2019  H#   # Industry A review of data-driven predictive methods highlighting
challenges and benefits with indicated areas of possible
applications.

Alcacer and Cruz-
Machado [18]

2019 H# # # #  Manufact-uring Overview of I4.0 technology applications in terms of en-
abling opportunities and use in manufacturing environ-
ments.

Ngarayana et al. [14] 2019  H# H# H# H# Nuclear Power Plant A review of models, methods and strategies for optimizing
maintenance at a nuclear power plant. A comparison of
scientific studies with real applications.

Soualhi et al. [19] 2019 #   # # Industry An overview of diagnostic methods used for fault isolation
and identification. Classification of methods as model-
based, data-driven and hybrid.

Cinar et al. [20] 2020 #  H# H# # Industry An overview of ML applications in PdM. Classifies pa-
pers based on methods, data sources, devices used in data
acquisition, data size and critical findings.

Chao et al. [13] 2020  # H# H# H# Nuclear Power Plant An overview of AI applications categorized for typical
scenarios in a nuclear power plant; addresses the problem
of human–machine interaction.

Fausing et al. [12] 2020 H#    # Thermal Power Plant A review of PdM articles with a focus on the pumping
system in power plants.

Zonta et al. [7] 2020 # H#   H# Industry A systematic literature review of PdM in the industry. Cat-
egorizes methods, standards and applications. Discusses
the limitations and challenges of PdM.

this article 2022     H# Energy Industry An overview of data-driven and experience-based meth-
ods improving maintenance. Shows applications of ad-
vanced analytics in the energy sector.

#: not studied H#: mentioned  : studied
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1.3. Contributions

Regarding articles dealing with the presented field, we can distinguish between articles
focusing on a broad description of methods in the context of the industry as a whole or
the industry-specific articles presenting a narrow range of proposed solutions. Issues
linking the value of innovative solutions and possible changes to existing procedures,
especially strategies, are hardly ever addressed. This paper extends the spectrum of the
published works.

• It presents traditional approaches and methods used in maintenance against solutions
that extend analytical capabilities and automate handbook processes.

• It shows a wide range of methods covering the areas of diagnostics, prediction and pre-
scription in the context of applications narrowed to the power industry.

• It proposes a simplified classification common to the areas of diagnosis (fault detection
and identification) and prognosis (remaining useful life), categorizing groups of
methods in two dimensions: model-based/data-driven and qualitative/quantitative.

• It discusses and summarizes the challenges and barriers that limit the use of theoreti-
cally proven mechanisms in a production environment in practice.

The paper is organized according to the outline shown in Figure 2. Section 4 provides
an overview of the advanced analytics methods used to support the maintenance area.
Here, we describe in detail the algorithms related to fault detection and health index deter-
mination. We also present examples of implementations of more complex systems covering
prescriptive maintenance and digital twin issues. We describe in detail methods from the
area of fault detection and identification, along with the advantages and disadvantages
of applications in particular situations. The use cases include detecting specific faults and
anomalies, diagnosis to identify problem root causes, prediction of useful life, simulation
and optimization of activities. Section 5 describes the possibilities of the remaining concepts
of Industry 4.0 concerning the possible applications in the power industry.

Figure 2. Structure of this review.

2. Maintenance Strategies in Industry

Maintaining equipment in good condition is an important issue in the production
process. Appropriate service and maintenance contribute to a high level of availability and
reduce production downtimes. On the other hand, in power plants, maintenance costs
represent a significant financial expense. Therefore, it is essential to achieve acceptable
production results while optimizing service costs. According to the definition in the
European Standard EN13306 [21], maintenance is defined as a combination of all technical,
administrative and managerial actions during the life cycle of an item intended to retain it
in, or restore it to, a state in which it can perform the required function. Thus, maintenance
includes all activities related to inspections, condition monitoring, routine maintenance,
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replacement of parts, repairs, overhauls, as well as planning and supervision of all these
activities.

Maintenance strategies can be classified in terms of the time when a repair is performed
relative to the occurrence of a failure. There are three basic approaches of maintenance as
shown in Figure 3:

• Corrective;
• Preventive;
• Predictive.

Figure 3. Maintenance strategies showing various moments of the repairing process before and after
the potential failure of the equipment (based on [22]).

2.1. Corrective Maintenance

Corrective maintenance implies taking action after a failure has occurred. This ap-
proach minimizes the cost of servicing the equipment, thus extending the maintenance
interval, but it comes at the expense of increased risk of equipment unavailability. The neg-
ative effects of corrective maintenance may manifest in:

• Lost revenue, increased cost of repairing the equipment or related equipment being
more damaged, which is a result of a primary failure;

• Increased time and cost of repair—a result of unplanned downtime.

A simple real-life example of corrective maintenance is replacing a light bulb in a car.
The item is only replaced when it burns out, for which the drivers are prepared by having
a set of bulbs in reserve.

As stated above, this approach should be used for non-critical, easily repairable
equipment. However, a more proactive approach is expected for components whose
failure can cause downtime, e.g., steam boiler or turbine in a power plant. The same
applies to equipment whose failure may contribute to the degradation or destruction of
associated equipment, e.g., conveyor belts in explosion hazardous areas or evaporators or
high-pressure steam pipelines. Depending on the procedures defining the moment when
the repair should occur, actions can be taken immediately or deferred, depending on the
priority and the potential consequences of the failure. In the case of continuous production,
a prevalent situation is when some parts permanently work in a defective state. This is
difficult to observe since the work parameters of an element slowly deteriorate (which is
reflected in, e.g., reduced efficiency, increased vibration, heating). At the same time, they
have no or low impact on the efficiency of production.

To facilitate corrective maintenance, we can employ descriptive analytics. Descriptive
analytics includes techniques and methods for correctly estimating the failure effects and
adopting a proper approach to calculate all potential benefits and risks. When covering
equipment with this strategy, it is essential to use diagnostic technologies allowing for
fault-detection and -monitoring equipment health. Adopting the proper approach allows
taking actions to remove the failure before downtime much quicker.

2.2. Preventive Maintenance

The purpose of preventive maintenance is to avoid unplanned downtime through
scheduled periodic inspections and replacements. Typically scheduled tasks include lubri-
cation, adjustments, oil changes or advanced diagnostics. Maintenance intervals can be
planned on the basis of manufacturer recommendations, analysis of quality parameters
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such as MTBF (mean time between failure) and MTTF (mean time to failure). Preventive
maintenance ensures good equipment condition and reduces the risk of potential down-
time. However, it does not protect against unexpected failures and defects of elements not
covered by the maintenance. Additionally, replacing parts too often is not always a good
option, for two reasons [23]:

• By changing an original part with a replacement, the useful life of the whole unit
(machine) could be shortened due to an additional risk of failure of the part, assembly
error, hidden defects or non-matching part;

• New parts and consumables have a higher probability of being defective or failing
than existing materials that are already in use.

Figure 4 shows the probability distribution of failures over the life cycle of a machine.
The risk of failure is higher at start-up, then drops and increases again with wear-out.
The statistically determined period between these states can be used as a determinant of
the replacement period [24,25].

Figure 4. “Bathtub” visualizing the probability of failures in early and late stages of the life cycle of
a machine.

The disadvantage is also the necessity of planning maintenance and costs. Effective
preventive maintenance planning in energy generation should align maintenance inter-
vals with the required plant availability. For the time-based approach, the authors of
works [26–29] propose a cost-reliability model to find the optimal policy by improving
reliability over low cost. Planning the schedules requires historical data for analyses of
maintenance history, usage conditions or a failure history (we may use specification for
the same or a similar device, alternatively, data from the manufacturer). An alternative
group of methods relies on task planning with Key Performance Indicators (KPIs) [30–32]
or actual condition monitoring [33–35].

2.3. Predictive Maintenance

In predictive maintenance, the servicing is carried out when it is required, usually
shortly before a fault is expected. The essence of this approach is to predict the health
of a machine based on repeated analysis or known characteristics. Therefore, predictive
maintenance is a type of condition-based maintenance in which we predict future per-
formance based on current and historical indicators. The application of this technique
leads to a reduction in both planned and unplanned downtime. Planned downtime refers
to preventive actions that can be better scheduled and unplanned downtime is related
to unexpected failures that can be avoided by continuously monitoring the equipment
condition.

Commonly used conventional predictive maintenance techniques are based on peri-
odic measurements that cover the following [23,36].
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2.3.1. Vibration Monitoring

This technique applies to all motion and rotating machinery and is widely used in
the industry for diagnostic, condition monitoring and prediction functions. Predictive
techniques involve trend analysis for vibration levels, in particular frequency ranges or
signal profile analysis. Trend analysis is used to determine remaining useful life and to
evaluate component deterioration. Since the vibration level is itself an indicator of poor
condition, predictive analyses can easily be made using only this measurement. Signal
profile analysis provides the possibility to detect and classify unwanted events. Detection of
characteristic signal patterns or anomalies enables discovering specific faults such as leaks,
seizures or material loss. The use of this method is costly because it requires the installation
of additional measurement equipment. However, developing analytical methods such as
those based on machine learning allows for rapid diagnostics without involving experts in
the analysis. The vibration monitoring can cover devices and their components such as
pumps, fans, compressors, gearboxes, engines, turbines.

2.3.2. Thermography

This technique is used to predict and diagnose the condition of equipment and systems
based on temperature measurements. Advanced instrumentation allows for monitoring
infrared emissions using thermal imaging cameras, infrared thermometers or line scan-
ners. The analysis of obtained results (temperature, its variations and distribution) allows
determining the condition of the device and detecting potential anomalies. In practice,
thermography can be used as a non-destructive method to detect wall thickness caused
by corrosion and flow erosion in high-temperature pressure pipe [37] and to determine
the loss of material in the boiler water–wall tubing [38]. Thermography is also applied for
diagnosing electrical equipment, detecting oil leaks [39] and detecting faults in photovoltaic
(PV) farms. In the latter case, it enhances the capability and safety of inspections [40,41]
and provides methods to determine PV panel health [42,43].

2.3.3. Oil Analysis

Oil plays a vital role inside a working machine—it is responsible for lubricating,
cooling, cleaning, protecting or sealing [44]. The systematic analysis of the chemistry
and contamination of oil can provide indicators of the wear of machine components and
lubrication quality. Systematic analysis of oil makes it possible to determine the state of
wear of machine elements [45,46] and to plan preventive actions, such as changing oil or
filters more effectively [47]. Investigations may include testing of viscosity, contamination,
solid content, oxidation, nitration, total acid number, total base number, particle count.
Examination of these properties can determine the quality of the lubricating performance,
detecting leaks, corrosion or abnormal wear. Spectrography and ferrography are also
complementary techniques in this area, allowing for the analysis of contaminants and
additives. Using these methods, we can perform wear particle analysis to determine
the types of deterioration such as rubbing wear, cutting wear, rolling fatigue and sliding
wear [48,49]. Limitations of this method are the equipment cost and the difficulty in oil
sampling and interpretation of results.

2.3.4. Acoustic Analysis

This technique includes analysis of acoustic signals, noise and ultrasound. With rela-
tively inexpensive tools, it is possible to monitor rotating machinery in a similar way to
vibration analysis. By analyzing the signal in the frequency domain, we can detect anoma-
lies caused by friction and stresses that may be symptoms of deterioration. In the case of
the detection of gearboxes defects, acoustic analysis can complement vibration monitoring
for the detection of more minor defects [50]. On the other hand, ultrasonic analysis is
used to detect leaks in valves and pipes. Leaks generate an identifiable signature in the
high-frequency band [51]. By investigating the shape and characteristics of the ultrasonic
waveform, we can detect cavitation in the centrifugal pump [52].
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2.3.5. Motor Current Analysis

The electric motor is an integral part of most power plants. Its failures often lead
to energy production outages. Therefore, it needs special attention. It is exposed to
mechanical faults characteristic of rotating machinery, but a significant part of them is
caused by electrical faults. Common failures include bearing failures, stator winding faults,
rotor faults, insulation faults [53]. The methods used here (in addition to vibration and
acoustic monitoring) cover:

• Insulation resistance test—insulation may be damaged by high temperature or can
be contaminated by humidity. The test consists of grounding the motor frame and
applying DC voltage to the motor windings with a measuring device. Then, the device
reads the resistance value [54].

• Motor Current Signature Analysis—this is a technique used to analyze and monitor
electrical induction motors, generators, power transformers and other electric equip-
ment. This method uses the supply current to produce the current signature from
frequency spectrum transformation. Faults in motor components produce anomalies
in a magnetic field and change the mutual and self-inductance of the motor that appear
in the motor supply current spectrum [55,56]. This method allows detecting faults
such as [53,57]:

– Broken Rotor Bar—a fault that can cause sparking and overheating in a motor.
Examining the frequency spectrum of the stator currents can provide early fault
detection [58,59].

– Bearing Faults—faults caused by misalignment after bearing installation [60]
and increased vibrations [61].

– Eccentricity-related faults—a condition when air gap distance between the rotor
and the stator is not equal [62,63].

– Stator or Armature Faults—faults usually related to insulation failure. Shortened
turns produce excessive heat in the stator coil and current imbalance [64,65].

– Equipment wear—a degradation of parts observed in the long term. Equipment
wear is also visible as changes in the current spectrum.

2.3.6. Analysis of Process Parameters

This approach relies on actual measurements to determine indicators of process per-
formance or health index. By monitoring the index over time, we can assess changes in
the equipment condition. This technique is widely used in combination with the Internet
of Things (IoT), machine learning and big data technologies. It is possible to utilize the
enormous amounts of data generated in technological systems for predictive maintenance
tasks. Performance indicators can be directly calculated based on the data. For example, we
can calculate the efficiency of a pump based on the flow, heat and power by computing the
ratio of output to input power [66]. Other ways are to create a health index model based on
historical data or data from a similar machine [67].

2.3.7. Visual Inspection

Online condition monitoring and predictive maintenance improvements sometimes
cannot replace traditional inspection methods. To avoid undetected faults, maintenance
with defined models and installed metering should be supported by engineering expe-
rience in the inspection process. The traditional process can be supported by modern
technologies that enable mobility and access to information. Inspections are supported by
augmented reality [68], mobile applications [69], radio-frequency identification (RFID) [70]
and barcodes.

3. Techniques and Methods in the Maintenance Area

Decisions regarding which equipment to include in which strategy, how to schedule
maintenance and how to manage materials are based on the adopted asset-management
methodology and assumptions regarding expected availability and efficiency. The outlined
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processes and techniques allow for continuous improvement and achieving the objectives.
The effects of their implementation are driven by control, documentation and integration of
data sources related to the history of equipment repairs, diagnostics, warranties or regula-
tory recommendations. Typically, these data are stored in the enterprise asset-management
(EAM) system or computerized maintenance management system (CMMS). An additional
advantage is the use of process data (from operational technology) to determine perfor-
mance and health indicators.

3.1. Total Productive Maintenance

Total Productive Maintenance (TPM) is an employee-focused methodology that con-
centrates on continuous improvement of equipment effectiveness by involving all employ-
ees in maintenance tasks, training the staff and ensuring proper communication between
operators and technicians. TPM makes efforts to eliminate the following losses [71]:

• Breakdowns;
• Setup and adjustment;
• Idling and minor stoppages;
• Reduced speed;
• Defects in a process;
• Reduced yield.

A metric for TPM performance is the overall equipment effectiveness (OEE) factor,
which is the multiple of availability, performance efficiency and quality rate. TPM derives
from other methods of lean manufacturing, such as 5S, 5WHYs or kaizen, but the following
activities are specified as being essential:

• Education and training;
• Autonomous maintenance;
• Preventive maintenance;
• Planning and scheduling;
• Reliability engineering and predictive maintenance,
• Equipment design and start-up management.

3.2. Reliability-Centered Maintenance

Reliability-Centered Maintenance (RCM) is defined as a process used to determine
what must be done to ensure that any physical asset continues to do what its users want
it to do in its present operating context [72]. The primary purpose of RCM is to preserve
the system functions rather than to keep the asset in service. The implementation of RCM
requires a complete understanding of the functions of the physical asset and the nature
of failures associated with those functions. Due to the individual treatment of each type
of failure, it may overlook some events that could affect, for example, life expectancy or
performance loss [73]. RCM focuses on finding answers to the following questions:

• What are the functions and associated desired performance standards of the asset in
its present operating context (functions)?

• In what ways can the asset fail to fulfill its functions (functional failures)?
• What causes each functional failure (failure modes)?
• What happens when each failure occurs (failure effects)?
• In what way does each failure matter (failure consequences)?
• What should be done to predict or prevent each failure (proactive tasks and task

intervals)?
• What should be done if a suitable proactive task cannot be found (default actions)?

RCM can be successfully applied to maintenance management in power distribution.
Authors of the work [74], by including the downtime cost of outages, designed an op-
timization algorithm that allowed to reduce total costs while increasing reliability level.
A comprehensive framework to implement RCM, including cost–benefit ratio for critical
power distribution equipment, was investigated in Sweden [75]. The analysis of RCM
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application carried out for important elements of wind turbines was reported in [76], where
the authors drew attention to the importance of the standardized and automated collection
of failure and maintenance data.

3.3. Failure Mode and Effect Analysis

Failure Mode and Effect Analysis (FMEA) is a methodology to identify potential
failure modes for equipment or process, evaluate the risks associated with them, priori-
tize problems, and identify and execute corrective actions to resolve the most significant
problems. Failure mode effects analysis and reliability-centered maintenance are important
methods for implementing preventive maintenance programs [77]. Depending on the stage
of development, the following types of FMEAs are distinguished into those focusing on
System, Project, Process or Service. FMEA analysis consists of a functional decomposition
of the object or process being investigated and the collective group of quantitative and
qualitative analysis data [78]. An example of the FMEA sheet is shown in Figure 5. It
consists of the following elements:

• Item;
• Function;
• Failure;
• Effects of Failure;
• Causes of Failure;
• Assessment rating;
• Recommended Action.

Figure 5. Example of the FMEA sheet.

Qualitative analysis is used to evaluate risk and prioritize corrective actions. It focuses
on possible defects, their causes and their effects. Quantitative analysis includes a criticality
analysis for each component at a given operating time and identifies the component
reliability associated with each potential failure mode. For each failure mode, it also
evaluates the probability that the component will cause a system failure.

To evaluate the impact of the identified defects, we can use the risk priority numbers
(RPN) method. The method involves determining the following:

• Severity of each failure;
• Likelihood of occurrence;
• Difficulty of detection.

The RPN is then calculated as:

RPN = Severity×Occurrence× Detection

FMEA analysis was successfully applied to a wind turbine assembly reported in [79].
The authors compared quantitative FMEA results with field failure rates showing mean-
ingful similarity. The results obtained are useful for the future design of wind turbines.
Furthermore, the paper points to software supporting FMEA analysis [80,81].
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The execution of FMEA analysis can be easily digitized and used in a semi-automatic
mode using information systems. Several papers, including [82–84], propose coding the
FMEA structure using a Bayesian network. The inclusion of probabilistic data allows for
better risk analysis and provides opportunities for further insight processing.

The extension of failure analysis by using data-driven methods is presented for actual
data in a hydroelectric power plant case study presented in [85]. The authors extended the
fundamental FMEA analysis with Association Rule Mining and Social Network Analysis.

Moreover, many works are devoted to the automatic generation of FMEA surveys
by using historical data and simulation methods that allow this process to be carried out
without involving experts [86–88]. An example of the application of a data-driven method
using a deep learning technique for the aviation industry has shown that the accuracy of
the fault prediction can oscillate around 95% [89].

3.4. Fault Tree Analysis

Fault tree analysis (FTA) is a technique that uses a graphical and logical model to
describe the relationships of multiple events leading to a failure. A top-down diagram
consists of two types of elements: events and logic gates that link to identify the cause
of the top undesired event, as shown in Figure 6. The main goal of FTA is to reduce the
risk of system failure based on the identified causes and their probabilities. In addition,
through this analysis, we can achieve improved system performance. FTA can be performed
standalone or as a complement to FMEA. The main benefits of FTA are:

• Graphical visualization;
• Support in identifying the reliability of single components or the whole system;
• Support in determining the probability of occurrence for each root cause;
• Assessment of the impact and risk of possible changes;
• Capability to highlight the critical components;
• Identification of paths leading to failures;
• Capability to perform qualitative and quantitative analysis.

Figure 6. Example of fault tree analysis for fire accident.

Examples of the use of FTA analysis in the industry include fault tree analysis for
power transformer based on analytical methods and infrared diagnosis [90] or calculation
of fire and explosion risk using expert knowledge and probabilistic methods [91]. The
development process is supported by tools that facilitate fault tree diagram generation.
Semi-automatic building is based on translating a model written in SysML [92], UML [93],
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AADL [94] or is generated from a defined set of components, function tables and transition
tables [95,96].

3.5. Root Cause Analysis

Root cause analysis (RCA) is a technique that performs deep analysis to identify the
underlying root causes of failures to avoid their future occurrence. In the literature, we can
also find the RCA under synonymous names fault isolation or fault localization. The process is
widely used in industry due to the complexity of systems where associating faults with their
symptoms is not always trivial. For example, in the case of a seized bearing, the corrective
approach is limited to replacing the component with a new one. At the same time, root
cause analysis focuses on finding the root cause, e.g., poor lubrication, oil leakage, vibration,
etc., which will help avoid future incidents. Classical inference methods rely on deductive,
knowledge-based analysis where we can use the following techniques:

• 5WHYs is a deductive method that involves iterative asking of “why” questions
for the failure that has occurred. With the correct formulation of the questions and
maintaining the cause–effect logic, the method allows the analysis of the source of the
defect and learning more about its causes.

• Fishbone diagram, also called Ishikawa diagram, is used to visualize cause-and-effect
relationships, thus helping to distinguish the causes from the effects of a particular
failure and perceive the complexity of the problem. The analysis starts with determin-
ing the occurrence of the event (failure or defect) and proceeds to identify all possible
factors that caused it while categorizing the groups of the causes. A typical diagram
divided into 4M categories (Man, Machine, Methods, Materials) is shown in Figure 7.

Figure 7. A fishbone diagram with various categories of failure or defect cause [97].

• A Pareto chart, which is a simple tool that easily categorizes and visualizes data in a bar
chart. By following the 80/20 rule (20% of causes cause 80% of problems), the method
allows highlighting those causes that provide the most substantial quantitative or
financial impacts.

Manual analysis by experts is usually of very good quality. Still, it is very time-
consuming and requires extensive industry knowledge, which, together with a complex
system, limits the applicability of the method. Therefore, it is worth considering the
use of data-driven algorithms to automate the process or assist in making it significantly
more straightforward. The used techniques inherited features from areas such as Artificial
Intelligence, neural networks, graph theory, statistics and automata theory. While analyzing
various algorithms used for root cause analysis, Solè et al. [11] categorized them as:

• Deterministic—based on designed rules, including such implementations as fault tree,
codebooks, Petri nets.

• Probabilistic—dealing with the uncertainty issue and involving stochastic methods,
including Bayesian networks, hidden Markov models, decision trees or fuzzy logic.

Analysis models may have different properties and performances that affect the
purpose of using them. The purpose of the analysis may be to detect root cause based on
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symptoms, with algorithms capable of detecting, classifying or multi-classifying events
occurring simultaneously. The purpose of the analysis may be just to detect or classify root
causes based on symptoms or to drill down to explain their nature, origins and related
incidents fully. Thanks to this, the algorithms may have the capability to detect, classify
or multi-classify events occurring at the same time.

4. Value of Advanced Analysis in Maintenance

This chapter will provide examples of how we can use data and analytical opportuni-
ties to derive value in the area of maintenance. The methods presented here, categorized in
terms of complexity and purpose, allow describing past events and the current situation
accurately, predicting outcomes in the future and simulating and optimizing expected
results.

Section 4.1 presents a general categorization of approaches at a high level of abstraction
according to the scope of analysis and the methods used. Subsequent sections address
the issues of prognostics and health management. Section 4.2 presents a categorization
of the described PHM methods. Sections 4.3, 4.4 and 4.6 describe in detail three groups
of methods—model-based, data-driven and signal-based. Section 4.7 is devoted to the
area of determining the remaining useful life. Section 4.8 briefly presents methods from
the prescriptive area, including applications of simulation, digital twins and advanced
optimization methods.

4.1. Complexity and Scope of Analysis

Digitization of datasets and the capability of real-time processing allow the use of
automation and inference to support traditional maintenance processes. Implementation
of data mining systems gives undoubted benefits to the process but also requires the
involvement of particular resources and, depending on the issue being solved, necessitates
engaging in varying levels:

• IT infrastructure (data repositories, cloud, interfaces);
• Expert knowledge (domain knowledge and data science);
• More or less availability of historical data.

Depending on the complexity (and related uncertainty) of the analysis and the time context
of the result, the following types of analysis can be distinguished, as shown in Figure 8:

• Descriptive—answering the question “what happened?” This type of analysis is
used to interpret historical data to understand the process better and determine
metrics to evaluate and compare performance. An example would be calculating the
MTTF (mean time to failure) for a system component. It involves tools and elements,
such as reports, metrics, KPIs or graphs, mainly using statistical methods and data
visualization.

• Diagnostic—answering the question “why did it happen?” This type of analysis
relies on data-mining techniques to determine the current state and/or its causes.
In maintenance tasks, the multi-level analysis includes:

– Fault detection: online detection of a fault or anomaly condition, determining
current health index;

– Fault isolation: determination of failure location;
– Fault identification: categorization of the fault.

• Predictive—answering the question “what will happen?”. This type of analysis utilizes
statistical tools and machine learning to predict future conditions. In the context of the
research area, it is related to the introduction of predictive maintenance techniques,
enhancing the opportunities by using new information technologies that allow online
data acquisition, integration and analysis. Predictive techniques focus on detecting
future failures and determining the remaining useful life indicators, providing the
expected time to failure.
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• Prescriptive—simulates possible scenarios for different decision paths based on the
prediction results and chooses the optimal solution according to the assigned target
function. This type of analysis engages Artificial Intelligence, optimization and sim-
ulation techniques to support real-time decision-making. An example could be an
algorithm that controls the operation of a machine in such a way as to extend its
remaining useful life to the nearest planned downtime.

Figure 8. Scope of insights in analysis.

The following sections detail the predictive algorithms categorizing and extensively
describing the prognostic and health-management methods.

4.2. Classification of Prognostic and Health-Monitoring Methods

Failure detection and diagnostics methods can be classified in different ways consider-
ing the used approach, employed resources or techniques. Most commonly, we can group
the methods as data-driven and model-based. Some authors also distinguish subgroups
sich as knowledge-based, signal-based or stochastic. A hybrid approach is also often used
as a combination of several defined methods. According to the taxonomy adopted in
the literature and considering the characteristics of the described models, we propose a
two-dimensional classification shown in Figure 9. The methods are mainly categorized as:

• Model-based—a group of model-based approaches requires the system to be designed
so that the expert knowledge is encoded in such a way that we can automate the
diagnostic process. The model is designed in a deterministic way, e.g., using equations
and mathematical modeling, together with flows or graphs to replicate the behavior
of the system. These approaches are sometimes referred to as white boxes, where the
relationships between inputs and outputs are carefully designed and predictable.

• Data-driven—approaches that use historical datasets and techniques such as machine
learning to create inference rules. In general, data-driven approaches generate a model
called a black-box due to limited insight into the structure and mechanics of the model.
The design process is based on careful selection of training data and the choice of an
appropriate architecture/technique. It requires much less domain knowledge at the
cost of slightly more input from the data scientist.

• Signal-based—approaches that are very similar to traditionally used diagnostic meth-
ods. They are based on the assumption that the measured signal reflects the fault condi-
tion. The used techniques rely on studying a single signal/measurement, with feature
extraction and decomposition of the measured value being the main elements.

• Quantitative—quantitative approaches focus on determining the relationship between
the input and output of the system. They concentrate on heuristics using mathematics,
statistics and stochastics and taking into consideration the potential uncertainty.

• Qualitative—in qualitative models, relations in the system are expressed by qualitative
functions of specific system parts, formulated as casual graphs or IF–THEN rules.
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Figure 9. Categories of failure detection and identification methods.

Sections 4.3, 4.4 and 4.7 describe in detail the methods included in the categorized
approaches: model-based, data-driven and signal-based.

4.3. Model-Based Methods

Model-based methods draw from expert knowledge, making the created system
transparent, clear and well-reflecting with respect to the state of knowledge. Here we
present the processes that belong to this category together with their description and
examples of application in fault-detection and -identification tasks.

4.3.1. Fault Trees

A fault tree represents a structure of the cause-and-effect process in the form of a
visual diagram. The application of this method is user-friendly and transparent. It provides
an opportunity to describe events (e.g., valve blockage, short circuit) that are difficult to
represent with quantitative methods based on measurements [98].

Fault trees have been successfully used in the area of reliability and safety assurance—
Purba [99] presents the application fault trees in combination with a fuzzy-based reliability
approach to calculate the probability of basic events. The quantitative complementation of
the fault tree overcomes limitations caused by a shortage of fault probability distributions.
Fault trees extended by fuzzy set theory have also been employed in the petrochemical [100]
and mining industries [101] to manage the risks associated with fires and explosions.

Traditional root cause analysis using fault trees and fish-bone diagrams was ap-
plied to a gas turbine in a power plant. By considering probabilities and potential costs,
Sarkar et al. [102] were able to achieve design improvements and support scheduled
maintenance planning.

4.3.2. Expert Systems

The idea of an expert system is to encode the knowledge of industry experts in the
form of an algorithm so that the inference process can be automated, e.g., by a computer
program. The schematic diagram of the expert system is shown in Figure 10. The user inter-
acts with the system via an interface. It can be a typical computer application, but recently
many approaches have used mobility, augmented reality [103,104] or virtual assistant [105].
The knowledge database is a structured repository of documentation, solutions and experi-
ence, powered and continually updated by domain specialists.
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Figure 10. Illustrative schema of the expert system.

Based on reviews of available techniques [106,107], we can distinguish the following
main techniques applied in expert systems:

• Rule-based systems—these involve encoding the operation logic in terms of IF–THEN
expressions. The technique allows codification of the records of operating instructions,
e.g., IF the bearing temperature exceeds a predetermined threshold, THEN send an alert.

• Case-based reasoning (CBR)—this involves the use of a type of knowledge database
that, relying on similar preceding cases, provides a solution for the current problem.

• Neural networks and evolutionary algorithms—these are two soft computing ap-
proaches that provide algorithms based on, for example, artificial neurons or genetic
algorithms [108], instead of mathematical logic, for the inference step.

• Fuzzy system—this is another soft computing approach that relies on fuzzy set theory
and allows incorporating uncertainty into the inference. It uses statistical and prob-
abilistic methods to reflect human-like decision-making. Compared to the standard
IF–THEN rules, such as the following one:

IF T > 70 THEN stop

fuzzy rules contain premises and consequents that are based on fuzzy sets:

IF (T is High) and (T is rising) THEN stop

• Object-oriented methodology—this focuses on storing procedures and data in the form
of classes and hierarchies. Objects (instances of classes) store values, text, graphics,
diagrams and all functional information. The method allows modeling facts and
relationships using three concepts: abstract data typing, inheritance and object identity.

4.3.3. Analytical Redundancy

One of the most commonly used model-based fault/anomaly detection methods
involves analytical redundancy [109]. The method consists of modeling the investigated
signal or process (U) and examining the difference between the actual output value (Y) and
the estimated one (Y’). The resulting difference, also named residual (R), is analyzed in the
next step for fault diagnosis. A simplified flow within this method is shown in Figure 11.

The model may be a physical copy of the device (hardware redundancy) or a mathe-
matical expression (either deterministic or statistical) that describes the investigated value
based on the relationships between process variables. Depending on the underlying dataset,
there are two types of redundancy. Direct redundancy analyzes relationships between
correlated instantaneous sensor outputs, while temporal redundancy estimates values
based on both sensor outputs and actuator inputs over a time span.
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Figure 11. Analytical redundancy and residual generation.

Within this approach, three groups of techniques are distinguished:

• Observer-based—this relies on comparing the measured value with the estimated
one for each particular signal. Internal states are represented by the relation between
input and output. In the healthy system, residuals should oscillate around zero,
while significant values should indicate failure states. The methods within this group
were originally based on the Luenberger observer [110,111] or Kalman filter [112,113].
Recent work describes novel observer-based methods for distributed fault estimation
in complex multiagent systems with nonlinear dynamics. Liu et al. [114] present a
fault-detection method treating a fault as a special state of the system and using the
outputs of neighbor nodes to estimate the fault state by the observer. Han et al. [115]
propose a method for a topology defined by a directed graph, where using Schur
decomposition makes the system computationally efficient regardless of the number
of nodes.

• Parameter estimation—this assumes that the fault affects the system parameters
(which are not necessarily measurements). The technique involves examining changes
in the estimated parameters in the continuous domain, e.g., by comparing them to a
model condition for the healthy system or checking changes in characteristics [116].

• Parity space—this is a technique similar to the observer-based one, but the essence is
to obtain residuals vector (parity space, residual space) by comparing the consistency
of results generated by digital models with measurements (sensor outputs) or process
inputs (actuators) [117,118]. Fault identification for sensors can be accomplished
by designing relationships so that the values of individual residues are associated
with specific sensors. Similarly, for actuator fault identification, we can use parity
space transformations so that non-zero results clearly indicate the source of the fault.
Examples of such an approach are the following: single actuator parity relation [119]
or orthogonal parity equations [120,121].

4.4. Data-Driven Methods

Data-driven methods use available data resources and extensive historical data reposi-
tories to model processes and provide inference engines. The methods presented in this
group use advanced analytics, including techniques such as machine learning. The main
drivers here are the quality of the training data, the ability to process large amounts of data,
including streaming data and analytical skills supported by domain knowledge. Important
factors determining the quality of the results obtained are quality of training data, data
processing capabilities and analytical knowledge.

The spectrum of methods used in this category cover the use of:

4.4.1. Fuzzy Systems

Fuzzy logic-based techniques are often categorized as expert systems, with the added
advantage of quantitative rules that improve efficiency in dynamic systems and situations
of uncertainty. The essence of fuzzy systems is to transform a vector of input data into a
fuzzy set and apply fuzzy rules to inference, which is similar to human reasoning [10]. This
means that discrete inputs such as “0” and “1” can be evaluated with respect to intermediate
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states according to a rule that takes into account the influence of other variables or the
change history. Designing the fuzzy system requires including expert knowledge for the
fuzzy rules that are created to improve system performance. Knowledge can be drawn from
both expert experience and historical data, so the technique is often used in conjunction
with expert systems or artificial neural networks.

Fuzzy logic has been applied in instrumentation monitoring, enhancing the operator’s
perception and decision-making on the system’s condition and the potential maintenance
tasks [122].

4.4.2. Qualitative Trend Analysis (QTA)

This technique relies on series analysis by extracting qualitative features from observed
trends. In most cases, the sequence of identified shapes of measured signals reflects
significant events affecting process behavior. The technique involves segmenting the time
series into episodes so that the end of one is the beginning of the next. Each episode has a
qualitative state dependent on the derivative of the signal: increasing (+), decreasing (−)
or constant (0) [123]. An example of segmentation is shown in Figure 12. The analysis with
these methods consists of two steps:

• Trend extraction—a transformation of the data series into trend patterns. Here we
can use methods such as wavelet transform [124], neural networks [125] or hidden
Markov models [126,127].

• Trend analysis—based on the characteristics of the trends sequences, the qualitative
features are obtained to classify characteristic events.

Figure 12. Example of time series segmentation.

This group of methods is used to assist the operator in analyzing process data, au-
tomatically detecting fluctuations before a failure occurs [128], but can also be used to
monitor the effectiveness of a process control loop [129].

4.4.3. Statistical Methods

In fault-detection and -diagnosis tasks, quantitative statistical approaches focus on
pattern recognition based on features extracted via statistical methods. Widely used statisti-
cal fault-diagnosis techniques include principal component analysis (PCA), partial least
squares (PLS) auto-regression methods and Support Vector Machines (SVMs).

• PCA— thisis one of the most commonly used techniques; it transforms the input data
vector to reduce its dimensionality with minimal loss of information. The transfor-
mation provides fewer features to represent system characteristics, trends and states,
simplifying the analysis and further computations. PCA-based methods have been
applied recently in several power plants, improving the diagnostic potential and
reducing the number of false alarms [130–132].
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• PLS—this is a statistical method that finds relationships between features in a linear
regression model projected onto a new projection space. The PLS and PCA techniques
were used in detecting coal mill blockages [133]. PLS was also applied in the per-
formance monitoring of power plants. By using historical data from process control
systems, it is possible to estimate the efficiency of the gas turbine [134] or quality
measures of thermal efficiency and NOx and SOx emissions [135].

• SVM—this is a supervised learning technique based on statistical learning theory [136]
that can be applied to both classification and regression tasks. The method involves
finding a decision boundary in a space, using a transformation function (named kernel)
that maps examples between two classes with a maximum margin. It is widely used in
fault detection, typically for equipment in thermal power plants [137] or wind turbines
(with comparable accuracy to artificial neural networks) [138].

4.4.4. Stochastic Methods

The stochastic approach includes quantitative methods that create conditional prob-
abilistic models. This group comprises algorithms that diagnose and predict the states
(failure and failure-free) defined based on measurement indications and derived probabili-
ties. It generally uses Bayes’ theorem, where the conditional probabilities P of two different
events, A and B, are determined according to the equation:

P(A|B) = P(B|A) ∗ P(A)

P(B)

A Bayesian network is a representation of a system using a directed graph with nodes
representing random variables and states that reflect a cause-and-effect relationship for
predicted failures [139]. Despite being categorized as data-driven, stochastic algorithms
do not require an extensive and complete dataset. A representative subset is sufficient to
determine the probability distribution. The structures and algorithms are very transparent.
However, they often require qualitative work in the form of FMEA or RCA analyses to
create the necessary structures.

Methods based on Bayesian networks are often combined with other methods to
increase the quality of calculations. For example, these can be:

• Particle filters—this method uses a partial dataset to estimate the state of the system.
It is fed with random samples (particles) migrated into groups to estimate posterior
distribution [140]. The method can be used to model nonlinear system characteristics
with various types of noise.

• Kalman filter—this is a state estimator that operates on a dynamic system with a
Gaussian noise distribution. The state is estimated from a series of current observations
(could be incomplete) and the recent system state. It is a computationally efficient
algorithm, mainly when applied to linear systems. The Extended Kalman Filter is
successfully used with nonlinear input–output relationships.

• Markov models—Markov models represent a system where the individual states
reflect observable events or conditions. The predicted state depends on the sequence
of previous states. The extension of the models are Hidden Markov Models, where
the process is coded in terms of hidden chains, in case the model is not trivial to
describe. With the Markov models, we can model both spatial and temporal events.
The disadvantage of the method is the high computational complexity.

4.4.5. Artificial Neural Networks

Artificial neural networks (ANNs) [141] have many application scenarios, including
fault-detection and -diagnosis tasks. These types of networks can be categorized based on
the architecture adopted and the output goal designated. The method relies on machine
learning, which involves adjusting the parameters/weights of a neural network in a
sequential training process based on a large amount of historical data. Creating a model
does not require engaging an expert’s knowledge but instead needs having a substantial
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dataset and requires performing the learning process appropriately. The learning strategy is
categorized as supervised and unsupervised. Unsupervised learning adjusts the network to
the training data, e.g., the network is adjusted for a failure-free period and tracks deviations
from this state for production work, or time series are continuously analyzed looking
for deviations. Supervised learning requires labels to be specified in the training set and
usually needs more input in data pre-processing.

We can categorize the types of ANNs based on the architecture adopted, output goal
and learning method.

Considering the output values, the ANNs may perform the following tasks:

• Detection—when the output is a binary true/false value. They are used when detect-
ing specific events [142,143] or anomalies [144,145].

• Classification—the process categorizes the data in a way that reflects the relation-
ship in the training set by assigning the defined label (specific fault, state of health).
An example is the classification of a fault condition in a wind turbine [146].

• Regression—this generates a continuous value at the output, usually a residuum or a
measure of device health. The method has a wide range of applications, from trend
analysis to remaining useful life predictions.

• Clustering—this is a method that uses unsupervised learning, i.e., the training set
requires no labeling. On the basis of the training set, the data are grouped and/or
prioritized. The method is used in particular for detecting anomalies. For example,
Rakhshani et al. [147] group boiler health states in a power plant and use ANNs for
failure prediction.

The classic neural network architecture is a feed-forward network, such as MLP (multi-
layer perception) or RBF (radial basis function). The networks consist of an input layer,
optional hidden layers and an output layer. The input data can be both quantitative and
qualitative and the input dataset is often processed through a feature selection algorithm
(to extract the most relevant features) or dimensionality reduction (e.g., using principal
component analysis [148]). The feature selection process is properly solved for most
deep learning architectures, i.e., having more complex schema and hidden layers. An
example is the use of a Convolutional Neural Network (CNN) autonomously performing
feature engineering. Janssens et al. [149] obtained much better results with CNN than with
the random forest with manual feature engineering, showing time savings on data pre-
processing.

A frequently used model, especially in anomaly detection, is auto-encoder. The princi-
ple of the auto-encoder is to learn the system representation in an unsupervised way by
reconstructing the output of the input signal through lossy compression in the hidden val-
ues. The natural application of the network is signal denoising [150], which makes it useful
as a pre-processing step in many systems [151]. It can also be used to detect anomalies by
generating residuals from differences between the input and output vectors [152–156].

A noteworthy architecture in the area of fault detection and identification is proposed
in recurrent neural networks (RNN). A characteristic feature of the RNN is backward
connections from further layers, not present in the feed-forward networks. This type of
network is designed to analyze sequential data in time series. A sub-type of these types of
deep networks is a d long short-term memory (LSTM) that allows for long-term time series
analysis through the use of forget gates. The technique can be successfully used to detect
failures of rotating machinery such as bearings [157], motors [158] or wind turbines [159].

4.5. Signal-Based Models

Signal-based models investigate the characteristics of the measured signal and com-
pare them with baseline performance obtained for a healthy system or monitor its changes
over time. A simple scheme of signal-based failure detection and identification is shown
in Figure 13. Potential faults are reflected in the time series of the measured signals or
their spectrum, allowing both the anomaly/fault detection and classification of specific
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faults. The method is widely used in traditional monitoring and diagnostics, investigating
vibrations [160], acoustic or current signals [60,161].

Figure 13. Signal-based failure detection and identification.

Depending on the applied signal processing algorithms and extracted features, we can
distinguish the most representative groups of methods, such as time-domain, frequency-
domain and time-frequency domain. An extensive review of techniques in this category is
described in articles [9,162], while here we present a brief summary.

4.5.1. Time Domain (Temporal Analysis)

These methods operate directly on raw measured signals, exploring averages, trends,
min/max values, standard deviation, etc. Within this group, we find techniques related
to time series analysis such as CUSUM (Cumulative Sum), Exponentially Weighted Mov-
ing Average [163], auto-regressive fitting or root mean square error tracking [164]. This
approach aims to determine statistical indicators that allow comparing current readings
with a baseline condition.

The plenary gearbox fault-detection example uses the analysis of statistical indices
such as root mean square and sample entropy considering the signal selection stage [165].
The root mean square coefficient is often used in time-domain methods as a measure of
vibration energy, which directly bears the condition of a device.

The definite advantages of these methods are the ability to evaluate system degrada-
tion directly, ease of comparison and transparency. More complex tasks such as determining
the source of an anomaly or classifying a fault require other methods, e.g., based on fre-
quency analysis.

4.5.2. Frequency Domain

This is a popular group of diagnostic methods for rotating and electrical equipment.
They represent waveforms in the frequency domain and are based on identifying frequen-
cies at which typical defects occur. The signal spectrum can be obtained using the fast
Fourier transform, which decomposes the waveform into a sum of sinusoids of different
frequencies. Vibration is the most common measurement for bearings and gearboxes,
whereas, for motors, we can use methods of motor-current signature analysis (MCSA) [53].

An example of the use of spectrum analysis is the vibration analysis for gearbox
bearings [166], which allows tracking the progress of the degradation state; the results
obtained were correlated with the findings of periodic inspections.

In the case of electrical signal analysis, current frequency analysis and amplitude
demodulation has been used to detect bearing faults in wind turbines [167]. The alternative
use of the electric current analysis provides an additional economic advantage in the
absence of online vibration monitoring.

The main advantage of frequency analysis is its capability to locate the degraded
component of the system. However, the main drawback is its incapacity to identify the
origin of the degradation when the system is not stationary. This implies the use of time-
frequency analysis.



Sensors 2023, 23, 5970 23 of 47

4.5.3. Time-Frequency Domain

Time-frequency analysis provides feature extraction in both the temporal and spectral
domains. It uses transformation tools to decompose the signal and extract feature informa-
tion contained in non-stationary signals [168]. We can use the following techniques from
this group in the maintenance area:

• Short-time Fourier Transform (STFT): this provides information in both the time and
spectral domains by tracking frequency changes as a function of time. However,
the calculation of the Fourier transform over successive time intervals makes this
method computationally complex. Using the coefficients extracted via the STFT
method, Cocconcelli et al. [169] proposed a simple decision rule to detect bearing
faults.

• Wigner–Ville Distribution (WVD): this provides better time-frequency resolution at
a lower computational cost. The disadvantage of the method is the occurrence of
cross-term interference, which makes the interpretation of results difficult.

• Wavelet transforms (WTs): these provide powerful signal-processing methods, and
are also often used in fault detection [170,171]. WTs evolved from the classical contin-
uous wavelet transform (CWT) and discrete wavelet transform (DWT) approaches.
Advantages of using WTs include obtaining high adaptive resolution and handling
non-stationary signals. However, choosing the proper base function can sometimes be
a challenge.

• Hilbert–Huang transform (HHT): this consists in decomposing the signal according to
the empirical mode decomposition (EMD) methodology into so-called intrinsic mode
functions (IMFs) and then the Hilbert spectrum is obtained. HHT is the most adaptive
method for non-stationary and non-linear signals.

4.6. RUL—Remaining Useful Life

The prognostic health-monitoring methods described previously can detect failure
states and determine the health state of a device. An enhancement of the analysis carried
out with these methods is to predict the exact time of expected failure and the degradation
characteristics of machine health. The RUL (remaining useful life) indicator measures the
time from the current moment to the estimated overall loss of functionality due to a failure,
as shown in Figure 14.

Figure 14. Remaining useful life based on equipment health.

The RUL time can be estimated based on one or more health (or degradation) indexes
and/or investigating their variation over time. Many methods and algorithms used here
coincide with those used in diagnostics and fault detection. The main difference is that in
the RUL case, events are predicted in the future, which requires the adoption of certain
confidence intervals and uncertainties [172,173]. The quality of a given health index and
thus the applicability for the RUL task is determined by maintaining the following features
and properties [174,175]:
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• Monotonicity: this is the capability to maintain a constant increase or decrease in
the health index over successive cycles, e.g., progressive wear in the absence of
maintenance and continuous operation.

• Robustness: this determines the capability of the metric to make an appropriate
prediction given the existence of noise and the degree of uncertainty in the results.
Robustness results in a smoothed RUL characteristic.

• Trendability: this measures the correlation between the degradation rate and time.
• Identifiability: this enables classification of health status or failure modes on the basis

of health index characteristics.
• Consistency: this is a ratio of the consistency of health indexes obtained with different

methods.

Calculating the estimated remaining useful life requires comprehensive data on the
current condition of the device and classification of potential failure modes. By correctly
identifying the event that initiates a particular failure, we can determine the remaining
useful life by extrapolating the degree of degradation and calculating the time when the
threshold is exceeded. Alternatively, we can use historical records from the device and
take into account the time decay of the health index for the “run to failure” operation.
Thus, the most straightforward approach assumes the creation of degradation models for
individual failure modes, identification of the current health index and/or failure modes,
estimation of the remaining useful life by compiling information about the current state in
the context of a probability density function for specific degradation cycles.

The classification of techniques proposed in the works of Sikorska et al. [8] and
Lei et al. [174] includes the following approaches:

• Knowledge-based: Methods based on domain expertise, historical datasets and com-
puterization that allows coding of knowledge, e.g., in the form of algorithms or rules
in expert systems. These types of systems are easy to understand and design. The lim-
itations are the functionalities determined by the knowledge of experts and the effort
put into the design of the system.

• Statistical and stochastic methods: Statistical methods rely on analyzing current and
past observations to predict future states. Methods are most often based on time series
analysis and do not require large amounts of historical data. Distinctive methods used
in this area include:

– Autoregressive models allow estimating a parameter correlated with the RUL
through time series analysis. The models used assume monotonicity and linearity
of the estimated value concerning past data. The techniques used in this area
are mostly based on moving average: ARMA (autoregressive–moving average),
ARIMA (sutoregressive integrated moving average), WMA (weighted moving
average) or ARMAX (autoregressive moving average with ecogenous input).

– Markov models: these assume that machine degradation processes are contained
in finite state space. By defining the probabilities connecting the different states,
we can estimate the probability of predicted events such as a failure. The pre-
diction values depend on the sequence of the last states in the analyzed time
series.

– Proportional hazard models (PHMs): these rely on the survival model proposed
by Cox [176]. The PHM takes into account the influence of many factors on
the estimated outcome. The main components of the factors of hazard function
λ(t) are the following: baseline hazard function λ0, which describes the degree
of degradation in subsequent cycles; and covariate function exp(β× X), which
describes the impact (β) on the hazard rate of the occurrence of conditional events
(X):

λ(t) = λ0(t)× exp(β1X1 + β1X2 + . . . + βnXn)

• Machine learning (ML): Machine learning-based methods mostly require working
with a large set of historical data, where input from a data engineer is needed more
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than a technical expert. With these techniques, it is possible to compute RUL values
directly from measurements, but the final result is strongly dependent on the chosen
architecture and selected test data. The weakness of the approaches here is the lack of
insight into the mechanism of operation of the “black box model”. Methods used in
this group include:

– Artificial neural networks (ANNs)—these are often employed for RUL estima-
tion tasks because of their ability to adapt, handle nonlinearity and accurately
approximate target functions and parameters [177]. ANNs mostly omit the pro-
cess of modeling machine degradation by finding the valid relationship between
machine condition and time. This approach is often applied to gearboxes [178],
bearings [179] and remaining rotating machinery.

– Support Vector Machine (SVM)- and Support Vector Regression (SVR)-based
methods—these can be applied to the RUL task by using both regression [180,181]
and classification [182,183]. They are effective for prediction tasks taking into
account the non-linearity of estimated characteristics. They require the use of a
suitable representative training set for the created model, but the relatively high
computational complexity of the algorithm limits the size of the training set. This
group of methods is often used in combination with other techniques to obtain
optimal results [184] such as principal component analysis (PCA) for feature
reduction [185]; regression and thresholding [186], survival analysis [187,188],
hidden markov models (HMMs) [189] or similarity comparison [190].

• Physics of failure: This technique covers computing the remaining useful life of equip-
ment based on a mathematical process or phenomenon model. It requires a high
level of expertise to create the model and calculate the degradation characteristics.
Calculations treat material properties and stress/load levels to calculate crack growth,
deformations, wear, corrosion and other undesirable events [191]. This type of ap-
proach usually provides excellent and understandable results. Due to its complexity,
it is used in specific cases (i.e., for a particular phenomenon, e.g., boiler wall thickness,
progressive corrosion). A popular trend also in the area of predictive maintenance is
the development of digital duplicate devices or entire installations called digital twins.
For example, Aivaliotis et al. [192] presented a methodology of device simulation
based on empirical data and calculations of the remaining useful life.

4.7. Summary and Comparison of Approaches Used in Prognostic Health Monitoring

The broad spectrum of possible methods used in predictive maintenance tasks makes it
difficult to choose the proper one for the particular problem or monitored equipment. Here
we try to summarize the described groups of methods for prognostic health monitoring.
Table 2 shows use cases and different groups of methods used for prognostic health
monitoring. The features and characteristics of the solutions are presented in terms of
required resources for implementation and possible use cases. The table uses labels to
indicate the strong occurrence of a feature (X), the absence or contradiction (×) and the
occurrence of a feature in certain cases or when it is not dominant (-).

In terms of use cases, the following methods were considered for:

• Fault detection—identifying sensor and device failures, including degraded perfor-
mance states;

• Anomaly detection or undefined faults at the design stage;
• Fault classification—the capability to diagnose a specific failure mode and to detect

multiple defects simultaneously;
• Root cause analysis—the capability to find root causes and analyze failures;
• Remaining useful life prediction—the capability to detect faults in the future over a

long-term time horizon.

The resource requirements of the methods considered include:
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• Expert knowledge—involvement of domain experts, models, documentation related
to the specifics of the process;

• Data science—required knowledge of data processing, statistics and model design,
e.g., deep learning;

• Large dataset—the need of having large sets of historical data to train the model;
• Transparency—clarity of model operation and analysis of results.

The choice of the method depends on the specificity of the process. The advantages and
disadvantages of the individual methods, together with examples of their applications, are
presented in Table 3. Physical models offer the most accurate results, while fuzzy systems,
particle and Kalman filters and stochastic methods deal well with noise. Methods based
on ANNs and Bayesian networks are used in the case of non-linear data dependencies.
Methods that rely on residuum analysis from the analytic redundancy group and ANNs
have the best inference for detecting previously undefined faults.

Expert knowledge is especially needed in the case of qualitative methods based on
expert systems or physics of failure and in the case of methods that require the design
of relations or hierarchization of device states, e.g., fault trees, Markov models, Bayesian
networks.

Both a large dataset and data science capabilities are required when using ANNs and
stochastic methods (unless there is a representative sample of data).

Table 2. Use cases for prognostic health-monitoring methods. The symbols mean: The strong
occurrence of a feature (X), the absence or contradiction (×) and the occurrence of a feature in certain
cases or when it is not dominant (−).
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Fault detection X X X X X X X X
Anomaly/new fault detection × × × X × X × X

Fault classification X X X × X − X X
Root cause analysis X − − − − − X −

Remaining useful life × X X − − X X X
Expert knowledge needed X X X × × × − ×

Data science/statistic knowledge needed × × × × − X X X
Large dataset needed × × − − − − X X

Transparency X X X − X − X ×

4.8. Prescription

Prescriptive maintenance exhibits the highest degree of analytic maturity of the or-
ganization and thus the complexity of the systems. The provided results of prescriptive
maintenance are recommendations (prescripts) that guide decisions to the best path using
advanced computation and simulation. Prescriptive maintenance encompasses a range of
tools and methods that integrate available data and information to optimize a process by
providing recommendations or automating the decision process entirely. Data acquisition
and integration, optimization and user interaction are critical issues and challenges in this
group of maintenance methods.

4.8.1. Data Acquisition and Integration

Modern technologies from the areas of Big Data, Industrial Internet of Things (IIoT)
or cloud/fog computing extend the current capabilities of the systems in place. Data
can be collected in dedicated repositories to analyze and integrate both production data
from technological systems, such as SCADA or DCS and the data from enterprise asset-
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management or -maintenance systems. Integration and development of systems can occur
in the following directions [193]:

• Horizontally—expanding the scope of current areas, analyzing more extensive amounts
of data, including Big Data and sharing knowledge in the organization. In particular,
it focuses on optimizing the entire supply chain, taking into account customer and
supplier data.

• Vertically—combining data from different internal segments to gain knowledge,
e.g., machine-acquired data from sensors and technological systems with human-
made data from company relational systems.

Table 3. Advantages and disadvantages of specific prognostic and health-management techniques.

Pros. Cons. Application

Bayesian
Network

easy to understand and transparent
encodes expert knowledge
used for both RUL and RCA pur-
poses
handles uncertainty

complex preparation process
both expert and analytical
knowledge required
finds only known/defined
cases

fault detection [158]
diagnosis [194,195]
scheduling [196]
RUL [197,198]

SVM good modeling of non-linear and lin-
ear relationships
used for both regression and classi-
fication
does not require a large learning set

lack of transparency
data scientist’s knowledge
needed
with large datasets, long com-
putation times

fault detection [137,138,185]
condition monitoring [199,200]

PCA handles multidimensional datasets
works well with other techniques
generalizes the data

loss of some information
features lose linking to spe-
cific components

fault detection [131,132,201,
202]

Expert
system

transparent and easy to understand
good interaction with domain
knowledge
no need for a physical process
model

advanced models require a
strong effort
works only with defined
cases

fault detection, planning [203]
fault detection [204–206]

Fuzzy logic extends the capabilities of the expert
system to time series analysis
deals with input noise and uncer-
tainty

requires knowledge to apply
fuzzy rules

fault detection [122]
diagnostics [207]

Physical
models

provide precise results for a specific
well-known case/process
algorithms understandable for in-
dustry experts

require considerable model-
ing effort and extensive do-
main knowledge

RUL [208]
condition monitoring [209]

ANNs provide the capability to model com-
plex, non-linear relationships
no domain knowledge required
can be used in conjunction with
other techniques
provide direct result output

“black box” results may be
non-transparent
prone to overfitting
difficult in determining the
uncertainty of results
require a large training set

RUL [178,179]

ARIMA computationally efficient
does not require large datasets
requires no expert knowledge

short term forecast only
sensitive to noise and process
variations

RUL [210–214]

HMMs allow modeling of both time series
and stationary data
handle incomplete datasets

computationally complex
do not detect previously un-
defined events

fault detection [126,127]
RUL [215,216]
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4.8.2. Simulation and Optimization

The optimization task in the industry often goes beyond the trivial task of solving a
linear objective function. The analyzed problems and physical behavior are often expressed
by nonlinear characteristics with a high degree of uncertainty.

An essential issue while designing a solution for optimization tasks is to define
the optimization objective correctly. In the industry, the objective may be to increase
productivity, energy efficiency, increase the remaining useful life or improve scheduling. It
is not always possible to strike a balance between the various objectives, so it is important
to understand and define the goal according to the priorities.

The computational complexity and the requirement for online access often require
heuristic algorithms to achieve an acceptable solution in a given time. Examples of methods
used here, in between deterministic mathematical modeling, include the fields of Artificial
Intelligence or evolutionary algorithms:

• Genetic algorithms (GAs): these rely on the mechanism of natural selection, where the
genes of the strongest individuals (chromosomes) are passed on to the next generation,
allowing the species to survive. The optimization process involves creating a popula-
tion of individuals and encoding the variables as genes. Each individual represents
some way of solving the problem, as evaluated by the fittest function. Appropriate
genes are selected in subsequent iterations simulating crossover to bring the solution
closer to the optimal value. This optimization method has a wide range of applications.
It is very often applied to feature selection and optimization tasks as one of the steps
in the data-mining process. Toma et al. [217] presented an example of using GA in
feature selection in their algorithm for detecting bearing failure in an engine. More
complex applications can be found in the area of distribution grids, with solutions for
demand management in smart grids [218] and power flow optimization [219].

• Particle swarm optimization (PSO) algorithms: these are based on simulating the
behavior of a flock of birds or a school of fish. Each individual (bird or fish) represents
a solution. Unlike the genetic algorithm, traits are not crossed but evolve by following
the best candidate. The algorithm is applied in complex optimization and prediction
tasks and is often used in the area of renewable energy sources. Jordehi [220] engages
the algorithm for the parameter estimation of photovoltaic modules, while in the
article [221] concerning wind farms, PSO is used for load flow prediction.

• Ant colony methods (another group inspired by nature): these mimic the behavior of
ants that can find the shortest path between the anthill and food by communicating
with each other via chemical substances. The algorithm is particularly applicable to
scheduling optimization [222,223].

• Dynamic programming (DP): this involves dividing the problem into smaller parts
and looking for the overall solution by assembling the results for sub-problems.
The approaches used include top-bottom, most often using recursion and bottom-up,
solving sub-problems and aggregating, e.g., in an n-dimensional table. This group
of methods is often used in computationally complex models with many uncertain
variables (e.g., variable external factors such as weather) for optimizing the operation
and maintenance of energy sources [224,225].

• Reinforcement learning: this is one of the main trends in machine learning alongside
supervised and unsupervised methods. Unlike supervised methods, modeling does
not involve batch computation of the relationship between output and input. Learning
involves continuous interaction of the model (agent) with the dynamic environment
in real time and optimizing the process using a defined reward function. Recent
articles mention the advantage of real-time process optimization for the chemical
industry [226] and water-distribution system [227].

4.8.3. Digital Twin

The digital twin concept often appears in works related to Industry 4.0. The digital
twin is an advanced digital model reflecting a particular physical machine, system or plant
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and enables one to perform advanced calculations and simulations, often combining data-
driven and model-based techniques. Initially, the concept was used in aeronautics and
aircraft field [228,229], but with time it was adapted to other industries. According to
Grieves’ definition [230], a digital twin contains three components: physical components
in the real world, virtual models in a virtual space and connections between these virtual
and real entities. In practice, this means that digital twins can operate on real-time data,
e.g., from sensors or control systems and connect them with historical data to be analyzed in
virtual models. The virtual model gives feedback based on simulations and optimizations
to the physical device (in the form of recommendations or control instructions). The archi-
tecture of a digital twin typical for predictive maintenance and production optimization
tasks is shown in Figure 15.

Digital twin through simulation-based optimization is applied in many areas. Power
industry applications include areas related to:

• Fault detection and predictive maintenance—in the maintenance area, we can use
digital twin for health prediction and remaining useful life [192,231].

• Performance optimization—this supports technical and economic modeling of coal-
fired power plant units and investigates cost-effective solutions to improve their
thermal efficiency and operational performance [232].

• Education and training—modern solutions enable one to perform training in simulated
conditions, allowing one to imitate situations of disasters and breakdowns while
maintaining safety for employees [233].

• Energy consumption optimization—digital twin implements reorganization of energy
consumption patterns to avoid peak demand while reducing energy costs [234].

Figure 15. Sample diagram of digital twin.

5. Other Technology Enablers

Apart from the approaches mentioned in the previous section, other technological
approaches, including Industrial Internet of Things, Big Data, Cloud and Edge computing,
augmented reality, radio-frequency identification and 3D printing, accelerate progress in
the maintenance domain. This section briefly explains them.

5.1. Industry 4.0 Concepts

Industry 4.0 is a term associated with applying modern Information and communi-
cations technologies (ICTs) in industry, unlocking new opportunities focused on device
interoperability, Artificial Intelligence (AI) and digitization [235,236]. The primary drivers
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of the process are the reduction of costs for sensors, communication devices, data storage
and the continued development of technologies based on the Internet of Things, Big Data
and Artificial Intelligence.

Concepts strongly related to the development of Industry 4.0 are as in Figure 16:

Figure 16. Main pillars of Industry 4.0.

• Big Data [237]: this means large volumes of structured, semi-structured and un-
structured data that require specialized technologies to enable efficient storage, fast
processing and analysis, to obtain higher business value;

• Augmented reality [238]: this refers to technology that provides access to information,
communication and visualization through dedicated glasses;

• Autonomous robots [239]: this relates to using robotics and Artificial Intelligence
to create machines/devices that communicate with other robots or humans while
performing specific tasks;

• Three-dimensional printing [240]: this provides the ability to create physical objects,
parts and prototypes from a virtual design;

• Simulation [241]: this provides the ability to predict future conditions and outcomes
for various scenarios within the equipment, installations and even the entire power
plant;

• Systems integration [242]: this means linking data from multiple plant-level systems
and external sources;

• Cloud computing [243]: this relates to scalable and on-demand data processing and
analysis using a network of interconnected servers that give a satisfactory perfor-
mance;

• (Industrial) Internet of Things [244]: this refers to technologies that provide communi-
cation and data exchange between machines and people in an industrial environment;

• Cyber-security [245]: this points to technologies protecting the system against unau-
thorized access to data and taking control over the device.

These components enhance operability through the capability to remotely control,
determine equipment health, predict failures, proactively maintain and deploy real-time
applications, leading the power plant toward a “smart” factory. A summary of technologies
related to Industry 4.0 is presented in Table 4.
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Table 4. Industry 4.0-related technologies and application areas.

Enhances Related Technologies Refs.

IIoT Data acquisition
New data streams
Connectivity
Interoperability

IoT Gateway, IoT hub,
CoAP, MQTT, XMPP

[246,247]

Big Data Data storage
Stream processing
Unstructured data

Hadoop, Spark, Kafka,
splunk, NoSQL

[248–250]

Cloud Computing Data analysis
Applications
Infrastructure

Edge/fog computing, Ser-
vice models (IaaS, PaaS,
SaaS)

[251–253]

Augmented reality Inspections
Communication
Mobility

Smart glasses, Natural Lan-
guage Processing (NLP),
Geolocalization, Gesture
recognition

[254,255]

RFID Inspection
Inventory
Data collection

Active/passive tags, Bulk
reading

[256–258]

3D Printing Designing
Replacements

Computer-aided design,
3D scanning

[259–262]

Digital Twin Simulation
Virtualization
Optimization

Machine learning, simula-
tion software (e.g., ANSYS)

[263,264]

5.2. Industrial Internet of Things

Rapidly evolving communication technologies enable easier access, integration and in-
dustrial data analysis. This evolution has a particular impact on predictive maintenance
because it allows the data from sensors or actuators to be used for many more tasks than
initially intended. The Industrial Internet of Things provides a bridge between a physical
factory (consisting of sensors, measurements and events) and a virtual collection of models,
machine learning and Artificial Intelligence. The combination of data fusion and commu-
nication enables applications such as the integration and collaboration of Autonomous
Guided Vehicles with the production environment [265,266].

Communication protocols such as Message Queuing Telemetry Transport (MQTT),
Constrained Application Protocol (CoAP) or OPC Unified Architecture (OPC UA) ensure
secure connections in industrial environments and various types of communication such as
machine to machine (M2M), client-server. The aspect of ensuring security in IoT solutions
is particularly important in the energy area. Many works are devoted to applying solutions
to ensure cyber security by creating dedicated architectures of IoT systems and using
deep learning techniques for detecting threats [267]. An example of notable solution use
RF (radio-frequency) fingerprinting techniques to identify and legitimize devices on the
network [268].

5.3. Big Data

Big Data is generally defined as data in large volumes, requiring special technologies
to handle them. Collecting, storing and analyzing data in this form exceeds the capabilities
of traditional technologies such as relational databases. Big data properties are most often
described in terms of multiple ”Vs”:

• Volume: this refers to the massive amount of data. In the industrial environment, it con-
cerns machine-generated data from devices, sensors or security systems. The enhanced
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capabilities offered by the IoT make it even more important to develop technologies
that can manage large volumes of data.

• Velocity: this means fast data generation. It is most often associated with the ability to
process streaming data in real time.

• Variety: this refers to data types that can be processed. It does not limit itself to work
only on structured tabular datasets but enables processing either structured (numbers,
dates, strings), semi-structured (graphs, trees, XMLs) or unstructured (logs, videos,
images) datasets.

• Value: this refers to the value of the information potential that results from applying
algorithms and analysis on datasets.

• Veracity: this determines the reliability of the information by analyzing its source and
associated metadata. An example of an indicator of the relevance of information could
be the last update time.

Such data appear in many areas of industry and maintenance. With the help of
dedicated data repositories or cloud platforms, we can collect, process, transform and query
Big Data. Modern systems not only allow for data warehousing [269] or data stream
analysis [270] but enable assessment of data quality and approximate information searching
in the absence of parts of the dataset [271,272].

5.4. Cloud/Edge Computing

Current industrial systems adopt new architectures to provide high scalability and
computing power, low latency or security as needed [273]. A wide range of applications
allows for both data stream analysis and batch processing of large historical data. However,
we can perform these operations in various computing models, including:

• Edge computing [274]—this allows for data processing and computations close to the
device (for example, performing the Wavelet transform, the Fast Fourier transform
or data merging and aggregation [266]). This approach handles data velocity but has
limited storage, passing collected and computed data for further processing.

• Fog computing [275]—this moves data processing from the device itself to fog nodes
in the network. The approach also provides lower latency computing on a slightly
larger scale.

• Cloud computing [276]—this employs cloud technologies and IoT hubs (for example,
Azure IoT, AWS IoT), providing a highly scalable environment and computing power.
It includes services for end-users that perform analytical and monitoring tasks, making
security issues and latency a bit more complicated.

Due to the commercial nature of the cloud services provided, an important issue is the
reasonable use of resources in pricing schemes. A noteworthy solution uses heuristic-based
polynomial time policies to optimize resources to be reserved [277]. A brief comparison of
the edge and cloud approaches is shown in Table 5.

Table 5. Comparison of cloud and edge computing. Explanation of symbols: X- enough, XX- good,
XXX- very good.

Cloud Computing Edge Computing

Access wireless wireless
Availability XXX X

Capacity XXX X
Architecture centralized distributed

Latency X XXX
Scalability XXX X
Security X XXX
Mobility XX XXX
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5.5. Augmented Reality

Augmented reality (AR) is a technology that allows combining real images with virtual
objects, giving the recipient a larger amount of information and introducing the possibility
of interaction. AR systems provide promising results in various maintenance areas, such as
training, inspection or repairing processes. Examples of applications may include:

• Training. This concerns applications of virtual and augmented reality in crew training.
A trained employee moves in the designed 3D model of the environment perform-
ing subsequent procedures in accordance with the training tasks. It is beneficial in
industries with a serious risk of exposure to life-threatening situations.

• Data access. AR technology can provide an interface to existing systems such as
document management, Computerised Maintenance Management System (CMMS)
or work order management. Many practical applications relate to the presentation of
instructions and device documentation in electronic form. This speeds up operation
time by avoiding printed documents and searching for information, especially in
complex installations such as a power plant.

• Inspection support. Through integration with process data, processing systems view
sensor data and device status online. Mobility also allows collecting information in a
different way than writing it down in a notebook—by taking pictures or recording
sound. Many solutions are based on online collaboration between the technician and
the remote expert. In the case of complex repair work, the expert can see the same as
the technician can see on-site, give instructions and display documentation and other
materials.

5.6. Radio-Frequency Identification (RFID)

Radio-frequency identification (RFID) has long been used in asset-maintenance and
-management tasks in many industries. The technology is based on tagging objects with
RFID tags and wireless reading of the information stored in the tags. The idea of the
operation is similar to barcodes, but the undoubted advantage of RFID is the ability to read
data from a long distance and collectively. For preventive inspections, work can be done
faster and with more ergonomics when automated data collection replaces manual sheet
filling [256]. The unambiguous identification of devices allows for better data quality and
improves inventory processes.

5.7. 3D Printing

One of the emerging technologies associated with Industry 4.0 is 3D printing (also
called additive manufacturing). The technology allows building a physical object or part
using a 3D printer and a virtual design created in CAD (Computer-Aided Design) software.
The technology can find promising applications for designing and prototyping in modern
manufacturing, also in the healthcare and medical industry [278–280]. In the field of
maintenance, we can use new possibilities to recreate damaged parts [259,260]. The ability
to manufacture any component reduces inventory costs and procurement time, giving
new perspectives to support cost-effective maintenance strategies [261,262]. A summary of
technologies related to Industry 4.0 is presented in Table 4.

6. Summary and Discussion

This section summarizes the methods and applications described and compares them
with the specifics of the work and the requirements of the energy industry. Finally, the chal-
lenges and realities section identifies areas for potential research to enable better application
of the results in practice.

6.1. State of the Art

The literature review confirms that many solutions, both in academic papers and
real-world applications, can support the maintenance process. Despite its considerable
development potential, the energy industry cautiously benefits from new technologies,
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applying new solutions in a narrow range. Corrective and preventive strategies are still
the main approaches used in the energy sector. Complex solutions, including advanced
technologies such as Big Data, predictive maintenance, are usually offered as an integral
part of the system or an additional service by the control system provider. In the area of
predictive maintenance, examples include the Predix™platform [281] offered by General
Electric or the ABB Ability™ [282] offered by ABB. In the area of production optimization,
VALMET offers a solution to improve processes, for example, combustion, fuel feeding [283].
Why are proven solutions in other industries and methods that achieve good results in
laboratories not applicable in the real world?

6.2. Energy Industry Specificity

In general, power plants in operation have equipment designed to operate for several
years, including control systems, so integration with new solutions is a technological barrier
if not considered at the design stage. Changes and implementations considered for invest-
ment must present an appropriate business case and the return on investment factor. In the
energy sector, high availability has for years been achieved through the appropriate design
of production and logistics processes, e.g., duplication of critical equipment functions
(switching to a backup device in case of failure) or storage of components such as motors or
pumps to quickly replace a defective device. The profits from smart manufacturing appear
if the adopted approach will allow limiting traditional preventive actions, which, however,
is related to taking a certain risk.

In the case of indirect influence on profits, the share of the implemented solution
is also debatable. In the case of performance improvement, it is easy to make a mistake
or statistical fallacy; e.g., what influence does the predictive maintenance system, crew
training or overhaul have on the bottom line?

6.3. Challenges and Realities

Technological progress is opening up new opportunities in the industry to use data
analytics to support manufacturing processes, thus complementing the benefits of existing
expert systems and data repositories. However, many obstacles prevent analytical solutions
from being developed or experiments operating in laboratory environments from being
applied in production environments. One of the challenges is to meet the requirements of
the end user, taking into account the specific working conditions in the power industry.
The solutions should be carefully designed in terms of who will be using them. Systems
supporting operational work should consider information noise and the stressful nature
of operators’ work. In contrast, solutions that help in planning repair works should be
appropriately integrated with enterprise systems visualizing financial implications and
possible risks. Effective implementation of the system supporting the work of the operator
working in the open loop architecture (i.e., giving prompts in real time) requires paying
special attention to elements such as visualization or human–machine interface. Another
field for researchers is to take care of the problem of uncertainty in decision support systems.
This is of particular importance when decisions are made under stressful conditions and
require compliance with applicable procedures.

A significant barrier encountered in the energy industry is the alignment of systems
with internal safety and regulatory requirements. Power plants are often part of critical
infrastructure, which brings additional requirements in the areas of cyber security, physical
security and providing operational continuity. Special attention is being paid to nuclear
power plants because of the environmental aspects of possible incidents. This increases the
cost of implementation and infrastructure (e.g., may require on-premise instead of cloud
computing), requires logical or physical separation of network environments and hardens
development options. On the other hand, the requirements to ensure cyber-security and
physical security of power plant facilities open up opportunities to develop research and
solutions towards the use of Industry 4.0 technologies such as the Internet of Things or
Artificial Intelligence to provide better protection against threats.
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The power industry is the area where stability and security are prioritized over the
implementation of innovations and where continuous improvement of competitive advan-
tage is not required. Innovative solution implementations should engage branch engineers
both to align solutions with the industry properly and, most importantly, to have a good
understanding of data-driven and Industry 4.0 methods.

Initiation of large-scale change may be difficult, may trigger the implementation of
new technologies and may include the following: aging workforce or energy transition
needs, meeting environmental requirements.

7. Conclusions

Modern technologies that enable the acquisition, integration and analysis of new
industrial data sources provide new possibilities for supporting maintenance processes.
A particularly wide field for application is predictive maintenance, where classic methods
requiring specialized equipment and expert analysis are replaced by Artificial Intelligence
inference based on existing metering, widespread digitization allowing online condition
monitoring of equipment and feedback both in the form of operator interaction and a fully
automated prescriptive system. The proposed classification of methods with a description
of properties and required resources gives an overview of potential solutions for each
use case. The presented methods allow implementing tasks related to fault detection and
identification depending on the potential of possessed expert knowledge, data resources,
the quality of data and equipment metering. The main contribution of this part of the article
to this issue is to the present state of the art for considering the transformation of existing
processes and routines in the area of asset management. The presented applications and use
case approaches can be utilized in similar solutions or encourage the initiation of research
and development tasks or proof of concept projects.

The combination of inference from process data analysis with corporate data from the
areas of finance and asset management allows for optimal selection of the maintenance
strategy and supervision of its implementation. The classic approaches presented in the
article can help innovators and data scientists find new directions to fill the technology gap
and better align their research with the requirements of interested stakeholders.

Other enablers associated with the development of technologies on the verge of
Industry 4.0, such as the Internet of Things, RFID, augmented reality, are also successfully
applied in the maintenance area, providing additional support during inspections and
automating previously manual tasks.

Summarizing, the article is an extensive resource to motivate practitioners to learn
sophisticated analysis methods and to point researchers to potential directions for further
development.
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