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Abstract: With the accelerated growth of the UAV industry, researchers are paying close attention
to the flight safety of UAVs. When a UAV loses its GPS signal or encounters unusual conditions, it
must perform an emergency landing. Therefore, real-time recognition of emergency landing zones
on the ground is an important research topic. This paper employs a semantic segmentation approach
for recognizing emergency landing zones. First, we created a dataset of UAV aerial images, denoted
as UAV-City. A total of 600 UAV aerial images were densely annotated with 12 semantic categories.
Given the complex backgrounds, diverse categories, and small UAV aerial image targets, we propose
the STDC-CT real-time semantic segmentation network for UAV recognition of emergency landing
zones. The STDC-CT network is composed of three branches: detail guidance, small object attention
extractor, and multi-scale contextual information. The fusion of detailed and contextual information
branches is guided by small object attention. We conducted extensive experiments on the UAV-City,
Cityscapes, and UAVid datasets to demonstrate that the STDC-CT method is superior for attaining a
balance between segmentation accuracy and inference speed. Our method improves the segmentation
accuracy of small objects and achieves 76.5% mIoU on the Cityscapes test set at 122.6 FPS, 68.4%
mIoU on the UAVid test set, and 67.3% mIoU on the UAV-City dataset at 196.8 FPS on an NVIDIA
RTX 2080Ti GPU. Finally, we deployed the STDC-CT model on Jetson TX2 for testing in a real-world
environment, attaining real-time semantic segmentation with an average inference speed of 58.32 ms
per image.

Keywords: real-time semantic segmentation; UAV; embedded device; emergency landing zones;
deep learning

1. Introduction

Due to the rapid advancement of unmanned aerial vehicle (UAV) technology, re-
searchers across scientific and industrial disciplines have paid a great deal of attention to
UAVs. Capturing and analyzing aerial images are important ways for UAVs to perceive
their surroundings. This is significant in multiple fields, such as forest fire detection [1],
vehicle detection [2,3], road construction [4], land cover [5–7], the oil and gas inspection
industry [8,9], and traffic data analyses [10,11].

In UAV flight missions, recognizing emergency landing zones is crucial for ensuring
UAV safety, especially when facing unexpected events such as GPS signal loss. To improve
the accuracy of landing zone identification, researchers have recently adopted semantic
segmentation methods. Semantic segmentation differs from traditional methods of UAV
emergency landing zone identification, it assigns each pixel in the picture a label that
makes sense, enabling precise identification of landing zones. This approach is particularly
effective in densely populated urban scenes, where it can identify protected targets, such
as people and vehicles, and reduce false alarms. Moreover, this method extracts semantic
information of different objects in the landing zone, facilitating a better understanding
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of the structure and environment of emergency landing zones. Consequently, semantic
segmentation has become an important tool to accurately identify landing zones.

The rapid evolution of deep learning has significantly improved the effectiveness
of semantic segmentation. With the growth of numerous industrial domains, including
autonomous driving [12,13], medical image diagnosis [14], and remote sensing [15], re-
searchers no longer solely focus on accuracy improvement, they also pay more attention to
the speed of segmentation. An efficient semantic segmentation model must have high seg-
mentation accuracy, real-time capabilities, and a lightweight network framework in order
to maintain the balance between accuracy and speed after the model has been deployed to
an embedded device.

To meet these requirements, many researchers have started to study real-time semantic
segmentation methods. Recently, some CNN-based methods have achieved low latency and
high efficiency. For example, BiSeNet [16] proposes a dual-branch network topology that
includes a small spatial pathway (SP) for preserving spatial information and generating
high-resolution features, as well as a context pathway (CP) with a fast downsampling
approach for obtaining an adequate receptive field. On these two pathways, a novel feature
fusion module (FFM) is created to successfully recombine features. STDC-Seg [17] proposes
a backbone network based on the short-term dense concatenate (STDC) module to extract
deep features with scalable receptive fields and multi-scale information, building on the
BiSeNet architecture. A Detail Guidance Module was also designed to encode spatial
information in low-level features without an extra time-consuming approach, increasing
the model’s inference speed.

Although the aforementioned models have demonstrated promising results in some
circumstances, they may not perform well in real-world settings of unmanned aerial vehicle
(UAV) aerial images because of high resolution, complex scenarios, and a large number of
small objects [18]. Moreover, the limited computational resources of the onboard devices
carried by UAV make it challenging to achieve real-time, high-quality semantic segmenta-
tion. Therefore, improving segmentation quality while achieving real-time performance
has become a pressing issue in UAV semantic segmentation tasks.

In this paper, to identify suitable landing zones for UAVs, we mainly focus on improv-
ing the segmentation quality of various target objects in UAV remote sensing scenes while
ensuring real-time segmentation. We designed the STDC-CT network based on the STDC1
backbone structure of STDC-Seg [17] due to the demonstrated efficiency of the STDC
backbone network. Inspired by the multi-resolution attention mechanism [19], we propose
the small object attention extractor (SOAE) module to focus on useful features in Stage
3–Stage 5 of the backbone network, especially for small object features. Attention weights
of different levels are learned through a small network. Features from different layers are
fused to enrich the information of small objects during feature extraction. We retain the De-
tail Guidance Module of STDC-Seg, but small object features are likely to be filtered out as
noise during the model training. To solve the problem of insufficient noise resistance when
extracting detail edges, we use the Laplacian of Gaussian (LoG) method [20–22] to replace
the original Laplacian method. Additionally, we apply the parallel aggregation pyramid
pooling module (PAPPM) [23] to increase the ability to gather multi-scale contextual in-
formation about the network and accelerate model inference speed. Finally, we design a
detail and context feature fusion module (DCFFM) to fuse small object features, contextual
information, and detail features. Finally, we use the small object attention feature (SOAE)
branch to guide the feature fusion of the context and detail branches, allowing the model
to effectively capture the detail information and global contextual information of small
objects, improving the accuracy of recognizing small objects and STDC-CT performance.

This section provides a detailed introduction to the significance and research back-
ground of UAV emergency landing zones recognition. In Section 2, we present an overview
of the related work in UAV emergency landing zones recognition, including the devel-
opment history of traditional recognition methods, traditional semantic segmentation
methods, and deep learning-based semantic segmentation methods. Section 3 provides
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a comprehensive description of the construction process of our proposed dataset, UAC-
City. In Section 4, we explain the details of our proposed semantic segmentation method,
STDC-CT. The effectiveness of our method is evaluated in Section 5 through extensive
experiments. Results show that our proposed method has improved the performance of
UAV emergency landing zones recognition compared with the state-of-the-art works.

The following are the key contributions of this paper:

• We create a new dataset for UAV aerial semantic segmentation and achieve recognition
of emergency landing zones, protected targets, and buildings during high-altitude
UAV flight missions.

• A lightweight semantic segmentation network named STDC-CT i is proposed for
UAV emergency landing zones recognition. The proposed model consists of STDC
backbone, SOAE module, PAPPM, DCFFM and Detail Guidance Module. The network
achieves a balance of segmentation speed and accuracy and improves the segmentation
accuracy on small objects.

• Extensive experiments have been carried out to evaluate the efficiency of our method.
The results of our experiments indicate that our model can reach cutting-edge perfor-
mance on the UAV-City, Cityscapes, and UAVid datasets. In addition, we deploy the
trained model onto a UAV equipped with a Jetson TX2 embedded device. It shows
that the model works well for real-world UAV applications.

2. Related Work
2.1. Conventional Methods for Recognizing UAV Emergency Landing Zones

Since the invention of UAVs, there has been continuous innovation in the methods
used to recognize emergency landing zones, ranging from artificial methods to intelligent
methods. Some of these methods are as follows [24–27]:

• Artificial recognition: the UAV pilot observes the surrounding environment and selects
a suitable landing area, such as a flat and open grassland, ground, rooftop, etc.

• Photo analysis: this method involves analyzing the photos of the landing zones
captured by a UAV camera to judge the flatness, obstacles, terrain, and other factors,
thus aiding in landing zone selection.

• Altitude measurement: altitude measuring equipment mounted on the UAV can be
used to measure the height of the landing zone and judge whether it meets safety
requirements.

• Radar scanning: using radar equipment, the UAV scans the landing zones and obtains
information such as the terrain height and obstacles to gauge the suitability of the
landing area.

• GPS positioning: the GPS device mounted on the UAV obtains the location information
of the landing zones, and evaluates factors such as terrain, height, and slope to
comprehensively select a landing zone.

• Object recognition method: a deep learning-based pre-trained object detection model
can be built on the UAV to process images or videos captured during flights in real
time, thereby recognizing the positions of the landing zones.

While the above methods can meet the demands for recognizing drone landing zones
under certain circumstances, they have certain limitations for special cases, such as loss
of GPS signals or high-precision requirements for landing area recognition. To achieve
more accurate recognition results, researchers have started to use semantic segmentation
methods to recognize emergency landing zones for UAVs.

2.2. Conventional Semantic Segmentation Methods

Traditional semantic segmentation techniques were developed in the late 1980s and
early 1990s, principally due to breakthroughs in image processing and computer vision
technology. The development of traditional semantic segmentation algorithms can be
summarized as follows:
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• Threshold-based segmentation [28]: The earliest semantic segmentation algorithms
were based on threshold segmentation, which involves categorizing pixels in an image
into the foreground and background based on a fixed threshold and processing the
foreground region further. However, this kind of method is not suitable for images
with complex backgrounds.

• Region-based segmentation [29]: Region-based segmentation methods locate clusters
of similar pixels in an image, which are considered to be of the same class of pixels.
This method can handle images with complex backgrounds, but the results often
contain discontinuous regions.

• Edge-based segmentation [30]: Edge-based segmentation methods categorize pixels
into different classes by detecting edges in the image. This method can generate
continuous segmentation results, but it is sensitive to noise.

• Graph-based segmentation [31,32]: Graph-based segmentation methods consider
an image as a graph, where pixels are nodes and the edges represent the similarity
between pixels. Segmentation is completed by optimizing the objective function.
This method can produce highly accurate segmentation results, but it requires longer
computation time and resources.

• Cluster-based segmentation [33]: Cluster-based segmentation methods categorize
pixels in an image into different groups based on the similarity between pixels obtained
through clustering. This method can handle large-scale images, but it is sensitive
to noise.

Over the past few years, deep learning-based semantic segmentation methods have
made significant progress, becoming mainstream semantic segmentation algorithms.

2.3. Methods for Semantic Segmentation Based on Deep Learning
2.3.1. Generic Semantic Segmentation

Since the introduction of convolutional neural networks, methods based on fully
convolutional networks (FCNs) have demonstrated outstanding performance in various
benchmarks in the field of semantic segmentation. FCNs [34] were the first end-to-end,
pixel-to-pixel trainable networks for semantic segmentation. FCNs also presented the
first encoder–decoder structure in semantic segmentation, which is frequently used in
subsequent networks. U-Net [35] improves both the precision and efficiency of seman-
tic segmentation by using bilinear upsampling and skip connections based on FCNs.
DeepLab [36] uses dilated convolutions to enlarge the receptive field and combines con-
ditional random fields (CRFs) for post-processing to improve the segmentation accuracy.
PSPNet [37] proposes a pyramid scene parsing network that utilizes pyramid pooling
and cross-feature-map connections to achieve better contextual information utilization
and segmentation results. RefineNet [38] achieves fine pixel-level segmentation through
multi-level feature fusion and adaptive convolution. To further improve segmentation
achievement, DANet [39] develops a dual attention mechanism network that makes use of
both spatial and channel attention strategies. However, these methods often require exten-
sive computational resources to achieve high segmentation accuracy due to high-resolution
input images and complex network connections. These methods may not meet the re-
quirements of semantic segmentation in real scenes, especially for devices with limited
computing resources, such as UAVs.

2.3.2. Lightweight Semantic Segmentation Network

Lightweight semantic segmentation networks typically use some lightweight backbone
networks for feature extraction. Specifically, ResNet [40] is a traditional deep residual
network that, by including residual blocks, addresses the issue of gradient disappearance
and explosion in deep network training and facilitates network training. To minimize
the number of parameters and compute additional complexity, some lightweight ResNet
network variants have been proposed, such as MobileNetV2 [41] and ShuffleNetV2 [42],
which use channel shuffle or depth-wise separable convolution techniques to optimize
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segmentation performance while minimizing calculation and parameter count. In addition,
STDC [17] designed a new short-term dense concatenate module, to obtain variant scalable
receptive fields with a small number of parameters. Moreover, integrating STDC into
the U-net architecture, forming the STDC network, greatly improves the performance of
semantic segmentation networks.

2.3.3. Real-Time Semantic Segmentation

To meet the real-time requirements of semantic segmentation, ENet [43] uses smaller
and fewer feature maps in the early stages of the network, greatly reducing the network
parameters and improving its running speed. Through two processing streams—one
carrying contextual information with full resolution for precise segmentation boundaries
and the other passing through a series of pooling operations to produce high-level feature
maps for recognition—FRRN [44] proposes a ResNet-like network architecture, combining
multiple scales of contextual information and pixel-level precision. ICNet [45] compresses
the PSPNet model and designs a cascaded feature fusion unit (CFF) and a cascaded label
to guide model training to achieve fast semantic segmentation. EDANet [46] uses an
asymmetric structure, combined with dilated convolutions and dense connections, to
achieve efficient semantic segmentation with low computational costs and a small model
size. BiSeNet [16] provides spatial pathway (SP) and contextual pathway (CP) to address
the issues of spatial information loss and diminishing receptive fields, as well as the feature
fusion module (FFM) and attention refinement module (ARM) to increase accuracy at a
reasonable cost. ESNet [47] designed a set of factorized convolutional units (FCU) and
their parallel counterparts (PFCU). In the parallel version, the residual module is designed
using the transform–split–transform–merge technique, with the split branch employing
dilated convolutions with varying ratios to widen the receptive field. In addition, the
STDC-Seg [17] network removes the Spatial Path branch from BiSeNet, creates the Detail
Guidance Module to guide model training, and designs an STDC backbone network to
reduce the inference time of the model.

As shown in Table 1, we list the key innovations of the above methods and their
specific performances on the Cityscapes dataset. It is not difficult to find that the above
methods all aim to obtain high accuracy and high inference speeds at the cost of a small
number of parameters. However, we find that it is not necessarily the case that the smaller
the number of parameters in the model, the higher the inference speed, which is also
inextricably linked to the network structure of the model. Therefore, in real-time semantic
segmentation research, we can attempt to design novel lightweight network structures,
such as multi-branch networks, to satisfy the balance between accuracy and inference
speed. In semantic segmentation tasks, the trade-off between segmentation accuracy
and inference speed refers to the maximization of the inference speed while maintaining
acceptable segmentation accuracy. This allows the model to reflect good performance in
embedded devices.

Table 1. The state-of-the-art methods related to real-time semantic segmentation.

Model Backbone Key Innovations mIoU (%) FPS Parameters

ENet [43] - Initial Block, Bottleneck Module 58.3 76.9 0.37 M
FRRN [44] ResNet FRRU, Full-resolution Residual Networks (FRRNs) 71.8 2.1 -
ICNet [45] PSPNet-50 Cascade Feature Fusion Unit (CFF), The Loss Function 69.5 30.3 -

EDANet [46] - EDA Module 67.3 108.7 0.68 M

BiSeNet [16] ResNet-18 Attention Refinement Module (ARM), Feature Fusion
Module (FFM) 74.7 65.5 49.0 M

ESNet [47] - factorized convolutional units (FCU) and their parallel
counterparts (PFCU) 70.7 63 1.66 M

STDC-Seg75 [17] STDC1 Short-Term Dense Concatenate Module (STDC), Detail
Guidance Module 75.3 126.7 -
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3. UAV-City Dataset

In our study, we collected aerial images captured by UAVs in Hangzhou, China, to
construct our dataset. In the design of the entire process, we considered the practicality
and effectiveness of research on the semantic segmentation of UAV aerial images. A
total of 600 images with a resolution of 1280× 720 were densely annotated for semantic
segmentation tasks.

To enable the UAV to autonomously make timely landing decisions when receiving
emergency landing instructions or encountering urgent situations, the UAV needs to
recognize potential landing zones on the ground, as well as forced landing zones, protected
targets, buildings, and other objects during high-altitude flights. Potential landing zones
are defined as horizontal rooftops, horizontal grounds, and horizontal grasslands, while
forced landing zones are defined as forests and rivers (lakes). Protected targets are defined
as humans and vehicles. If no suitable zones nearby are available, then forced landing zones
can be recognized for landing. During the landing process, UAVs need to continuously
recognize pedestrians and vehicles on the ground to ensure the safety of lives and properties
to the greatest extent possible.

3.1. Image Acquisition Strategy

• During the operation of UAVs, strict compliance with safety regulations for drone
flights is ensured.

• The maximum flight altitude of a drone is set at 140 m, with lateral flight maintaining
stability at around 120 m.

• During image acquisition, the onboard camera captures continuous images of the
ground with a time interval of 0.1 s, providing a top-down view. The camera angle is
set vertically.

• Multiple flights are conducted to capture images from different flight paths, introduc-
ing variance into the dataset to mitigate the risk of overfitting during model training.

• Data collection is conducted under favorable weather conditions with sufficient daylight.

3.2. Image Processing and Annotation
3.2.1. Image Filtering

As shown in Figure 1, the collected images consist of consecutive frames. To prevent
overfitting and poor generalization during subsequent model training, multiple flights
are conducted, and the images collected from each flight path are carefully selected. The
selected images are annotated for semantic segmentation tasks, with a total of 600 images
being annotated.

Figure 1. The aerial images are captured in consecutive frames.
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3.2.2. Image Annotation

Our dataset is specifically designed for semantic segmentation tasks, but fully anno-
tating all objects in urban aerial images is highly challenging. To achieve the recognition
of potential landing zones, forced landing zones, protected targets, buildings, and other
objects on the ground, we annotate the dataset with 11 categories, namely: horizontal
roof, horizontal ground, horizontal lawn, river, plant, tree, car, human, building, road, and
obstacle. The definitions of each category are as follows:

• Horizontal roof: the rooftop area of the buildings is flat.
• Horizontal ground: flat ground areas other than roadways used for vehicular traffic.
• Horizontal lawn: flat lawns.
• River: identifiable water bodies, including rivers and lakes.
• Plant: low vegetation, such as grass and shrubs.
• Tree: tall trees with canopies and trunks.
• Car: all vehicles on roads and parking lots, including cars, buses, trucks, tractors, etc.
• Human: all visible pedestrians on the ground.
• Building: residential buildings, garages, security booths, office buildings, and other

structures under construction.
• Road: roads and bridges where vehicles are legally allowed to travel.
• Obstacle: steel frames, transmission line poles, and roads under construction.

The selected images are annotated with pixel-wise labeling by using the LabelMe
annotation tool. Figure 2 shows an example of the annotation results. The labeled images
of the original image were obtained by the generated JSON file, as shown in Figure 3.

3.3. Statistical Analysis

Our dataset contains 600 images of different scenes, which were annotated pixel by
pixel using the LabelMe tool. Each image has a resolution of 1280× 720. The dataset is
divided into training, validation, and test sets according to an 8:1:1 ratio. Figure 4 shows
the pixel counts of each class (including the background) in the UAV-City dataset. It
clearly shows the distribution of imbalanced pixel counts among different classes. Most of
the pixels come from the tree, road, and building classes. Classes such as car, horizontal
roof, horizontal ground and horizontal lawn, river, obstacle, and plant contribute fewer
pixels, accounting for less than 5% of the total pixels. For the human class, it occupies only
0.103% of the pixels, which is due to the relatively low number of pixels per instance in
the UAV-City dataset. Among them, the car and human classes are small objects, which
have fewer total pixel points and smaller sizes. Therefore, segmenting small objects poses a
great challenge in semantic segmentation tasks.

Figure 2. Example of the image annotation.



Sensors 2023, 23, 6514 8 of 23

Figure 3. Images and labels from the UAV-City dataset are provided as examples. The photographs
obtained by the UAV are shown in the first row. The ground truth labels are shown in the second row.

Figure 4. Pixel number and histogram of UAV-City.

4. Proposed Method

STDC-Seg [17] proposes a new STDC backbone network based on the BiSeNet [16]
model, as shown in Figure 5a,b, which illustrates the layout of the STDC module, and
Figure 5c presents the general STDC network architecture. Additionally, a new Detail
Guidance Module is designed to replace the original Spatial Path branch of BiSeNet,
which retains low-level detail features while reducing network computational complexity,
resulting in an excellent real-time performance for semantic segmentation. However, this
network still has some shortcomings in small object segmentation. Specifically, due to the
FFM module gradually reducing the dimensionality of the feature maps, it may lose some
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detail information that is useful in small object segmentation tasks. Furthermore, the Detail
Guidance Module in the STDC-Seg network mainly focuses on low-level feature layers,
which may result in some detail information in high-level feature layers being ignored,
affecting the accuracy of small object segmentation.

Figure 5. The STDC network. (a) Stride = 1; (b) stride = 2; (c) shows the General STDC Network
architecture. The ConvX operation denotes Conv-BN-ReLU.

Therefore, in this section, we propose the STDC-CT network, as shown in Figure 6,
which aims to improve small object segmentation accuracy while maintaining excellent
segmentation speed.

Figure 6. The STDC-CT segmentation network we propose.
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4.1. Small Object Attention Extractor for STDC

We designed a small object attention extractor (SOAE) module for the STDC backbone
network to extract more valuable features for small object recognition. We utilized convo-
lutional layers at different resolutions (from Stage 3 to Stage 5) to extract diverse features
from the input data. Each convolutional layer operates at a different resolution to capture
features at different scales. Then, we used an attention mechanism to automatically select
the most informative features and combine them for a more comprehensive representation.

In particular, we set the feature maps Fi(i = 1, 2, 3) generated by Stages 3 to 5 as the
templates, denoted as Tt(t = 1, 2, 3), as illustrated in Figure 7. Then, the template layer
Tt was passed through a 1× 1 convolutional layer with the dimension reduced to 1. The
maximum value of the feature map was then generated through global max pooling, i.e.,
the most noteworthy feature pixels were captured; they were mapped to vectors for cosine
similarity computation through a fully connected layer:

St
i = Similarity(Tt, Ti) =

Tt × Ti

‖Tt‖ ×
∥∥Ti
∥∥ =

n
∑

j=1
Tt

j × Ti
j√

n
∑

j=1
Tt

j ×
√

n
∑

j=1
Ti

j

(1)

where Si
t denotes the cosine similarity between the template layer Ti and Tt. Tt

j and Ti
j

denote the components of the vectors corresponding to Tt and Ti, respectively. For example,
when T1 serves as the template, the cosine similarity values S2

1 between T2 and T1, and S3
1

between T3 and T1, indicate the attention levels of T2 and T3 toward T1, respectively, while
S1

1 = 1. Similarly, when T2 serves as the template, the cosine similarity values S1
2 between

T1 and T2, and S3
2 between T3 and T2, indicate the attention levels of T1 and T3 toward T2,

respectively, while S2
2 = 1. To evaluate the attention weights ai

t, we input {S1
t , S2

t , S3
t } into

the softmax layer to obtain normalized weight values:

at
i =

exp(St
i)

3
∑

i=1
exp(St

i)

(2)

Figure 7. The small object attention extractor module.
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After obtaining the attention weights, the feature map sizes F2 and F3 must be constant
with that of F1; thus, we unsampled F2 and F3 by 2× and 4×, respectively, and the number
of channels of F1, F2, and F3 were 256, 512 and 1024 respectively. Then we added the
weighted feature maps of the three levels, element by element, and adjusted the number of
channels by a 1 × 1 convolution to obtain the attention feature:

At =
3

∑
i=1

at
i × Fi (3)

where At denotes the attention feature obtained through the network with Tt as the
template layer.

4.2. Laplacian of Gaussian for Detail Guidance Module

The Laplacian convolution method was employed in the STDC-Seg network for
extracting fine details of image edges. The Laplacian operator, being an excellent edge
detection operator, has been widely utilized in edge detection tasks. The Laplacian operator
is commonly used in edge detection to detect significant changes in pixel intensity. However,
with aerial images captured by drones, which often contain numerous small objects, such as
vehicles and pedestrians, the edges of these small objects typically exhibit smaller intensity
variations. As a result, when applying the Laplacian operator, the edges of small objects
may be erroneously enhanced as noise. Additionally, since noise can be present in various
locations within an image, the Laplacian operator tends to respond strongly to noise. When
the operator is applied to pixels surrounding small objects, the noise can cause a strong
response, leading to the edges of small objects being overshadowed by the noise signal.
Consequently, in edge detection of aerial images captured by drones, the edges of small
objects may be mistakenly considered as noise and consequently removed.

As shown in Figure 8, to address these issues and preserve the excellent edge extraction
capability of the Laplacian operator, we apply the Laplacian of Gaussian (LoG) convolution
method [21] in the Detail Guidance Module. Unlike the Laplacian convolution method,
the LoG convolution method first applies Gaussian filtering to the image, which blurs the
high-frequency details and reduces the intensity of noise. By separating the edges of small
objects from the noise, the influence of noise is reduced. Additionally, Gaussian filtering
reduces the gradient variations along the image edges. The variations of edge gradients
are highly responsive to the Laplacian operator; noise typically has a high-frequency
component and responds strongly to the Laplace operator. Therefore, by reducing the
variations in edge gradients, Gaussian filtering can decrease the interference of noise in
edge detection, enabling easier detection of the edges of small objects. Images are processed
by a Gaussian filter and the Laplacian convolution, which preserves the outstanding edge
extraction capability of the Detail Guidance Module while suppressing the impact of noise.
This method can improve the accuracy of edge detail extraction. To reduce computational
overhead, we leverage the associativity property of convolution operation, where the
Gaussian function is combined with the Laplacian operator to form a single convolution
kernel. As a result, only one convolution operation is needed on the image. The process of
combining Gaussian and Laplacian methods is outlined below:

The Gaussian equation is:

gauss(x, y, σ) =
1

2πσ2 exp(− x2 + y2

2σ2 ) (4)

Performing the Laplacian transformation on the two-dimensional Gaussian function:
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∇2(gauss(x, y, σ)) =
∇2(gauss(x, y, σ))

∂2x
+
∇2(gauss(x, y, σ))

∂2y

=
1

2πσ2

∂(− x
σ2 exp(− x2+y2

2σ2 ))

∂x
+

1
2πσ2

∂(− y
σ2 exp(− x2+y2

2σ2 ))

∂y

=
1

2πσ4 (
x2

σ2 − 1) exp(− x2 + y2

2σ2 ) +
1

2πσ4 (
y2

σ2 − 1) exp(− x2 + y2

2σ2 )

=
1

2πσ4 (
x2 + y2

σ2 − 2) exp(− x2 + y2

2σ2 )

(5)

where x and y denote the image pixel coordinates,∇2(gauss(x, y, σ)) denotes the LoG operator.

Figure 8. The Detail Guidance Module. The LoG ConV denotes the Laplace of Gaussian convolution,
which generates soft thin detail feature maps by convolution operations with different strides, thus
obtaining multi-scale detail information. These detail features are then upsampled and mapped to
the same sizes as the detail features after 1 × 1 convolution, and are then dynamically weighted to
obtain the ground truth with binary detail.

4.3. PAPPM for Capturing Contextual Information

To enhance the neural network’s ability to capture multi-scale contextual information
while maintaining high efficiency, researchers proposed a technique named parallel ag-
gregation pyramid pooling module (PAPPM) [23]. The PAPPM module consists of four
parallel pyramid pooling branches, each using a different pooling kernel size to extract
pooling features from feature maps at different scales. These features are then concate-
nated together to effectively capture multi-scale contextual information. Meanwhile, to
accelerate the inference speed, the module adopts parallel computation, reducing the com-
putational overhead while ensuring accuracy. The PAPPM module is integrated into the
STDC network, as shown in Figure 9.

4.4. The Detail and Context Feature Fusion Module

In the STDC-CT network, the context branch contains rich semantic information that
can provide more accurate semantic representations. However, it loses a significant amount
of spatial and geometric information due to the continuous downsampling process. On
the other hand, in order to balance the detail information and contextual information
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in the STDC-CT network, we utilize the small object attention features extracted by the
previously designed SOAE module to guide the fusion of edge and detail features with
contextual information. This is because one of the original intentions of designing the
STDC-CT network is to improve the accuracy of small object segmentation in drone imagery.
Therefore, we have high confidence in the small object attention branch and use it as a
guiding variable to balance the fusion of the detail branch and contextual information.
Specifically, in the proposed approach, the attention feature is first passed through a
sigmoid layer for normalization to obtain the weight value ω, where ω denotes the weight
parameter for the detail features and 1−ω denotes the weight parameter for the contextual
information. Next, the detail features and contextual information are multiplied with their
corresponding weight values and then added together to perform feature fusion. Finally,
the features are processed through a CONV-BN-ReLU to obtain Fout. The detailed structure
of the method is illustrated in Figure 10.

Figure 9. The PAPPM network architecture.

Figure 10. Detail and context feature fusion module.

The small object attention branch, the context branch, and the detail aggregation
module branch, respectively, are denoted as a, c, and d. These branch results are shown
as vectors of corresponding pixels with the symbols ~pa, ~pc, and ~pd, respectively. The
representations of ω and Fout can be written as follows:

ω = Sigmoid(~pa) (6)
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Fout = ConvX((1−ω)⊗ ~pc + ω⊗ ~pd) (7)

where ConvX consists of a layer for convolution, a layer for batch normalization, and a
layer for ReLU activation. When ω > 0.5, the model’s training places higher confidence in
the detail features, whereas when ω < 0.5, the model’s training places higher confidence in
the contextual information.

5. Experimental Results

We undertake model training on the UAV-City, Cityscapes [48], and UAVid [18] dataset
to verify the efficacy of our proposed STDC-CT approach. We compare our model with
other mainstream semantic segmentation models and advanced real-time networks. Finally,
we deploy the STDC-CT model on a TX2-equipped UAV for real-world environment testing.

5.1. Datasets

UAV-City. The details of the UAV-City dataset can be found in Section 3 of this paper.
The dataset consists of 600 finely annotated aerial images captured by UAV, with each
image having a resolution of 1280× 720. A total of 11 categories are annotated for the task
of semantic segmentation.

Cityscapes. Cityscapes [48] is a widely used public dataset for computer vision
research, containing a large collection of urban street scene images and corresponding
annotated data. The Computer Vision study group at the University of Stuttgart, Germany,
created this dataset with the goal of providing high-quality data resources for studying in
fields such as autonomous driving, traffic planning, and urban development. The dataset
includes 5000 high-resolution images covering various street scenes in 50 cities, which
are divided into training, validation, and testing sets with 2975, 500, and 1525 images,
respectively. The annotations include 30 categories, but only 19 categories are used for
semantic segmentation. The image resolution is 2048× 1024, which requires real-time
segmentation performance.

UAVid. UAVid [18] is a widely used dataset for semantic segmentation in the context
of UAV. The dataset includes 30 video sequences captured from a tilted viewpoint, with
4K high-resolution images. A total of 300 images are densely annotated for 8 categories,
including building, road, static car, tree, low vegetation, humans, moving car, and back-
ground clutter, for the task of semantic segmentation. The image resolutions are either
4096× 2160 or 3840× 2160.

5.2. Implementation Details

Training. With a weight decay of 5× 10−4 and a momentum of 0.9, the stochastic
gradient descent (SGD) algorithm is employed as the optimizer. Considering the differences
in datasets, we devised different training strategies for each dataset. The batch size for
Cityscapes is 24, the maximum number of iterations is 120,000, and the initial learning rate
is 0.01. The batch size for UAVid is set to 8, the maximum number of iterations to 10,000,
and the initial learning rate at 0.004. The batch size for UAV-City is set to 16, the maximum
number of iterations to 10,000, and the initial learning rate is 0.001. We configured the
experimental environment with PyTorch-1.12.1 in Anaconda and executed all experiments
on an NVIDIA RTX 2080Ti GPU with CUDA 11.6 and CUDNN 8.5.0. We utilized the “poly”
learning rate methodology, where the learning rate varies based on the following equation:

lrt = lr0 × (1− iterc

itermax
)p (8)

where lrt denotes the current learning rate, lr0 denotes the initial learning rate, iterc denotes
the current iteration count, itermax denotes the maximum iteration count, and p denotes
the power, which is set to 0.9 in this case.
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Evaluation Metric. To compare the test results of the model with the ground truth
labels, we obtain a confusion matrix P = {pij} ∈ N(m+1)×(m+1), where pij denotes the
number of pixels belonging to class i but classified as class j. The total number of classes,
including k classes and one background class, is denoted as m + 1. Specifically, the diagonal
elements pij denote the number of pixels with correct predictions. To evaluate the effec-
tiveness of the segmentation results, we mainly use mIoU as the evaluation metric. This is
because mIoU is invariant to the sizes of different objects and provides more comprehensive
information compared to other metrics, such as accuracy, precision, and recall; mIoU takes
into account both the accuracy and precision of classification, making it more suitable for
the UAV-City dataset proposed in this paper. The mIoU calculating formula is as follows:

1
m + 1

m+1

∑
i=1

pij
m+1
∑

j=1
pij +

m+1
∑

j=1
pji − pii

(9)

5.3. Ablation Study

Our designed STDC-CT network consists of multiple modules with different func-
tionalities. To verify their effectiveness, ablation experiments were conducted in this study
using a 0.75 input scale, with STDC-Seg75 serving as the baseline network. The experimen-
tal results are shown in Tables 2 and 3, where Table 2 denotes the mIoU values of different
templates when using the SOAE module on the Cityscapes and UAV-City test sets based
on the baseline network. The trial results show the utilization of T3, which corresponds
to the feature map F3 output from Stage 5, as the template achieves the best performance.
Table 3 denotes the experimental results of adding different modules on top of the baseline
network. SOAE refers to the small object attention extractor, LoG refers to the method with
the Laplacian of Gaussian, PAPPM refers to parallel aggregation PPM, and DCFFM refers
to the detail and context feature fusion module. The ablation experimental results indicate
that each module proposed in our STDC-CT network contributes to the improvement of se-
mantic segmentation accuracy. Specifically, the SOAE module in STDC-CT improved mIoU
by 0.4% and 0.7% on the CityScapes and UAV-City datasets, respectively. The LoG module
increased mIoU by 0.2% and 0.4% on the same datasets, while the PAPPM module resulted
in mIoU improvements of 0.3% and 0.4%. Moreover, the DCFFM module led to mIoU
improvements of 0.3% and 0.7% on the CityScapes and UAV-City datasets, respectively. In
summary, the proposed modules in STDC-CT are effective for semantic segmentation.

Table 2. Performance of the SOAE module with different templates.

Template
mIoU (%)

Cityscapes UAV-City

SOAE-T1 74.8 64.7
SOAE-T2 75.4 65.4
SOAE-T3 75.7 65.8

Table 3. Study of ablation for our proposed modules on the Cityscapes and UAV-City test sets.

Method SOAE LoG PAPPM DCFFM
mIoU (%)

UAV-City Cityscapes

STDC-Seg75 [17] - - - - 65.1 75.3
STDC-CT75 X - - - 65.8 75.7
STDC-CT75 X X - - 66.2 75.9
STDC-CT75 X X X - 66.6 76.2
STDC-CT75 X X X X 67.3 76.5
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5.4. Compare with Mainstream Methods

On the UAV-City, Cityscapes, and UAVid datasets, we compare our approach with
mainstream methodologies in this section.

Results on UAV-City. We compare our proposed STDC-CT network with U-Net [35],
PSPNet [37], DeepLabv3+ [49], STDC-Seg [17], and our STDC-CT on the UAV-City test
set. As shown in Table 4, our STDC-CT network achieves a mIoU of 67.3% with an input
scale of 0.75, corresponding to an image input size of 960× 540, and operates at 196.8 FPS.
This performance surpasses STDC-Seg by 2.2%. Building upon these results, we further
generate detailed IoU values for each class in the UAV-City dataset, as shown in Table 5.
Our method achieves the highest IoU values in most classes, outperforming other methods.
Additionally, we visualize the attention mechanisms of STDC-Seg and STDC-CT models for
the car class by using Grad-CAM, as shown in Figure 11. Where (a) shows the input image,
(b) shows the results from STDC-Seg, and (c) shows the results from STDC-CT. It can be
observed that our STDC-CT model exhibits more focused attention on the car, reducing
false positives. Therefore, our STDC-CT model demonstrates significant advantages in
small object segmentation.

Figure 11. Comparison of Grad-CAM between STDC-CT and STDC-Seg on the UAV-CITY dataset.

Table 4. Comparisons with other mainstream methods on UAV-City.

Model Resolution Backbone mIoU (%) FPS

U-Net [35] 960× 540 VGG16 63.4 28.9
PSPNet [37] 960× 540 ResNet50 52.1 34.5

DeepLabv3+ [49] 960× 540 MobileNetV2 57.4 35.5
STDC-Seg [17] 960× 540 STDC1 65.1 212.3

STDC-CT 960× 540 STDC1 67.3 196.8
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Table 5. The results of the experiment on the UAV-City dataset.

Model

Class IoU (%)

mIoU (%)Hor.
Roof

Hor.
Gro.

Hor.
Lawn River Plant Tree Car Hum. Bui. Road Obs. Back.

U-Net 63.4 51.5 57.7 81.4 57.9 85.6 56.1 13.5 78.9 80.6 81.5 53.5 63.4
PSPNet 52.1 47.8 55.2 75.3 43.5 80.6 32.2 2.1 71.7 73.2 68.8 51.5 54.5

DeepLabv3+ 54.1 60.2 65.2 77.8 36.2 84 42.4 5.8 76.2 75.2 65.8 50 57.7
STDC-Seg75 64.3 62.8 58.5 80.6 60.5 83.4 58.1 16.1 81.6 79.5 83.9 52.3 65.1
STDC-CT75 65.6 62.3 66.2 85.7 59.2 86.7 61.3 18.6 83.1 82.5 82.1 54.3 67.3

Results on Cityscapes. On the Cityscapes test set, we assign the segmentation ac-
curacy and inference speed of the method proposed in Table 6. Compared to previous
methods, our method improves segmentation accuracy with minimal loss in inference
speed. At an input scale of 0.75, corresponding to an image size of 1536× 768, our STDC-CT
network achieves a mIoU of 76.5% at a speed of 122.6 FPS, outperforming STDC-Seg75
by 1.2%.

Table 6. Comparisons with other mainstream methods on Cityscapes.

Model Backbone GPU mIoU FPS

ENet [43] - Nvidia Titan X 58.3 76.9
ICNet [45] PSPNet-50 Nvidia Titan X 69.5 30.3

HMSeg [50] - GTX 1080Ti 74.3 83.2
BiSeNetV1 [16] ResNet-18 GTX 1080Ti 74.7 65.5
SwiftNet [51] ResNet-18 GTX 1080Ti 75.4 39.9

HyperSeg-M [52] EfficientNet GTX 1080Ti 75.8 36.9
BiSeNetV2-L [53] - GTX 1080Ti 75.3 47.3

PP-Lite-T2 [54] STDC1 GTX 1080Ti 74.9 143.6
STDC-Seg75 [17] STDC1 GTX 1080Ti 75.3 126.7

CABiNet [55] MobileNetV3 RTX 2080Ti 75.9 76.5
STDC-CT75 STDC1 RTX 2080Ti 76.5 122.6

Results on UAVid. As shown in Table 7, we conducted experiments on the UAVid
dataset using mainstream semantic segmentation methods as well as our proposed STDC-
CT method. The IoU values of each class are measured on the test set. The experimental
results indicate that STDC-CT achieves the highest IoU values in the clutter, building, tree,
and moving car classes, and the mIoU value of STDC-CT is 2.5% higher than the STDC-Seg.

Table 7. Comparisons with other mainstream methods on UAVid.

Model
Class IoU (%)

mIoU (%)
Clutter Building Road Tree Low Veg. Mov. car Static Car Human

FCN-8s [34] 63.9 84.7 76.5 73.3 61.9 65.9 45.5 22.3 62.4
SegNet [56] 65.6 85.9 79.2 78.8 63.7 68.9 52.1 19.3 64.2
BiSeNet [16] 64.7 85.7 61.1 78.3 77.3 48.6 63.4 17.5 61.5
U-Net [35] 61.8 82.9 75.2 77.3 62.0 59.6 30.0 18.6 58.4

BiSeNetV2 [53] 61.2 81.6 77.1 76.0 61.3 66.4 38.5 15.4 59.7
DeepLabv3+ [49] 68.9 87.6 82.2 79.8 65.9 69.9 55.4 26.1 67.0
UNetFormer [57] 68.4 87.4 81.5 80.2 63.5 73.6 56.4 31.0 67.8

BANet [58] 66.6 85.4 80.7 78.9 62.1 69.3 52.8 21.0 64.6
STDC-Seg75 [17] 68.7 86.8 79.4 78.6 65.4 68.1 55.7 24.5 65.9

STDC-CT75 69.2 88.5 80.1 80.4 66.3 73.8 60.3 28.4 68.4
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5.5. Embedded Experiments

The TX2 [59] is an embedded computing board based on NVIDIA’s Tegra X2 system-
on-chip (SoC), known for its high performance, low power consumption, and powerful
computing capabilities. It is commonly used in sectors such as robots, self-driving cars,
and intelligent edge computing. The detailed specifications of the NVIDIA TX2 are shown
in Table 8.

Table 8. Detailed specifications of the Jetson TX2 embedded system.

Items Specification

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU Quad-Core ARM®
Cortex®-A57 MPCore

GPU 256-core NVIDIA Pascal™ architecture GPU
Power 7.5 W/15 W

Memory 8GB 128-bit LPDDR4 Memory 1866 MHx − 59.7 GB/s
Storage 32 GB eMMC 5.1

Operating system(OS) Linux for Tegra R28.1
AI Performance 1.33 TFLOPs

The NVIDIA TensorRT inference acceleration library was utilized to maximize GPU
resource utilization on the TX2. We configured JetPack 4.5.1 and CUDA 10.2 on the NVIDIA
TX2, and set up the experimental environment with PyTorch 1.9.1. Then, we deployed
the trained models on the TX2 for real-time segmentation testing in the UAV-City dataset
scenarios, with each image input size set to 960× 540. Table 9 presents the inference speeds
of various models for predicting a single image. The experimental results show that our
proposed STDC-CT model achieves an average inference speed of only 58.32 ms on the
TX2, effectively meeting the real-time segmentation demands in real-world environments.

Table 9. Inference speed on TX2.

Model mIoU (%) Inference Time (ms)

U-Net 63.4 392.63
PSPNet 52.1 332.47

DeepLabv3+ 57.4 253.78
STDC-Seg 65.1 52.71
STDC-CT 67.3 58.32

5.6. Analysis of UAV Emergency Landing Zone Recognition Results

Our model produced high-quality segmentation results on the UAV-City test set.
Figure 12 shows the visual results of our experiments, which demonstrate that our STDC-
CT method can accurately identify the emergency landing zones for UAVs as well as other
objects on the ground, such as the car and human classes. In comparison, the segmentation
results of other methods do not exhibit the same level of superior performance in terms of
fine texture details and accurate small object recognition as STDC-CT.

Finally, we mounted the TX2 onto the UAV for real-world flight testing. As shown in
Figure 13a–c, we present the results of recognizing the horizontal roof, ground, and lawn
using the STDC-CT method, respectively. The experimental results show that our method
can successfully recognize UAV emergency landing zones in real environments, thus fully
validating the superiority and practicality of our method.
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Figure 12. Semantic segmentation results on the UAV-City dataset with DeepLabv3+, U-net, STDC-
Seg, and STDC-CT, respectively.

Figure 13. Results of real-world flight testing. We have recognized the horizontal ground as the
emergency landing zone in subfigure (a). Subfigures (b,c) show that we have recognized the hori-
zontal roof as the emergency landing zone and the horizontal lawn as the emergency landing zone,
respectively.
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6. Discussion

Recognizing emergency landing zones is extremely important for unmanned aerial
vehicles (UAVs) as they may encounter unexpected situations during flight missions. Com-
pared with traditional methods, utilizing semantic segmentation techniques for recognizing
emergency landing zones can provide higher accuracy; this can ensure UAV flight safety
and protect the safety of ground vehicles and pedestrians. As described in Section 3, due
to the complex scenes and confusing backgrounds of UAV aerial images, UAVs face great
challenges when performing semantic segmentation tasks. Our UAV-City dataset provides
a wider field of view for UAVs to choose landing zones. However, due to the relatively high
altitudes at which drones operate, the visibility of small things, like people on the ground,
is constrained. Therefore, during the actual landing processes, the real-time segmentation
of UAV aerial images is necessary. As shown in Table 1, Figures 11 and 12, the proposed
STDC-CT model captures rich semantic information in global contextual information and
obtains multi-scale features through different operations, which is important for small
object segmentation. However, while the proposed network can achieve excellent segmen-
tation results and provide additional technical support for UAVs in recognizing emergency
landing zones, UAVs may still encounter more complex ground environments during real-
time operations. Therefore, comprehensive landing strategies need to be further refined
based on new factors. Ultimately, the unconditional protection of lives and property on the
ground should be ensured.

7. Conclusions

In this paper, we established a new UAV aerial dataset for studying the recognition of
UAV emergency landing zones. The dataset consists of 600 images with a capture height of
120 m and a size of 1280× 720 pixels. Each image is densely annotated with 12 categories for
semantic segmentation experiments. To adapt to the characteristics of UAV aerial images,
we propose the STDC-CT model, which is based on the STDC backbone network for the
real-time semantic segmentation of UAV scenes. The advantage of this method is that it can
improve the segmentation accuracy of small objects without generating a large amount of
redundant computations. Extensive experiments and visualization results demonstrate the
effectiveness of the STDC-CT network. On the UAV-City dataset, we achieve 67.3% mIoU
at a speed of 196.8 FPS, 76.5% mIoU at a speed of 122.6 FPS on the CityScapes dataset, and
68.4% mIoU on the UAVid dataset, while also improving the segmentation accuracies of
vehicles and pedestrians in UAV scenes. Moreover, the inference speed for each image on
the NVIDIA TX2 embedded device is only 58.32 ms. Finally, we mounted the TX2 onto the
UAV for real-world flight testing and successfully recognized emergency landing zones.
In the future, we will continue to explore model lightweight model techniques to further
improve segmentation performance.

Author Contributions: Conceptualization, Z.C., Y.L. and B.J.; methodology, Z.C.; software, Z.C. and
J.T.; validation, Z.C. and J.T.; formal analysis, Z.C., Y.L. and B.J.; investigation, C.L., J.T. and R.Q.;
resources, B.J.; data curation, Z.C.; writing—original draft preparation, Z.C. and Y.L.; writing—review
and Z.C., C.L. and B.J.; visualization, Z.C. and J.T.; supervision, B.J.; project administration, B.J., C.L.
and R.Q.; funding acquisition, B.J., R.Q. and C.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Open Fund of the Key Laboratory of Flight Techniques
and Flight Safety, CAAC (no. FZ2021KF13), the Fundamental Research Funds for Central Universities
(J2023-045), and Civil Aviation Flight University of China Science Innovation Fund for Graduate
Students (no. X2023-40).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The UAVid dataset can be found at https://uavid.nl/ (accessed on 22
May 2023). The Cityscapes dataset can be found at https://www.cityscapes-dataset.com/ (accessed
on 22 May 2023). The UAV-City dataset in this study is available from the corresponding author
upon request.

https://uavid.nl/
https://www.cityscapes-dataset.com/


Sensors 2023, 23, 6514 21 of 23

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, S.Y.; Muminov, A. Forest Fire Smoke Detection Based on Deep Learning Approaches and Unmanned Aerial Vehicle Images.

Sensors 2023, 23, 5702. [CrossRef] [PubMed]
2. Li, S.; Yang, X.; Lin, X.; Zhang, Y.; Wu, J. Real-Time Vehicle Detection from UAV Aerial Images Based on Improved YOLOv5.

Sensors 2023, 23, 5634. [CrossRef] [PubMed]
3. Lin, T.H.; Su, C.W. Oriented Vehicle Detection in Aerial Images Based on YOLOv4. Sensors 2022, 22, 8394. [CrossRef]
4. Zhu, C.; Zhu, J.; Bu, T.; Gao, X. Monitoring and Identification of Road Construction Safety Factors via UAV. Sensors 2022, 22, 8797.

[CrossRef]
5. Natesan, S.; Armenakis, C.; Benari, G.; Lee, R. Use of UAV-borne spectrometer for land cover classification. Drones 2018, 2, 16.

[CrossRef]
6. Matikainen, L.; Karila, K. Segment-based land cover mapping of a suburban area—Comparison of high-resolution remotely

sensed datasets using classification trees and test field points. Remote Sens. 2011, 3, 1777–1804. [CrossRef]
7. Belcore, E.; Piras, M.; Pezzoli, A. Land Cover Classification from Very High-Resolution UAS Data for Flood Risk Mapping.

Sensors 2022, 22, 5622. [CrossRef]
8. Trujillo, M.A.; Martínez-de Dios, J.R.; Martín, C.; Viguria, A.; Ollero, A. Novel Aerial Manipulator for Accurate and Robust

Industrial NDT Contact Inspection: A New Tool for the Oil and Gas Inspection Industry. Sensors 2019, 19, 1305. [CrossRef]
[PubMed]

9. Karam, S.N.; Bilal, K.; Shuja, J.; Rehman, F.; Yasmin, T.; Jamil, A. Inspection of unmanned aerial vehicles in oil and gas industry:
critical analysis of platforms, sensors, networking architecture, and path planning. J. Electron. Imaging 2022, 32, 011006. [CrossRef]

10. Zhang, C.; Tang, Z.; Zhang, M.; Wang, B.; Hou, L. Developing a more reliable aerial photography-based method for acquiring
freeway traffic data. Remote Sens. 2022, 14, 2202. [CrossRef]

11. Lu, M.; Xu, Y.; Li, H. Vehicle Re-Identification Based on UAV Viewpoint: Dataset and Method. Remote Sens. 2022, 14, 4603.
[CrossRef]

12. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Glaeser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep multi-modal
object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. Intell.
Transp. Syst. 2020, 22, 1341–1360. [CrossRef]

13. Siam, M.; Gamal, M.; Abdel-Razek, M.; Yogamani, S.; Jagersand, M.; Zhang, H. A comparative study of real-time semantic
segmentation for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 587–597.

14. Asgari Taghanaki, S.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and
medical images: A review. Artif. Intell. Rev. 2021, 54, 137–178. [CrossRef]

15. Liu, S.; Cheng, J.; Liang, L.; Bai, H.; Dang, W. Light-weight semantic segmentation network for UAV remote sensing images.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8287–8296. [CrossRef]

16. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.

17. Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking bisenet for real-time semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9716–9725.

18. Lyu, Y.; Vosselman, G.; Xia, G.S.; Yilmaz, A.; Yang, M.Y. UAVid: A semantic segmentation dataset for UAV imagery. ISPRS J.
Photogramm. Remote Sens. 2020, 165, 108–119. [CrossRef]

19. Zhang, F.; Jiao, L.; Li, L.; Liu, F.; Liu, X. Multiresolution attention extractor for small object detection. arXiv 2020, arXiv:2006.05941.
20. Patil, K.A.; Prashanth, K.M.; Ramalingaiah, A. Texture Feature Extraction of Lumbar Spine Trabecular Bone Radiograph Image

using Laplacian of Gaussian Filter with KNN Classification to Diagnose Osteoporosis. J. Phys. Conf. Ser. 2021, 2070, 012137.
[CrossRef]

21. Gunn, S.R. On the discrete representation of the Laplacian of Gaussian. Pattern Recognit. 1999, 32, 1463–1472. [CrossRef]
22. Stoppa, F.; Vreeswijk, P.; Bloemen, S.; Bhattacharyya, S.; Caron, S.; Jóhannesson, G.; de Austri, R.R.; Oetelaar, C.v.d.; Zaharijas,

G.; Groot, P.; et al. AutoSourceID-Light. Fast optical source localization via U-Net and Laplacian of Gaussian. arXiv 2022,
arXiv:2202.00489.

23. Xu, J.; Xiong, Z.; Bhattacharyya, S.P. Pidnet: A real-time semantic segmentation network inspired from pid controller. arXiv 2022,
arXiv:2206.02066.

24. Kaljahi, M.A.; Shivakumara, P.; Idris, M.Y.I.; Anisi, M.H.; Lu, T.; Blumenstein, M.; Noor, N.M. An automatic zone detection
system for safe landing of UAVs. Expert Syst. Appl. 2019, 122, 319–333. [CrossRef]

25. Shah Alam, M.; Oluoch, J. A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs).
Expert Syst. Appl. 2021, 179, 115091. [CrossRef]

26. Gautam, A.; Sujit, P.; Saripalli, S. A survey of autonomous landing techniques for UAVs. In Proceedings of the 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 1210–1218. [CrossRef]

27. Xin, L.; Tang, Z.; Gai, W.; Liu, H. Vision-Based Autonomous Landing for the UAV: A Review. Aerospace 2022, 9, 634. [CrossRef]
28. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [CrossRef]

http://doi.org/10.3390/s23125702
http://www.ncbi.nlm.nih.gov/pubmed/37420867
http://dx.doi.org/10.3390/s23125634
http://www.ncbi.nlm.nih.gov/pubmed/37420800
http://dx.doi.org/10.3390/s22218394
http://dx.doi.org/10.3390/s22228797
http://dx.doi.org/10.3390/drones2020016
http://dx.doi.org/10.3390/rs3081777
http://dx.doi.org/10.3390/s22155622
http://dx.doi.org/10.3390/s19061305
http://www.ncbi.nlm.nih.gov/pubmed/30875905
http://dx.doi.org/10.1117/1.JEI.32.1.011006
http://dx.doi.org/10.3390/rs14092202
http://dx.doi.org/10.3390/rs14184603
http://dx.doi.org/10.1109/TITS.2020.2972974
http://dx.doi.org/10.1007/s10462-020-09854-1
http://dx.doi.org/10.1109/JSTARS.2021.3104382
http://dx.doi.org/10.1016/j.isprsjprs.2020.05.009
http://dx.doi.org/10.1088/1742-6596/2070/1/012137
http://dx.doi.org/10.1016/S0031-3203(98)00163-0
http://dx.doi.org/10.1016/j.eswa.2019.01.024
http://dx.doi.org/10.1016/j.eswa.2021.115091
http://dx.doi.org/10.1109/ICUAS.2014.6842377
http://dx.doi.org/10.3390/aerospace9110634
http://dx.doi.org/10.1109/TSMC.1979.4310076


Sensors 2023, 23, 6514 22 of 23

29. Tremeau, A.; Borel, N. A region growing and merging algorithm to color segmentation. Pattern Recognit. 1997, 30, 1191–1203.
[CrossRef]

30. Khan, J.F.; Bhuiyan, S.M.; Adhami, R.R. Image segmentation and shape analysis for road-sign detection. IEEE Trans. Intell. Transp.
Syst. 2010, 12, 83–96. [CrossRef]

31. Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph.
(TOG) 2004, 23, 309–314. [CrossRef]

32. Boykov, Y.Y.; Jolly, M.P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In
Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July
2001; Volume 1, pp. 105–112.

33. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]

34. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

35. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

36. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]

37. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

38. Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1925–1934.

39. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

41. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

42. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

43. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

44. Pohlen, T.; Hermans, A.; Mathias, M.; Leibe, B. Full-resolution residual networks for semantic segmentation in street scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 4151–4160.

45. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 405–420.

46. Lo, S.Y.; Hang, H.M.; Chan, S.W.; Lin, J.J. Efficient dense modules of asymmetric convolution for real-time semantic segmentation.
In Proceedings of the ACM Multimedia Asia, Beijing, China, 15–18 December 2019; pp. 1–6.

47. Wang, Y.; Zhou, Q.; Xiong, J.; Wu, X.; Jin, X. ESNet: An efficient symmetric network for real-time semantic segmentation. In
Proceedings of the Pattern Recognition and Computer Vision: Second Chinese Conference, PRCV 2019, Xi’an, China, 8–11
November 2019; Proceedings, Part II 2; Springer: Berlin/Heidelberg, Germany, 2019; pp. 41–52.

48. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NE, USA, 27–30 June 2016; pp. 3213–3223.

49. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

50. Li, P.; Dong, X.; Yu, X.; Yang, Y. When humans meet machines: Towards efficient segmentation networks. In Proceedings of the
the 31st British Machine Vision Virtual Conference, Virtual Event, 7–10 September 2020.

51. Orsic, M.; Kreso, I.; Bevandic, P.; Segvic, S. In defense of pre-trained imagenet architectures for real-time semantic segmentation
of road-driving images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 15–20 June 2019; pp. 12607–12616.

52. Nirkin, Y.; Wolf, L.; Hassner, T. Hyperseg: Patch-wise hypernetwork for real-time semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 4061–4070.

53. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic
segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [CrossRef]

http://dx.doi.org/10.1016/S0031-3203(96)00147-1
http://dx.doi.org/10.1109/TITS.2010.2073466
http://dx.doi.org/10.1145/1015706.1015720
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1007/s11263-021-01515-2


Sensors 2023, 23, 6514 23 of 23

54. Peng, J.; Liu, Y.; Tang, S.; Hao, Y.; Chu, L.; Chen, G.; Wu, Z.; Chen, Z.; Yu, Z.; Du, Y.; et al. Pp-liteseg: A superior real-time
semantic segmentation model. arXiv 2022, arXiv:2204.02681.

55. Kumaar, S.; Lyu, Y.; Nex, F.; Yang, M.Y. Cabinet: Efficient context aggregation network for low-latency semantic segmentation. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 13517–13524.

56. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

57. Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient
semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [CrossRef]

58. Wang, L.; Li, R.; Wang, D.; Duan, C.; Wang, T.; Meng, X. Transformer meets convolution: A bilateral awareness network for
semantic segmentation of very fine resolution urban scene images. Remote Sens. 2021, 13, 3065. [CrossRef]

59. Jetson TX2 Module. Available online: https://developer.nvidia.com/embedded/jetson-tx2 (accessed on 2 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1016/j.isprsjprs.2022.06.008
http://dx.doi.org/10.3390/rs13163065
https://developer.nvidia.com/embedded/jetson-tx2

	Introduction
	Related Work
	Conventional Methods for Recognizing UAV Emergency Landing Zones
	Conventional Semantic Segmentation Methods
	Methods for Semantic Segmentation Based on Deep Learning
	Generic Semantic Segmentation
	Lightweight Semantic Segmentation Network
	Real-Time Semantic Segmentation


	UAV-City Dataset
	Image Acquisition Strategy
	Image Processing and Annotation
	Image Filtering
	Image Annotation

	Statistical Analysis

	Proposed Method
	Small Object Attention Extractor for STDC
	Laplacian of Gaussian for Detail Guidance Module
	PAPPM for Capturing Contextual Information
	The Detail and Context Feature Fusion Module

	Experimental Results
	Datasets
	Implementation Details
	Ablation Study
	Compare with Mainstream Methods
	Embedded Experiments
	Analysis of UAV Emergency Landing Zone Recognition Results

	Discussion
	Conclusions
	References

