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Abstract: The degree of freedom (DOF) is an important performance metric for evaluating the design
of a sparse array structure. Designing novel sparse arrays with higher degrees of freedom, while
ensuring that the array structure can be mathematically represented, is a crucial research direction in
the field of direction of arrival (DOA) estimation. In this paper, we propose a novel L-shaped sparse
sensor array by adjusting the physical placement of the sensors in the sparse array. The proposed
L-shaped sparse array consists of two sets of three-level and single-element sparse arrays (TSESAs),
which estimate the azimuth and elevation angles, respectively, through one-dimensional (1-D) spatial
spectrum search. Each TSESA is composed of a uniform linear subarray and two sparse subarrays,
with one single common element in the two sparse subarrays. Compared to existing L-shaped
sparse arrays, the proposed array achieves higher degrees of freedom, up to 4Q1Q2 + 8Q1 − 5, when
estimating DOA using the received signal covariance. To facilitate the correct matching of azimuth
and elevation angles, the cross-covariance between the two TSESA arrays is utilized for estimation.
By comparing and analyzing performance parameters with commonly used L-shaped and other
sparse arrays, it is found that the proposed L-shaped TSESA has higher degrees of freedom and array
aperture, leading to improved two-dimensional (2-D) DOA estimation results. Finally, simulation
experiments validate the excellent performance of the L-shaped TSESA in 2-D DOA estimation.

Keywords: sensor array; wireless communication; direction of arrival (DOA) estimation; array signal
processing; L-shaped three-level; single common element sparse array (LTSESA)

1. Introduction

As we all know, direction-of-arrival (DOA) estimation is an important part of array
signal processing. One-dimensional (1-D) DOA estimation can only estimate the azimuth
angles but cannot estimate the elevation angles. Fortunately, two-dimensional (2-D) DOA
estimation can solve the above problem. Now, the 2-D direction of arrival estimation
problem is widely used in radar, internet of vehicle (IOV) and the fifth-generation (5 G)
mobile communications [1–6]. And many algorithms have been developed to solve the
problem of DOA estimation, such as improved reduced dimension MUSIC (IRD-MUSIC),
the reduced-dimension multiple signal classification algorithm, and so on [7–12]. Compared
to a 2-D planar array, L-shaped sparse arrays have lower costs and better adaptability. They
can be flexibly arranged and adjusted according to specific requirements to meet the
demands of particular tasks. Therefore, developing a structurally more reasonable and
higher degree of freedom L-shaped sparse array is a valuable proposition.

Moreover, the special geometry of the array used for DOA estimation also plays a
crucial role in the performance of DOA estimation. The concept of sparse array design
refers to the development of sparse arrays with higher degrees of freedom to reduce the
hardware cost of DOA estimation and improve its performance. Specifically, the traditional

Sensors 2023, 23, 6625. https://doi.org/10.3390/s23146625 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146625
https://doi.org/10.3390/s23146625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8630-9049
https://doi.org/10.3390/s23146625
https://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/23/14/6625?type=check_update&version=3


Sensors 2023, 23, 6625 2 of 16

L-shaped array consists of two parts. The subarrays in the X-axis and Z-axis are uniform
linear arrays. The geometric structure of the uniform linear array (ULA) limits the DOA
estimation performance of the traditional L-shaped array, which has low utilization of array
elements, low uniform degrees of freedom (uDOF), small array aperture and poor DOA
estimation ability. In order to increase the uniform degrees of freedom and expand the
array aperture, many sparse arrays have been developed to solve the 1-D DOA estimation
problem, such as minimum redundancy array (MRA) [13], nested array (NA) [14] and
coprime array (CA) [15].

Subsequently, the sparse arrays are naturally applied to the 2-D DOA. The coprime
planar array (CPA) [16] is represented by two parts, which contain the square of T1 array
elements or the square of T2 array elements, respectively. Here, T1 and T2 are a set of
coprime integers. CPA can estimate up to min{T2

1 , T2
2 } − 1 signals from the T2

1 + T2
2 array

elements. However, the application of 2-D planar sparse arrays is not flexible enough and
has a relatively low degree of freedom. Compared with 2-D planar arrays, L-shaped sparse
arrays generally have higher utilization of array elements [17–19]. Under a fixed number
of array elements, more consecutive lags can be formed to improve the uDOF of the array
and improve the performance. Therefore, this paper focuses on L-shaped sparse arrays.
In the literature [20], the L-shaped coprime array (LCA) is used for 2-D DOA estimation.
LCA consists of two parts, and each part contains 2M1 + M2 − 1 array elements. LCA
can estimate the DOA of no more than M1M2 signals, and its array’s uDOF has much
room for improvement. At this point, M1 and M2 are also a pair of coprime integers. The
design of LCA is relatively simple, so the increase in degrees of freedom is not significant.
The introduction of L-shaped optimized interleaved array’s (LOIAC) [21] configuration
significantly improves the uDOF and array aperture of L-shaped sparse arrays. LOIAC
consists of two parts, each containing N1 + N2 array elements, where N1 and N2 are also
a pair of coprime integers. Each part contains two subarrays, which can be estimated as
2(N1 + 1)(N2 − bN1c/2) + 1 signals. The uDOF of sparse arrays is often closely related to
the number of subarrays. The single part of LOIAC only has two subarrays [22], so the
array elements were not fully utilized. And the utilization of array elements, uDOF and
array aperture of L-shaped sparse arrays still have room for improvement.

In order to enhance the geometric structure of the L-shaped sparse array and improve
the performance of the array for 2-D DOA estimation, a new L-shaped sparse array named
the L-shaped three-level and single common element sparse array (LTSESA) is proposed.
Compared with other L-shaped sparse arrays, TSESA has more subarrays, higher utilization
of array elements, and can form more consecutive lags, thereby increasing the uDOF of the
array, expanding the aperture of the array, and improving the performance of 2-D DOA
estimation. In general, the main research content of this paper is as follows:
(1) This paper proposes a new L-shaped sparse array, named three-level and single

common element sparse array. Its array element configuration has a complete mathe-
matical expression.

(2) According to the mathematical expression of TSESA, its uniform degrees of freedom
expression can be derived.

(3) We evaluate the performance of the popular L-shaped sparse array and the proposed
L-shaped TSESA for 2-D DOA estimation, which fully demonstrates the superiority
of the TSESA geometry.
The rest of this paper is structured as follows. The suggested L-shaped sparse array

configuration is further explained in Section 2. The signal model based on an L-shaped
TSESA is presented in Section 3. Section 3 also presents the technique for automatically
matching elevation with anticipated azimuth angles. In Section 4, we present the simula-
tion’s findings. Finally, Section 5 brings this paper to a conclusion.

We use bold lower- and upper-case letters to distinguish between vectors and matrices
throughout the work. The transpose, complex conjugation and conjugate transpose are
shown by the superscripts [•]T, [•]* and [•]H, respectively. The mathematical expectation is
shown by E[•]. The operator for vectorization is vec(•). diag[•] denotes a matrix that is
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diagonal. The N×N identity matrix is denoted by IN . Rounding up or down is represented
by b•c and d•e. ||•||2F denotes the Frobenius norm. [•]† denotes the Moore–Penrose pseudo-
inverse operation.

2. The Configuration of L-Shaped Three-Level and Single Common Element
Sparse Array

Because the existing L-shaped sparse array still has a large room for improvement,
such as low utilization of array elements, less freedom, and smaller array aperture, in order
to improve the performance of the L-shaped sparse array for 2-D DOA estimation, this
section proposes an L-shaped three-level and single common element sparse array.

2.1. The Mathematical Expression of Array Element’s Position

The L-shaped array consists of two vertical parts, each of which is a three-level and
single common element sparse array. The center of the intersection of two identical TSESA
s is defined as the 0 element. Assume that the inter-element spacing is represented by d,
where d is equal to a half wavelength. The array element arrangement structure of the
TSESA is shown in Figure 1, which is composed of three subarrays and has a total of M
array elements. The subarray 1 is a uniform linear array (ULA) with Q1 elements. Both
subarray 2 and subarray 3 are sparse linear arrays, which contain Q1 and Q2 + 1 elements,
respectively. It is worth noting that subarray 2 and subarray 3 are connected by a single
common array element at element Q1Q2 + 4Q1 − 3, which is one of the characteristics
of array TSESA. The following is the expression of the array element arrangement of
the TSESA, where K, K1, K2 and K3 represent the array, subarray 1, subarrays 2 and
subarrays 3, respectively:

K = K1 ∪K2 ∪K3

K1 = {md|m ∈ [0, Q1 − 1]}
K2 = {(2m + Q1Q2 + 2Q1 − 1)d|m ∈ [0, Q1 − 1]}
K3 = {(mQ1 + Q1Q2 + 4Q1 − 3)d|m ∈ [0, Q2]}

(1)

where {
Q1 = 2bM/6c − 1

Q2 = M− 2Q1
(2)

Figure 1. The geometry of TSESA.

2.2. The uDOF and Array Aperture of TSESA

Uniform degrees of freedom and array aperture are important performance indicators
for measuring sparse arrays for DOA estimation. The greater the uDOF, the more signals
the array can estimate. The larger the array aperture, the higher the spatial resolution of
the array. In general, we assume that the maximum number of consecutive lags of a sparse
array is equal to the value of its uDOF.



Sensors 2023, 23, 6625 4 of 16

Suppose that the positions of subarrays R, O and P are represented by sets {r1, r2, . . . rR},
{o1, o2, . . . oO} and {p1, p2, . . . pP}, respectively. Then, the definition of the self-difference
set Tsel f and cross-difference set Tcross can be expressed by the following two formulas.

Definition 1. (Self-difference coarray): The self-difference coarray Tsel f of the array supplied by
array elements’ position set is defined as

Tsel f = {ri − rj|i, j ∈ [1, R]} ∪ {oi − oj|i, j ∈ [1, O]}
∪ {pi − pj|i, j ∈ [1, P]}.

(3)

Definition 2. (Cross-difference coarray): The cross-difference coarray Tcross of the array supplied
by array elements’ position set is defined as

Tcross = {ri − oj|i ∈ [1, R], j ∈ [1, O]}
∪ {ri − pj|i ∈ [1, R], j ∈ [1, P]}
∪ {oi − pj|i ∈ [1, O], j ∈ [1, P]}
∪ {oi − rj|i ∈ [1, O], j ∈ [1, R]}
∪ {pi − rj|i ∈ [1, P], j ∈ [1, R]}
∪ {pi − oj|i ∈ [1, P], j ∈ [1, O]}.

(4)

Set T can be seen as the union of set Tsel f and set Tcross. All lags and consecutive lags
of the set T represent DOF and uDOF, respectively. The array aperture of the array is equal to
max{T} −min{T}.

As a result, the following lemma can be derived:

Lemma 1. The range of consecutive lags of TSESA is that

Tconsecutive = [3− 2Q1Q2 − 4Q1, 2Q1Q2 + 4Q1 − 3]. (5)

Proof. See Appendix A.

Compared with the existing L-shaped sparse array, it can be known that the L-shaped
array proposed in this paper has higher degrees of freedom and array aperture as shown in
Tables 1 and 2.

Table 1. Consecutive lag numbers for different arrays.

Number of Array Elements
The Largest Number of Consecutive Lags (X-axis or Z-axis)

L-Shaped ULA L-Shaped CA L-Shaped OIAC L-Shaped TSESA

23 23 47 65 91
29 29 65 97 127
35 35 95 133 195
41 41 125 177 255
47 47 167 225 331
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Table 2. Aperture of the array for different arrays.

Number of Array Elements
The Maximum Aperture of the Array (X-axis or Z-axis)

L-Shaped ULA L-Shaped CA L-Shaped OIAC L-Shaped TSESA

23 12 35 39 45
29 15 54 47 63
35 18 77 62 97
41 21 104 87 127
47 24 143 159 165

3. The Signal Model and Estimation Method Used
3.1. The Signal Model

As shown in Figure 2, the L-shaped TSESA consists of two perpendicular TSESAs,
located on the X-axis and Z-axis, respectively. The intersection center of two TSESAs
is defined as 0. It is assumed that K signals hit the L-shaped TSESA from K directions
(θk, βk)

K
k=1. In this paper, the signal number is regarded as a priori information and can be

estimated by the minimum description length (MDL) criterion [23]. These signals have the
following characteristics:

(1) The sources of these signals are located in the far field range of the array;
(2) These signals are narrow-band signals;
(3) These signals are irrelevant.

Figure 2. The geometry of L-shaped TSESA.

θ and β are used to represent the azimuth and elevation angles. As shown in Figure 2,
the incident signal is emitted from the signal source towards the L-shaped array. The angle
between the incident path of the signal and the X-axis of the array is defined as the azimuth
angle. The angle between the incident path of the signal and the Z-axis of the array is
defined as the elevation angle. Considering the characteristics of sparse configuration, the
mutual coupling interference between sensor elements is very small, and the focus of this
article is on the design of sparse arrays. Therefore, the model is constructed under ideal
conditions, with negligible mutual coupling interference.

Based on the above communication environment, the signal reception model of the
L-shaped TSESA located in the X-axis and Z-axis can be modeled as follows:

x(t) =
K

∑
k=1

aX(θk)sk(t) + nX(t) = AXs(t) + nX(t), (6)
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z(t) =
K

∑
k=1

aZ(βk)sk(t) + nZ(t) = AZs(t) + nZ(t). (7)

where sk(t) denotes the kth incident signal; s(t) is a vector of all incident signals; n(t)
represents the noise vector, where the noise is Gaussian white noise and is not related to
the signals; and aX(θk) and aZ(βk) denote the azimuth or elevation steering vector of the
kth incident signal, respectively. Specifically, the wth element in the steering vector can be
expanded as follows:

[aX(θk)]w = e
−j2πmwd sin(θk)

λ , (8)

[aZ(βk)]w = e
−j2πmwd sin(βk)

λ . (9)

mwd represents the mathematical expression of the position of the wth element, and mwd
belongs to K.

3.2. The Estimation of Azimuth Angles

Since the noise vector n(t) and the signal vector s(t) are not correlated, the autocorre-
lation operation is performed on the signal vector:

RX = E[x(t)xH(t)] = AXRs AX
H + σn

2 I, (10)

RZ = E[z(t)zH(t)] = AZRs AZ
H + σn

2 I. (11)

where Rs = diag(σ1
2, σ2

2, . . . σK
2) and σn

2 represent the power of the incident signal and
noise, respectively.

Then, by vectorizing RX and RZ respectively, we can obtain

x = vec(RX) = PXR + σn
2 Ī, (12)

z = vec(RZ) = PZR + σn
2 Ī. (13)

where R = [σ1
2, σ2

2. . . σK
2]T and Ī = [eT

1 , eT
2 , . . . eT

M]. eT
w is a column vector, except the w-th

element is equal to 1; the other elements are 0.
PX and PZ can be expanded as follows, and the � is the Khatri–Rao product:

PX = AX
∗ � AX , (14)

PZ = AZ
∗ � AZ. (15)

The steering matrices PX and PZ represent T on the X-axis and Z-axis, respectively. T
is generated by the self difference or mutual difference between subarrays 1, 2 and 3. x and
z can be regarded as the incident signals received on T. But T is discontinuous, and we
need to use continuous T. Therefore, we define U as the largest consecutive element in T,
and use the subscript U to represent the largest continuous part in T.

In order to avoid the interference of spurious peaks on DOA estimation, the spatial
smoothing technique [24,25] is introduced to deal with xU:

Rtemp = xUxH
U . (16)

Then, Rss can be easily obtained by averaging all submatrices:

Rss =
1
L

L

∑
L=1

Rtemp(m), (17)
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Rtemp = Rtemp(m : m + l + 1, m : m + l + 1). (18)

where L = l+1
2 and 1 ≤ m ≤ L.

Furthermore, through a series of MUSIC algorithms, the spatial spectrum function
can be expanded as follows, where āXU denotes the virtualized steering vector on the
X-axis and EN denotes the noise subspace. By searching the spatial spectrum function, the
azimuth angle θ can be successfully estimated:

θ̂k = arg min
θ

āH
XU(θk)EN EH

N āXU(θk). (19)

3.3. The Estimation of Matched Elevation Angles

In the following sections, the azimuth information θ̂ =
(
θ̂1, θ̂2, . . . , θ̂K

)
estimated in the

previous section is used to estimate the elevation angle β. By calculating the cross covariance
of x(t) and z(t), it is effective to match the estimated azimuth and elevation angles.

By substituting the estimated azimuth information, the steering matrix of the array
can be displayed in the following form:

ÂX = [a(θ̂1), a(θ̂2), · · ·, a(θ̂K)]. (20)

The cross covariance of x(t) and z(t) is shown by

RXZ = E[x(t)zH(t)] = AXRs AZ
H. (21)

Since each column element of AX corresponds to AZ one by one, the steering matrix
AZ that needs to be estimated can be equivalent to its corresponding matrix AX. By
solving the following least squares problem, the steering matrix AZ can be successfully
estimated [26]:

ÂZ = arg min
ÂZ

||RXZ − ÂXRs AH
Z ||2F. (22)

The Rs in the above formula can be obtained by eigenvalue decomposition of the
covariance matrix RX :

RX = EsΛsEH
s + EnΛnEH

n . (23)

where Λs ∈ CK×K and Λn ∈ C(M−1−K)×(M−1−K). Particularly, Λs is a diagonal matrix of
eigenvalues of Es; Λn is a diagonal matrix of eigenvalues of En; Es is the signal subspace
eigenvector matrices; and En is the noise subspace eigenvector matrices. By combining (10)
and (23), Rs can be estimated [26]:

R̂s = ÂX
†EsΛsEH

s (ÂX
H
)†. (24)

Therefore, ÂZ can be derived as the following mathematical expression:

ÂZ = (R̂s
−1

(ÂX)
†RXZ)

H

= ((ÂX
†EsΛsEH

s (ÂH
X )

†)−1 ÂX
†RXZ)

H.
(25)

where ÂZ ∈ CM×K, and M cannot be less than K because of rank deficiency.
Therefore, the covariance matrix of the elevation angles can be calculated by the

estimated ÂZ:

R̂Zk = [ÂZk ]:,k[ÂZk ]
H
:,k. (26)
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By searching the spatial spectrum function as follows, the azimuth angle β can be
successfully estimated. At this time, the estimated azimuth angles θ̂ =

(
θ̂1, θ̂2, . . . , θ̂K

)
and

elevation angles β̂ =
(

β̂1, β̂2, . . . , β̂K
)

are matched one by one:

β̂k = arg min
β

āH
ZU(θk)EN EH

N āZU(θk). (27)

4. Numerical Experiments

In this section, we evaluate the differences in the 2-D DOA estimation performance of
various array configurations through simulation experiments. The array configurations
involved in the evaluation include the L-shaped ULA, L-shaped CA, L-shaped OIAC and
L-shaped TSESA proposed in this paper. The array elements’ locations are shown in Table 3.
In order to ensure the fairness of the comparison by controlling the variables, we set the
number of array elements in the array to 23, and each signal has the same transmit power.
The text uses the root mean square error (RMSE) curve to show the estimation performance
of the arrays, and its mathematical expression is as follows:

RMSE=

√√√√ 1
2NsK

K

∑
k=1

Ns

∑
Ns=1

(θ̂Ns ,k − θk)
2
+ (β̂Ns ,k − βk)

2
. (28)

where Ns, θ̂Ns ,k and β̂Ns ,k express the Monte Carlo times, azimuth and elevation estimation
for the Ns-th trial of the k-th signal.

The definition of signal-to-noise ratio (SNR) is given by the following formula:

SNR = 10 log10

δ2
p

δ2
n

. (29)

where δk represents the power of the kth signal, and δn represents the noise power. In this
paper, it is assumed that all sources are of equal power and all elements have similar noise.

Table 3. The array elements’ locations for different arrays.

Different Arrays
Element Positions

Intersection Element’s Location Other Elements’ Locations (X-axis or Z-axis)

L-shaped ULA 0 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
L-shaped CA 0 4, 5, 8, 10, 12, 15, 16, 20, 25, 30, 35

L-shaped OIAC 0 4, 8, 12, 16, 20, 14, 18, 19, 32, 34, 39
L-shaped TSESA 0 1, 2, 23, 25, 27, 30, 33, 36, 39, 42, 45

4.1. Experiment 1

The main purpose of this experiment is to verify the effectiveness of the L-shaped
TSESA proposed in this paper for two-dimensional DOA estimation, and to verify the
ability to pair the estimated azimuth and elevation angles (θk, βk)

K
k=1 one by one. The array

structure of the L-shaped TSESA used is shown in Table 3. The number of snapshots is set
to 200, and the SNR is set to 5 dB. The estimated three pairs of test signals are incident on
the array from directions (−30◦, 50◦)k=1, (20◦, 60◦)k=2 and (40◦, 70◦)k=3, respectively, and
the test signal input is arranged in order. As shown in Figure 3, the spatial spectrum of the
azimuth and elevation angles of the test signals is successfully drawn. The spectral peaks
represent the estimated values, and the curves are clear, and the spectral peaks are clear
too. The spatial spectra of the elevation angles are drawn one by one according to the order
of the corresponding azimuth angles, such as Figure 3b–d. So the estimated azimuth and
elevation angles are successfully paired one by one.
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(a) The spatial spectrum of azimuth angles. (b) (−30◦, 50◦)k=1.

(c) (20◦, 60◦)k=2. (d) (40◦, 70◦)k=3.

Figure 3. The spatial spectrum of azimuth and elevation angles.

4.2. Experiment 2

The purpose of this experiment is to study the ability of each L-shaped array for the
multi-signal estimation or underdetermined estimation. Since the array elements’ locations
in the X-axis and Z-axis are the same, only the DOA estimation of the test azimuth angles is
sufficient for evaluation. When the array is used for multi-signal estimation, the number of
snapshots required is relatively high. Therefore, in this experiment, the number of snapshots
is expanded to 1000, and the SNR is reduced to 0 dB. To maintain fairness in the comparison
and control variables, we establish a configuration of 23 elements for all the arrays.

Since the uniform array cannot achieve underdetermined estimation, we use 11 di-
rections as test signals, which are derived from 11 equal divisions from −60◦ to 60◦ as
shown in the Figure 4a. The reason for using 11 signal sources in this case is because for
an L-shaped uniform linear array (ULA), both its X-axis and Z-axis form uniform linear
arrays, making it impossible to achieve underdetermined estimation. Taking the X-axis as
an example, with 12 elements, we can estimate a maximum of 11 signal sources. L-shaped
CA, L-shaped OIAC and L-shaped TSESA can achieve underdetermined estimation. The
L-shaped CA can estimate up to M1M2 signals [20]. Since the M1 and M2 values of the
L-shaped CA used for testing are 4 and 5, respectively, we use 20 directions as test signals
as shown in Figure 4b. Similarly, the number of signal sources is limited to a maximum
estimable value of 20 [20]. These directions are derived from 20 equal divisions from −60◦

to 60◦. For L-shaped OIAC and L-shaped TSESA, we use 24 directions as test signals,
which are derived from 24 parts from −60◦ to 60◦ as shown in Figure 4c,d. From this, it
can be seen that for both L-shaped OIAC and L-shaped TSESA, the L-shaped array can
achieve underdetermined estimation. The spatial spectra of four arrays’ azimuth angles
for multi-signal estimation or underdetermined estimation are shown in Figure 4. Among
them, the number of signals that can be estimated by L-shaped TSESA is not only more
than that of L-shaped ULA and L-shaped CA, but also compared with L-shaped OIAC, the
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spatial spectrum of L-shaped TSESA is clearer, the estimation accuracy is higher, and the
estimation effect is better.

(a) L-shaped ULA with 11 signals. (b) L-shaped CA with 20 signals.

(c) L-shaped OIAC with 24 signals. (d) L-shaped TSESA with 24 signals.

Figure 4. The spatial spectrum of azimuth angles for multi-signal estimation or underdetermined
estimation.

4.3. Experiment 3

In order to verify the superior performance of the L-shaped TSESA for two-dimensional
DOA estimation, this paper introduces RMSE as an effective indicator of performance veri-
fication. The smaller the RMSE, the more accurate the DOA estimation of the array and
the better the performance. In Experiment 3, the number of snapshots is fixed at 200. SNR
takes −10 dB as the starting point, 2 dB as the step, and 10 dB as the termination point.
The signals used for estimation are (−65◦, 70◦), (15◦,−40◦) and (45◦,−25◦), respectively.
The number of array elements of the L-shaped ULA, L-shaped CA, L-shaped OIAC and
L-shaped TSESA is 23, that is, the hardware cost. In this experiment, the value of the Monte
Carlo times takes 500.

As shown in Figure 5, with the change of SNR, the signal environment becomes better,
and the four RMSE curves show a downward trend, which indicates that the effect of the
four L-shaped arrays for DOA estimation is gradually getting better. It is worth noting that,
in the whole process, the RMSE curve representing the L-shaped TSESA is always lower
than other curves because of more consecutive lags and larger array aperture [27]. This
fully demonstrates that when the signal environment of the array is consistent with the
same algorithm used, the L-shaped TSESA has the higher DOA estimation accuracy and
the better performance. It also shows that the L-shaped TSESA array has a better effect
under the same hardware cost.
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Figure 5. RMSE curves of DOA estimation versus SNR.

4.4. Experiment 4

SNR is set at 5 dB in Experiment 4. The number of snapshots starts at 100, the step is
100, and the finish point is 1000. The estimation signals are (−65◦, 70◦), (15◦,−40◦) and
(45◦,−25◦). L-shaped ULA, L-shaped CA, L-shaped OIAC and L-shaped TSESA all have
23 array elements. As demonstrated in Figure 6, as the number of snapshots increases, the
signal environment improves, and the four RMSE curves exhibit a lower trend, indicating
that the array’s effect on DOA estimation is steadily improving. In this experiment, the
value of the Monte Carlo times takes 500.

Figure 6. RMSE curves of DOA estimation versus snapshots.

Through comparison, it can be clearly seen that the RMSE curve representing the
L-shaped TSESA is always lower than the other curves. This signifies that the L-shaped
TSESA has the higher DOA estimate accuracy and the better performance because of more
consecutive lags and larger array aperture [27] when the signal environment of the array is
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consistent with the same algorithm utilized. It also demonstrates that the L-shaped TSESA
has the best benefit when the number of array elements is kept constant.

5. Conclusions

In this paper, a new type of L-shaped sparse array is proposed for two-dimensional
DOA estimation, called LTSESA. The characteristics of the array are that each part contains
three subarrays; subarray 2 and subarray 3 have a single common array element. So the
unique array structure design is more efficient and reasonable. The array has large uniform
degrees of freedom, up to 4Q1Q2 + 8Q1 − 5, and an array aperture, which can improve
the estimation accuracy and the underdetermined estimation ability of two-dimensional
DOA estimation. In addition, the array has a complete mathematical expression. This
advantage enables the rapid calculation of the sensor positions for LTSESA arrays of any
size. Simulation results show that the array has better DOA estimation ability. In the
future research work, we can try to further enhance the array structure and improve the
performance indicators of L-shaped sparse arrays.
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Appendix A

Since the consecutive lags generated by the three-level and single common element
sparse array are symmetric, we only need to prove the consecutive lags in the positive-axis
part T+ or the ones in the negative-axis part T−. In this section, we use the positive-axis
part as the proof. Consecutive lags on the positive-axis part can be represented by the
following formula:

T+ = T+
sel f ∪T

+
cross. (A1)

where

T+
cross = T+

21 ∪T
+
31 ∪T

+
32

= {oi − rj|i ∈ [1, O], j ∈ [1, R]}
∪ {pi − rj|i ∈ [1, P], j ∈ [1, R]}
∪ {pi − oj|i ∈ [1, P], j ∈ [1, O]}.

(A2)

where detailed definitions of Tsel f and Tcross are given in Formulas (3) and (4).
So, the goal which needs to be proven is here:

T+
consecutive = [0, 2Q1Q2 + 4Q1 − 3]. (A3)

Proof. (I) When M ≥ 12, then Q1 = 2bM/6c − 1 ≥ 3.
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(a) T+
32

T+
32 = {pi − oj|i ∈ [1, P], j ∈ [1, O]}

= K3 −K2

= {(Q1i + Q1Q2 + 4Q1 − 3)d|i ∈ [0, Q2]}
− {(2j + Q1Q2 + 2Q1 − 1)d|j ∈ [0, Q1 − 1]}
= {(Q1i− 2j + 2Q1 − 2)d|j ∈ [0, Q1 − 1], i ∈ [0, Q2]}.

(A4)

[T+
32]0 represents the result of T+

32 when the value of i is 0. When i = 0 and j = Q1 − 1,
0 is the starting value of T+

32. When i = 0 and j = 0, 2Q1 − 2 is the endpoint value of T+
32. A

total of Q1 values are generated in the range [0, 2Q1 − 2] with the adjoint interval 2, and
they are all an even number.

[T+
32]1 represents the result of T+

32 when the value of i is 1. When i = 1 and j = Q1 − 1,
Q1 is the starting value of T+

32. When i = 1 and j = 0, 3Q1 − 2 is the endpoint value of T+
32.

A total of Q1 values are generated in the range [Q1, 3Q1 − 2] with the adjoint interval 2,
and they are all an odd number.

Considering (2Q1 − 2)− (Q1) = Q1 ≥ 1, the odd and even numbers are interleaved
in the range [Q1, 2Q1 − 1] to form a continuous sequence [Q1, 2Q1 − 1].

Similarly, by analogy, when i = Q2− 1 and j = Q1− 1, Q1Q2−Q1 is the starting value
of T+

32. When i = Q2 − 1 and j = 0, Q1Q2 + Q1 − 2 is the endpoint value of T+
32. A total of

Q1 values are generated in the range [Q1Q2 −Q1, Q1Q2 + Q1 − 2] with the adjoint interval
2, and they are all even or odd numbers in the situation when [Q1Q2, Q1Q2 + 2Q1 − 2] are
all odd or even numbers.

When i = Q2 and j = Q1 − 1, Q1Q2 is the starting value of T+
32. When i = Q2 and

j = 0, Q1Q2 + 2Q1 − 2 is the endpoint value of T+
32. A total of Q1 values are generated in

the range [Q1Q2, Q1Q2 + 2Q1 − 2] with the adjoint interval 2, and they are all odd or even
number in the situation when [Q1Q2 −Q1, Q1Q2 + Q1 − 2] are all even or odd numbers.

Considering (Q1Q2 + Q1 − 2) − (Q1Q2) = Q1 − 2 ≥ 0, the odd and even num-
bers are interleaved in the range [Q1Q2, Q1Q2 + Q1 − 1] to form a continuous sequence
[Q1Q2, Q1Q2 + Q1 − 1].

By combining all the subintervals above (i = 0, 1, 2. . . Q2) and combining them, it can
be concluded that the range [Q1, Q1Q2 + Q1 − 1] is continuous.

(b) T+
sel f ∪T

+
32

It is worth noting that within range [0, Q1 − 1], the TSESA has continuous elements.
Therefore, within range [0, Q1Q2 + Q1 − 1], all elements are continuous.

(c) T+
sel f ∪T

+
32 ∪T

+
21

T+
21 = {oi − rj|i ∈ [1, O], j ∈ [1, R]}

= K2 −K1

= {(2i + Q1Q2 + 2Q1 − 1)d|i ∈ [0, Q1 − 1]}
− {jd|j ∈ [0, Q1 − 1]}
= {(Q1Q2 + 2Q1 + 2i− j− 1)d

|j ∈ [0, Q1 − 1], i ∈ [0, Q1 − 1]}.

(A5)

[T+
21]0 represents the result of T+

21 when the value of i is 0. When i = 0 and j = Q1 − 1,
Q1Q2 + Q1 is the starting value of T+

21. When i = 0 and j = 0, Q1Q2 + 2Q1 − 1 is the
endpoint value of T+

21. A total of Q1 values are generated in the range [Q1Q2 + Q1, Q1Q2 +
2Q1 − 1] with the adjoint interval 1, and they are continuous.

[T+
21]1 represents the result of T+

21 when the value of i is 1. When i = 1 and j = Q1 − 1,
Q1Q2 + Q1 + 2 is the starting value of T+

21. When i = 1 and j = 0, Q1Q2 + 2Q1 + 1 is
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the endpoint value of T+
21. A total of Q1 values are generated in the range [Q1Q2 + Q1 +

2, Q1Q2 + 2Q1 + 1] with the adjoint interval 1, and they are continuous.
Obviously (Q1Q2 + 2Q1 − 1)− (Q1Q2 + Q1 + 2) = Q1 − 3 ≥ 0. [Q1Q2 + Q1, Q1Q2 +

2Q1 − 1] and [Q1Q2 + Q1 + 2, Q1Q2 + 2Q1 + 1] are continuous. So [Q1Q2 + Q1, Q1Q2 +
2Q1 + 1] is continuous.

Similarly, by analogy, when i = Q1 − 1 and j = Q1 − 1, Q1Q2 + 3Q1 − 2 is the starting
value of T+

21. When i = Q1 − 1 and j = 0, Q1Q2 + 4Q1 − 3 is the endpoint value of T+
21. A

total of Q1 values are generated in the range [Q1Q2 + 3Q1 − 2, Q1Q2 + 4Q1 − 3] with the
adjoint interval 1, and they are all continuous. By combining all the subintervals above, it
can be seen that range [Q1Q2 + Q1, Q1Q2 + 4Q1 − 3] is continuous.

Considering (Q1Q2 + Q1) − (Q1Q2 + Q1 − 1) = 1, range [0, Q1Q2 + Q1 − 1] and
range [Q1Q2 + Q1, Q1Q2 + 4Q1 − 3] are linkable. Obviously, the range [0, Q1Q2 + 4Q1 − 3]
formed by them together is continuous.

(d) T+
sel f ∪T

+
32 ∪T

+
21 ∪T

+
31

T+
31 = {pi − rj|i ∈ [1, P], j ∈ [1, R]}

= K3 −K1

= {(iQ1 + Q1Q2 + 4Q1 − 3)d|i ∈ [0, Q2]}
− {jd|j ∈ [0, Q1 − 1]}
= {(Q1Q2 + 4Q1 + Q1i− j− 3)d

|j ∈ [0, Q1 − 1], i ∈ [0, Q2]}.

(A6)

[T+
31]0 represents the result of T+

31 when the value of i is 0. When i = 0 and j = Q1 − 1,
Q1Q2 + 3Q1 − 2 is the starting value of T+

31. When i = 0 and j = 0, Q1Q2 + 4Q1 − 3 is
the endpoint value of T+

31. A total of Q1 values are generated in the range [Q1Q2 + 3Q1 −
2, Q1Q2 + 4Q1 − 3] with the adjoint interval 1, and they are continuous.

[T+
31]1 represents the result of T+

31 when the value of i is 1. When i = 1 and j = Q1 − 1,
Q1Q2 + 4Q1 − 2 is the starting value of T+

31. When i = 1 and j = 0, Q1Q2 + 5Q1 − 3 is
the endpoint value of T+

31. A total of Q1 values are generated in the range [Q1Q2 + 4Q1 −
2, Q1Q2 + 5Q1 − 3] with the adjoint interval 1, and they are continuous.

Obviously (Q1Q2 + 4Q1 − 2) − (Q1Q2 + 4Q1 − 3) = 1. [Q1Q2 + 3Q1 − 2, Q1Q2 +
4Q1 − 3] and [Q1Q2 + 4Q1 − 2, Q1Q2 + 5Q1 − 3] are continuous. So [Q1Q2 + 3Q1 −
2, Q1Q2 + 5Q1 − 3] is continuous.

Similarly, by analogy, when i = Q2 and j = Q1 − 1, 2Q1Q2 + 3Q1 − 4 is the starting
value of T+

31. When i = Q2 and j = 0, 2Q1Q2 + 4Q1 − 3 is the endpoint value of T+
21. A

total of Q1 values are generated in the range [2Q1Q2 + 3Q1 − 4, 2Q1Q2 + 4Q1 − 3] with the
adjoint interval 1, and they are all continuous. By combining all the subintervals above, it
can be seen that range [Q1Q2 + 3Q1 − 2, 2Q1Q2 + 4Q1 − 3] is continuous.

Considering (Q1Q2 + 4Q1 − 3)− (Q1Q2 + 3Q1 − 2) = Q1 − 1 ≥ 0, range [0, Q1Q2 +
4Q1 − 3] and range [Q1Q2 + 3Q1 − 2, 2Q1Q2 + 4Q1 − 3] are linkable. Obviously, the range
[0, 2Q1Q2 + 4Q1 − 3] formed by them together is continuous.

(II) When M < 12, then Q1 = 2bM/6c − 1 = 1, Q2 = M− 2.
At this point, the TSESA is composed of the following formula:

K = {0} ∪K3 = {(i + M− 1)d|i ∈ [0, M− 2]} (A7)

So it is very easy to know

T+ = T+
sel f ∪T

+
cross = [0, 2M− 3]

= [0, 2Q1Q2 + 4Q1 − 3].
(A8)
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Combining the two cases (I) and (II), the following formula can be proven:

T+
consecutive = [0, 2Q1Q2 + 4Q1 − 3]. (A9)

So the value range of consecutive lags located on the positive-axis is [0, 2Q1Q2 + 4Q1− 3].
Due to the symmetry between the positive axes and negative axes of the consecutive

lags, the range of consecutive lags on the entire axis is as follows:

Tconsecutive = [3− 2Q1Q2 − 4Q1, 2Q1Q2 + 4Q1 − 3]. (A10)
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