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Abstract: Tunnel linings require routine inspection as they have a big impact on a tunnel’s safety and
longevity. In this study, the convolutional neural network was utilized to develop the MFF-YOLO
model. To improve feature learning efficiency, a multi-scale feature fusion network was constructed
within the neck network. Additionally, a reweighted screening method was devised at the prediction
stage to address the problem of duplicate detection frames. Moreover, the loss function was adjusted
to maximize the effectiveness of model training and improve its overall performance. The results
show that the model has a recall and accuracy that are 7.1% and 6.0% greater than those of the
YOLOv5 model, reaching 89.5% and 89.4%, respectively, as well as the ability to reliably identify
targets that the previous model error detection and miss detection. The MFF-YOLO model improves
tunnel lining detection performance generally.

Keywords: deep learning; target detection; multiscale; feature fusion

1. Introduction

With China’s recent economic growth, the tunnel sector has also entered a golden
age of development, and tunnel building has emerged as one of the crucial elements of
China’s infrastructure development. However, due to geological factors, poor construction
practices, and natural calamities, tunnels may have concealed flaws including uncompacted,
hollow, and water filling that gravely jeopardize their service life [1].

To identify and address issues with the tunnels as soon as they arise, regular inspec-
tion and maintenance are required. However, conventional methods for finding tunnel
defects, such as visual inspection and acoustic inspection, have low detection efficiencies
and high result error. Given the quick advancement of deep learning technologies in the
detection of targets, such as damage detection and localization of bridge deck pavement [2],
crack detection in concrete bridges [3,4], steel surface flaw detection [5,6], and wheel de-
fect detection [7] across a variety of disciplines in society, science, and engineering, deep
learning-based tunnel flaw detection has recently gained the attention of both domestic
and international academics. For example, Sjölander et al. [8] summarized the research
on the application of optical detection technology and autonomous evaluation methods
based on machine learning technology in tunnel lining inspection, as well as the research
on digital cameras, laser scanning, fiber optic sensors, and other methods; they also pro-
posed issues with traditional tunnel inspection methods, such as their low efficiency. Deep
learning technology was used by Maeda et al. [9] to address the issue of data acquisition
and traditional data enhancement techniques like rotation, translation, and flip that may
alter the semantic information of the image and cause other drawbacks, using methods
like selective image cropping and stitching to address the issue of the insufficient data set;
however, the model detection effect did not improve. With the primary objective of resolv-
ing the data signal-to-noise ratio and multi-path interference problems to offer assurances
for data feature extraction, Lei et al. [10] suggested an air-coupled geo-radar detection
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technique provided by F-K filtering and BP migration. A strong technical guarantee for
single defect detection was provided by the GPR forward simulation model developed
by Wu et al. [11], but since tunnel defects are frequently made up of hollow, water-filling,
and non-compactness, the model’s generalization ability is not ideal. Ali et al. [12], using
Faster-RCNN and YOLOv3 networks as well as conventional detection techniques, exam-
ined the performance of concrete structures; the findings revealed that the convolutional
neural network-based detection strategy had greater detection accuracy and localization
precision. Before training the model with an enhanced U-Net network, Wang et al. [13] first
performed picture preprocessing. Smaller and more subtle faults might be detected by the
model, but the model’s efficiency was low, and its real-time performance could not keep
up with demand. Li et al. [14] used U-Net and alternating update convolutional neural
networks for automatic tunnel defect detection: first, the image is segmented and predicted
to extract defect features; next, alternating update convolutional neural networks are used
for classification and localization; however, the model is more complex and cannot satisfy
the tunnel defect detection engineering requirements.

Although several researchers have developed numerous techniques for finding tunnel
defects, these techniques still have flaws and disadvantages, such as low detection accuracy
and slow detection speeds. Therefore, we are working on the relevant research and attempt-
ing to address the current shortcomings to further enhance the effectiveness and accuracy of
tunnel defect detection. To increase the accuracy and usefulness of tunnel defect detection,
as well as to better support and guarantee tunnel construction and maintenance operations,
we will keep researching new methods and approaches. Previous studies by our group
have included improvements to SGD networks and residual modules [15], the introduction
of adversarial networks for data expansion problems [16], and the use of neural network
fusion techniques to improve the generalization performance of the model.

This study addresses the current issues with tunnel defect detection in two ways:
first, in terms of data acquisition, the most recent radar detection equipment’s working
process is shown in Figure 1, which has the qualities of high accuracy and high resolution
and can precisely identify the defects within the depth of 10 m underground through the
on-site survey; second, in terms of data processing, a detection model based on multi-scale
feature fusion technology is proposed in this study, which uses the MFF-YOLO method to
detect defects.
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(2) Designing the Re-weighted Non-Maximum Suppression (RWNMS) to address the
issue of redundancy and miss detection of detection frames.

(3) Improving the loss function by integrating the aspect ratio and Euclidean distance
factors to improve the model training efficiency and detection accuracy.

The remainder of the text is organized as follows: Section 2 discusses the work on
multiscale feature fusion and convolutional neural networks; Section 3 describes the tech-
nological strategies for improvement; the data set and assessment metrics are introduced
in Section 4; tests are carried out in Section 5 to confirm the improved model performance;
and the work is reviewed and expected in Section 6.

2. Related Work
2.1. Convolutional Neural Network

CNN [17] is a deep learning model consisting of convolutional, pooling, and fully
connected layers, etc., for implementing tasks such as image classification, target detection,
and image segmentation. One of the target detection methods can be divided into two-stage
and single-stage, and the difference between the two algorithms lies in the way the gen-
eration frame is combined with the candidate frame. In a two-stage algorithm, candidate
regions are first generated and then the CNN applies to these candidate regions for classifi-
cation. For example, the R-CNN [18–22] family of algorithms has high detection accuracy
but is computationally intensive and inefficient. In contrast, single-stage algorithms such
as the SSD [23–27] and YOLO [28–35] series can achieve significant detection speedups.
Single-stage target detection algorithms have become preferred in industrial applications
due to their ability to directly output information about the position and detection frame of
the target to be detected. In conclusion, with the continuous development of deep learning
techniques, target detection algorithms are also constantly being advanced and optimized,
with different algorithms being suitable for different application scenarios and needs.

2.2. Multi-Scale Feature Fusion

Multi-scale feature fusion is a technique for combining feature maps at different scales
to improve the performance of computer vision tasks. Common approaches include cascade
structures [36–38], pyramid networks [39–42] and attention mechanisms [43–45]. Cascade
structures link feature maps at different scales together to form cascade networks, which
can be effective in improving performance; pyramid networks are a hierarchical approach to
image processing that extracts features at different scales and combines them; and attention
mechanisms can make the network focus more on important features by weighting feature
maps at different scales. All these methods aim to improve the performance of computer
vision tasks by using feature maps at different scales, thus improving the accuracy and
robustness of the task.

3. Methods

The MFF-YOLO model improvement approach is described in this section, and
Figure 2 illustrates the structural characteristics of the MFF-YOLO model. The model
improvement consists of two main components: the WCFPN structure of the neck network,
where the blue module represents the Weighted Cross Connections built by weighting
and the red line portion reflects the network across connection idea; and the RWNMS
mechanism at the predicted end, where the EIOU loss function is used in the screening
process of the prediction frame and the weights are further provided by normalization.
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3.1. WCFPN

The target detection model is prone to the problem that as the number of layers in
the feature map increases, the resolution of the feature map decreases, resulting in poor
information transfer in the feature map and hence the lack of detection capability of the
model. The model may zoom in and out of the feature maps by adding operations like
convolutional layers and pooling layers; however, this reduces the performance of the
model since they commonly cause information loss or information redundancy. The study
uses cross-scale linking to connect feature maps of multiple sizes, better using the data in
those feature maps, and then suggests the concept of weighted fusion when zooming in
and out on the feature maps to address this issue.

Using the effective feature fusion technique known as weighted fusion, data are
combined in feature maps of various scales according to predetermined weights to create
multi-resolution feature maps. Cross-scale linking, unlike weighted fusion, is a feature
alignment technique that aligns feature maps at several sizes to create a multi-resolution
feature map for enhanced feature fusion and model performance at many scales.

The fusion process is shown in Figure 3. Multiple convolution and pooling operations
are performed on the input image to obtain feature maps of different sizes, and the last
three layers are selected to construct the WCFPN, as shown in Equations (1) and (2).

→
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The multi-scale feature fusion in Equation (1) takes the feature maps from different
resolutions and weights them, resulting in a richer and more comprehensive feature repre-
sentation. Equation (2), on the other hand, cascades feature maps from different resolutions,
thus combining feature information from different resolutions in the spatial dimension.

The problem of incomplete and inconsistent feature information is solved by the
multi-scale feature fusion method, which can identify and locate targets more accurately.
The research feature fusion method uses the fast normalization method, which can adjust
the weights of different features by applying a normalization operation on each input
feature to fuse feature maps at different scales more effectively, with the formula shown in
Equation (3).

O = ∑i(ωi·Xi)/
(

ε + ∑jωj

)
(3)

where O denotes the output feature mapping; ωi is the weighting factor; Xi denotes the
input feature mapping, taken as 0.001.

Take D2 layer output as an example. First, the A1 layer is convolved 1 × 1 to obtain
the feature mapping B1. Second, the B1 layer is fused with the A2 layer to obtain the
B2 layer, and then the B1 layer and B2 layer are fused. Then, fuse both layers to obtain the
intermediate layer mapping C. Finally, this layer is fed to D2 for cross-scale connection and
weighting to obtain the D2 layer. The layer output can be expressed as Equations (4) and (5).

Din
2 = Conv

ω1·Bin
2 +ω2·Res

(
Bin

1

)
W1 + W2 + ε

 (4)

Dout
2 = Conv

[(
ω′1·Bin

2 +ω′2·Btd
2 +ω′3·Res

(
Bout

3
))

/ω′1 +ω
′
2 +ω

′
3 + ε

]
(5)

where Din
2 is the middle feature of the top-down path layer 2, and Dout

2 is the output feature
of the bottom-up path layer 2. Res denotes the up-sampling or down-sampling adjustment
size, which is used to resize the feature map for feature fusion. All other features are
constructed in the same way.

3.2. RWNMS

In target detection, sliding window or region extraction methods are usually used
to generate candidate predictor frames, but the same target may be covered by multiple
predictor frames, resulting in duplicate and inaccurate target detection results. The role of
NMS operation is to select the predictor frame with the highest confidence among these
overlapping predictor frames and remove other low-confidence results, and the calculation
process is shown in Equation (6).

Dout
2 = Conv

[(
ω′1·Bin

2 +ω′2·Btd
2 +ω′3·Res

(
Bout

3
))

/ω′1 +ω
′
2 +ω

′
3 + ε

]
(6)
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Although NMS can remove overlapping prediction frames, there may be a large
amount of overlap in the prediction frames generated on multiple grids or multiple scales
of feature maps, which will directly lead to the inability of the NMS algorithm to remove
all the redundant prediction frames. To avoid the problem of redundant prediction frames,
the study introduces the EIOU loss function, which considers not only the overlap between
detection frames but also the similarity and confidence between them, etc.; by giving
various detection findings distinct weights, the weighting approach may be utilized to
pick and optimize outcomes or instance; while utilizing NMS, some significant targets or
detection findings with higher confidence might be assigned larger weights and are hence
more likely to be chosen. Additionally, a smoothing strategy is used to further increase
the accuracy and robustness of detection by reducing issues like noise and oscillation by
weighting the detection results of adjacent frames and averaging them when processing
adjacent prediction frames, leading to more accurate and stable detection results; this can
successfully boost detection’s resilience and generalization capabilities, better enabling
it to handle detection jobs in complicated scenarios. The process of the improved RWI
mechanism is shown in Figure 4, and its confidence score is calculated as Equation (7).
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where LEIOU denotes the intersection ratio of the prediction frame and the true frame
obtained based on the EIOU loss function, which can be expressed by Equation (8);
p0 denotes the probability of the presence of the target in the prediction frame, and if
it exists then p0 = 1, and vice versa p0 = 0.

LEIOU =
s2

∑
i=0

B
∑

j=0

(
LIOU + Ldis + Lasp

)
Ldis =

ρ2(b,bgt)
(wc)2+(hc)2

Lasp =
ρ2(w,wgt)

(wc)2 +
ρ2(h,hgt)

(hc)2

(8)

where Ldis denotes distance loss, Lasp denotes the phase loss, and ρ2(b, bgt) denotes the
center point of the two frames b and bgt, wc and hc that denote the length and width of the
smallest frame containing A and B, respectively, and the specific parameters are shown in
Figure 5.
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When there are targets of different scales or different shapes in the target detection, 
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When there are targets of different scales or different shapes in the target detection,
the traditional IOU calculation method is somewhat inaccurate because it only takes into
account the ratio of the intersection and the concatenation of the detection frame and
true labeled frame, ignoring the shape or size of the frame. To address this issue, EIOU
introduces the aspect ratio and the Euclidean distance factor, increasing the variability
between IOU values so that larger IOU values are closer to 1 and smaller IOU values are
closer to 0, improving the accuracy and robustness of target detection.

In the calculation process, all prediction frames are first arranged in descending order
according to the confidence score. Then, starting from the frame with the highest confidence
score, all prediction frames are given weights and traversed again, the width and height of
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the current best frames are updated according to Equation (9), and the current best frame is
finally obtained as the result after RWNMS.

Boxi=max[x1, y1, x2, y2] =
∑

target
i=1 clsi

[
x1_i, y1_i, x2_i, y2_i

]
∑

target
i=1 clsi

(9)

where boxi=max[] denotes the box with the highest confidence level, and ∑
target
i=1 denotes the

prediction box from i = 1 to the target obtained by filtering. After that, the prediction box
position is updated by Equation (9) to improve the stability of the prediction results.

4. Experimental Studies
4.1. Data Processing

To construct the data set required for this study, multiple segments of tunnel defective
radar data were collected and post-processing operations such as image enhancement
and image annotation were performed on these data. The final nearly 5700 images were
obtained by LabelImg software labeling to form the data set of this study, and the defect
images were classified into five categories such as BM, TK, KD, CS, and YBM, which denote
five types of defects, namely, uncompacted, emptying, hollow, water-filled and severely
uncompacted, respectively. Table 1 shows the distribution of the five types of defective
images in the data set and Figure 6 shows some typical examples of defects.

Table 1. Distribution of tunnel defect data sets.

Defect Type Training Set Validation Set Test Set Label

BM 1301 114 76 0
TK 1815 127 139 1
KD 904 78 254 2
CS 1136 80 197 3

YBM 1175 111 107 4
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4.2. Experimental Procedure
4.2.1. Experimental Configuration

Radar detection equipment that emits radar waves and then receives the signals
bounced back to obtain information about the parameters shown in Table 2.
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Table 2. Radar rover-related parameters.

Name Configure

Equipment Model TGRI-GPR
Center Frequency 200 MHz

Operating Bandwidth 100–500 MHz
Depth of detection 3 m

Dynamic Range 40 dB

The deep learning simulation experiments were built on a Linux system, using Python
and PyTorch to build the deep learning framework. The hardware setup shown in Table 3
includes components such as CPU, GPU, memory, and storage.

Table 3. Experimental hardware configuration.

Name Configure

Operating System Linux
Video Card NVIDIA RTX3090

Video Memory 24 G
Processor Intel€ Core i3-8100

Programming Language Python
Deep training framework PyTorch
Programming Platforms Pycharm

4.2.2. Evaluation Indicators

The experiments in this study use recall, mAP to evaluate the effectiveness of the
model in detecting tunnel defects, which can be defined as Equation (10):

Precision = TP
TP+FP

Recall = TP
TP+FN

AP =
∫ 1

0 P€dR

mAP = ∑N
i=1 APi

N
mAP[@0.5,@0.95] = (mAP@0.5 + · · ·+ mAP@0.95)/10

(10)

where TP represents the number of positive examples correctly classified, TN represents
the number of negative examples correctly classified, FP represents the number of posi-
tive examples incorrectly classified, and FN represents the number of negative examples
incorrectly classified.

5. Results

The study used the MFF-YOLO model for tunnel lining defect detection and suc-
cessfully detected a wide range of defect types and sizes, with some of the results shown
in Figure 7.

The loss function curve in Figure 8 was generated using a scatter plot to represent the
training data. It is evident from observation that the MFF-YOLO model converges signifi-
cantly more quickly than other models do, and in the 20th round, all loss functions begin to
converge and subsequently begin to stabilize. While the convergence and stabilization of
the loss function value suggest that the model has achieved the ideal state, the reduction
in the loss function value shows that the model is gradually being optimized during the
training phase.
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Figure 8. MFF-YOLO loss curve.

In order to test the effectiveness of each model for each type of defect detection to
highlight the importance of each module, the study tallied the accuracy results for different
types as shown in Figure 9 and Table 4. 5 sections in Figure 9 represent each of the
five types of defects, with different modules added to each section from left to right, where
the leftmost is the original model and the rightmost red is the improved MFF-YOLO model.
The results show that the improved model proposed in this paper outperforms the original
model for all tunnel defect types, which further validates the effectiveness of the model in
tunnel defect detection.
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Table 4. Comparison of experimental results of each model in different defects.

Model

Type Average Accuracy Rate (%)

BM TK KD CS YBM

Yolov5 95.6 87.9 88.4 76.1 69.1
SPD 90.7 89.0 92.6 78.5 87.0

MobileNetv3 89.6 85.8 93.1 67.5 80.2
WCFPN 90.7 89.0 92.6 78.5 87.1

Alpha-NMS 85.8 87.9 93.7 68.5 89.2
Merge-NMS 86.1 86.7 95.2 69.0 85.5

RWNMS 93.7 86.2 88.5 76.9 81.7
MFF-YOLO 93.7 88.8 94.1 87.1 83.2

To more accurately assess the performance of the MFF-YOLO model proposed in this
paper, the study conducted ablation tests and obtained the experimental results shown in
Figure 10 and Table 5. The results show that the model MFF-YOLO achieves an accuracy
of 89.4%. In addition, through the ablation tests, we also verified that the model has a
strong robustness and generalization capability for effective tunnel defect detection under
different environments and conditions.

The research in Table 5 shows that after adding WCFPN, the mAP, Precision, Recall
and Gflops of the model are significantly improved through deep fusion extraction of
feature information. After adding RWNMS to reprocess the prediction box, although the
accuracy improvement is not as obvious as WCFPN, it keeps the FPS stable. When the
two modules are combined to construct the MFF-YOLO model in this study, the result is a
synergistic impact that outperforms the effect of each module acting alone and raises the
model’s total performance ceiling.
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Table 5. Results of ablation experiments.

Name mAP@0.5
(%)

mAP@0.5:0.95
(%)

Precision
(%)

Recall
(%) Gflops FPS

Fater-RCNN 78.8 48.8 78.6 80.2 88.2 18.2
RetinaNet 81.1 49.8 79.7 81.3 70.3 18.3

SSD 79.2 47.0 75.2 82.1 15.2 65.8
Yolov3 83.1 49.1 80.3 81.6 154.6 16.4
Yolov5 83.4 47.9 75.4 82.4 16.8 66.6

SPD 85.8 49.1 80.3 85.5 16.0 71.4
MobileNetv3 87.7 50.4 81.0 89.4 15.3 50.0

WCFPN 87.6 51.6 82.2 87.6 33.1 52.6
Alpha-NMS 85.0 51.3 78.6 83.0 15.8 71.4
Merge-NMS 84.5 50.5 78.3 81.1 15.8 71.4

RWNMS 85.4 49.7 80.8 85.9 16.8 66.6
MFF-YOLO 89.4 50.8 82.2 89.5 33.3 50.0

Figure 11 presents a visualization of the test results of this study on the data set,
allowing for a more intuitive understanding of the performance and performance of the
model, and thus better model improvement and optimization.

These results show that the improved algorithm proposed in this study has high
performance and practicality in tunnel defect detection and can be better adapted to a
variety of different types and sizes of defect detection tasks.
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6. Conclusions

In this study, we developed an MFF-YOLO model based on multi-scale feature fusion
technology. In the neck network, WCFPN is designed based on a weighted fusion strategy
to improve the ability to obtain feature information from multiple dimensions. At the
predicted end, the prediction mechanism of RWNMS is designed in combination with a
weighted smoothing strategy. Finally, the EIOU loss function is improved by considering
the aspect ratio and Euclidean distance.

The feasibility of the strategy was evaluated by testing the tunnel defect data set. The
result shows that the MFF-YOLO model’s recall rate and accuracy rates were 7.1% and
6.0% higher than those of the YOLOv5 model, reaching 89.5% and 89.4%, respectively.

Compared to conventional image processing approaches, deep learning-based tunnel
defect detection algorithms may learn higher-level feature representations from a huge
quantity of data, improving the identification and classification of flaws. Additionally,
automated and intelligent deep learning-based detection strategies can increase the effec-
tiveness and dependability of detection. In the future, we will continue to explore ways
to improve model defect detection performance, including reducing model complexity,
improving detection accuracy, and optimizing data set quality.
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