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Abstract: With the wide application of direct sequence spread spectrum (DSSS) signals, the compre-
hensive performance of DSSS communication systems has been continuously improved, making
the electronic reconnaissance link in communication countermeasures more difficult. Electronic
reconnaissance technology, as the fundamental means of modern electronic warfare, mainly includes
signal detection, recognition, and parameter estimation. At present, research on DSSS detection
algorithms is mostly based on the correlation characteristics of DSSS signals, and autocorrelation
algorithm is the most mature and widely used method in practical engineering. With the continuous
development of deep learning, deep-learning-based methods have gradually been introduced to
replace traditional algorithms in the field of signal processing. This paper proposes a spread spectrum
signal detection method based on convolutional neural network (CNN). Through experimental anal-
ysis, the detection performance of the CNN model proposed in this paper on DSSS signals in various
situations has been compared and analyzed with traditional autocorrelation detection methods for
different signal-to-noise ratios. The experiments verified the estimation performance of the model in
this paper under different signal-to-noise ratios, different spreading code lengths, different spreading
code types, and different modulation methods and compared it with the autocorrelation detection
algorithm. It was found that the detection performance of the model in this paper was higher than
that of the autocorrelation detection method, and the overall performance was improved by 4 dB.

Keywords: direct sequence spread spectrum (DSSS); convolutional neural network (CNN); deep learning;
DSSS signal detection; autocorrelation detection method; spread spectrum signal detection method

1. Introduction

With the continuous development of technology, wireless communication technology
has become increasingly mature and widely used in various communication systems in
daily life. At the same time, in the rapidly developing modern military field of information
technology, in order to enhance the concealment, security, and anti-interference ability
of wireless communication, spread spectrum communication technology has also been
widely applied in military communication systems [1]. Spread spectrum communication is
a communication method that uses pseudo-random sequences to modulate information
code sequences and broaden their spectrum. According to Shannon’s theorem, spread
spectrum communication reduces the power spectrum of the signal during the process of
expanding the spectrum, making the communication signal more covert. Direct sequence
spread spectrum (DSSS) communication is one of the most widely used spread spectrum
communication methods. It modulates information code through a high-speed pseudo-
code sequence to the spread spectrum so that the signal energy is greatly reduced such
that it is completely submerged by noise. It has the advantages of good concealment,
relatively low power spectral density, strong anti-interception ability, etc., and is widely
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used in various civil and military communication systems. There has been research on the
application of spread spectrum signals in the field of 5G communication [2,3].

In modern warfare, electronic warfare has gradually become an important factor af-
fecting the process and outcome of warfare. The dominant party in electronic warfare will
have a higher chance of winning and can gain more strategic advantages during the combat
process, which can better suppress the disadvantaged party [4,5]. With the wide application
of DSSS signals, the comprehensive performance of DSSS communication systems has
been continuously improved, making the electronic reconnaissance link in communication
countermeasures more difficult. Electronic reconnaissance technology, as the fundamental
means of modern electronic warfare, mainly includes signal detection, recognition, and
parameter estimation. In non-cooperative situations [6], if the intercepted signal cannot be
identified and the parameter estimated, it will be impossible to demodulate the intercepted
signal and obtain useful information. In order to more effectively monitor and interfere
with enemy signals, it is particularly important to accurately and efficiently identify the in-
tercepted signals and estimate their parameters in the increasingly complex electromagnetic
environment. Therefore, in non-cooperative situations, it is of great practical significance to
study how to accurately detect direct spread spectrum signals in real time and estimate
their parameters.

DSSS detection is the foundation of parameter estimation and demodulation of direct
spread spectrum signals, and is an important research topic in the field of communication
reconnaissance [7]. The traditional detection methods for direct spread spectrum signals
mainly include energy detection, correlation detection, high-order statistics detection, and
cyclic spectrum detection.

The energy detection method was first developed by Urkowitz [8]. Its main basis
is the energy of the signal and noise, as well as the energy greater than the noise. By
setting an appropriate threshold, the presence of a signal can be detected. However, if the
noise power is too high and the threshold value is uncertain, it will lead to a decrease in
algorithm performance.

The correlation detection method is a detection algorithm of direct sequence spread
spectrum signal based on the difference in autocorrelation power spectral density between
direct sequence spread spectrum signal and noise. Javed et al. proposed a detection
method for direct spread spectrum signals in multi-signal environments based on auto-
correlation fluctuations [9]. This method is designed for situations where the received
signal includes not only the direct spread spectrum signal but also other effective signals
with high signal-to-noise ratios. It mainly improves the detection performance of the
direct spread spectrum signal by suppressing the influence of the main peak value on
the threshold value, thereby reducing the influence of other signals on blind detection of
the direct spread spectrum signal. Based on previous research, Zhang et al. proposed a
detection method combining wavelet decomposition and delayed correlation to address
the problem of discontinuous and unstable correlation peaks in DSSS signals under low
signal-to-noise ratio conditions [10]. The noise of the signal is reduced through wavelet
decomposition, making the correlation peaks of the DSSS signal more obvious and easier
to detect, effectively improving the detection performance of the direct spread spectrum
signal in low signal-to-noise ratio situations.

The high-order statistics detection method mainly detects signals through different
characteristics of high-order statistics. High-order cumulant, high-order moment, high-
order moment spectrum, and high-order cumulant spectrum are the four most common
high-order statistics. The high-order cumulant detection method was first applied to the
detection of DSSS signals proposed by Spooner and Gardner [11]. On this basis, Zhang
and Zhang proposed an improved fourth-order statistics method based on 1-D slice and
adaptive linear filter to realize the detection of DSSS signals [12], effectively reducing the
computational complexity of the algorithm. On the basis of previous studies, Shi et al.
studied the fourth-order cumulant of Unbalanced Quadrature Phase Shift Keying (UQPSK)-
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DSSS signals and proposed a detection method for UQPSK-DSSS signals based on the
fourth-order cumulant slice [13].

The main basis of the cyclic spectrum detection method is that the direct spread spec-
trum signal has cyclostationary characteristics while the noise signal does not, and the cyclic
spectrum has the characteristics of suppressing noise and interference. Therefore, the cyclic
spectrum detection algorithm is suitable for signal detection under strong noise conditions.
Some researchers proposed the improved cyclic spectrum detection algorithm based on
data segmentation and overlap preservation processing [6]. The algorithm is mainly to
overlap and segment the received signal, then model whether there is a DSSS signal as a
binary hypothesis problem according to the characteristics of the cyclic spectral density
function, and finally complete the detection of the DSSS signal through a cyclic spectrum
detector, without prior knowledge. The statistics of the cyclic spectrum detector include
cyclic spectrum amplitude. Other researchers proposed the improved cyclic spectrum
detection method based on set averaging to address the issue of performance degradation
in cyclic spectrum detection under limited data conditions [14]. This method achieved
direct spread spectrum signal detection under typical interference conditions, such as low
signal-to-noise ratio and single-tone interference and narrowband interference.

With the emergence and development of artificial intelligence technology, neural
network technology is gradually being applied in the research of direct spread spectrum
signal detection [15]. Some researchers proposed the phased detection method based on
cyclostationary characteristics for the detection of direct spread spectrum ultra-wideband
signals under low signal-to-noise ratio conditions [16]. This method first uses the energy
detection method for detection and then uses the cyclic spectrum method for detection
if the direct spread spectrum signal cannot be detected. Different from traditional cyclic
spectrum detection, this method converts the three-dimensional cyclic spectrum of signal
and noise into Grayscale. According to the difference between the two, a convolutional
neural network is used to train the input image, extract features, and then detect the direct
spread spectrum signal through the trained network. Wei et al. proposed a deep-learning-
based direct spread spectrum signal detection method that does not require the conversion
of signals into images [17]. This method does not require manual feature extraction in
advance, and directly sends the direct spread spectrum signal and noise signal into the
convolutional neural network (CNN) for training. On this basis, they also proposed a
hybrid detection method based on CNN CORR, which uses the autocorrelation results
of the signal to replace the signal and train it into the CNN to reduce computational
complexity. Experiments have shown that the detection performance of this method is
significantly better than traditional autocorrelation algorithms.

From above, we can see that current research on direct spread spectrum signal de-
tection algorithms is mostly based on the correlation characteristics of DSSS signals, and
autocorrelation algorithm is the most mature and widely used method in practical engi-
neering. With the continuous development of deep learning, deep learning methods have
gradually been introduced to replace traditional algorithms in the field of signal processing.
This paper proposes a spread spectrum signal detection method based on CNN. Through
experimental analysis, the detection performance of the CNN model proposed in this paper
on DSSS signals in various situations has been compared and analyzed with traditional
autocorrelation detection methods for different signal-to-noise ratios.

This paper first briefly explains the BPSK-DSSS signal model and the detection theory
of DSSS signals. Then, a detailed introduction was provided for the CNN model and
its parameters proposed in this article, and a reasoning analysis was conducted on the
preprocessing before data input into the CNN and the important operations that need to be
performed after input into the network. Then, a brief introduction was provided for the
generation of the dataset and the training process of the model in the experiment. Finally,
the estimation performance of the model in this paper was verified through experiments
under different signal-to-noise ratios, different spreading code lengths, different spreading
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code types, and different modulation methods. A comparative analysis was conducted
with the autocorrelation detection algorithm in the end.

2. DSSS Signal Model and Detection Theory
2.1. BPSK-DSSS Signal Model

The generation of Binary Phase Shift Keying (BPSK)-modulated direct sequence spread
spectrum signal is shown in Figure 1.

Figure 1. Block diagram of DSSS generation.

r(t) = s(t) + n(t) refers to direct sequence spread spectrum signal containing noise,
s(t) refers to pure direct sequence spread spectrum signal, and n(t) refers to Gaussian
white noise signal with mean value of zero and variance of σ2

n . The formation process
of s(t) is as follows: s0(t) is obtained by multiplying the original information sequence
a(t) with the Pseudo-Noise (PN) code sequence p(t) directly and then modulating s0(t)
with BPSK to obtain s(t), where s0(t) is the baseband signal after spreading. The specific
definition of s(t) is shown in Equation (1) [17].

s(t) = Aa(t)p(t) cos(2π fct) (1)

Among them, A represents amplitude, fc represents carrier frequency, and a(t) and
p(t) are shown in Equations (2) and (3).

a(t) =
+∞

∑
j=−∞

ajg(t− jTa) (2)

p(t) =
+∞

∑
k=−∞

pkg(t− kTp) (3)

where aj ∈ {−1,+1} represents the original information code, pk ∈ {−1,+1} represents
the PN code, g(t) represents the gate function, Ta represents the width of the information
code, and Tp represents the width of the spread spectrum code.

If the PN code sequence of one cycle is denoted as h(t) = ∑N
i=1 cig(t− iTp), then p(t)

can also be expressed as Equation (4).

p(t) =
+∞

∑
k=−∞

h(t− kTa) (4)

Among them, Tp = Ta/N, N is the length of the spread spectrum code. In this paper,
the values of N are 127, 255, 511, 1023, 2047.

2.2. Mathematical Model for DSSS Signal Detection

In non-cooperative communication, detecting whether the received signal is a DSSS
signal can be modeled as a binary hypothesis test problem. Assuming H0 represents only
noisy signals and H1 is a DSSS signal with noise, we can mathematically express it as
Equation (5).

H0 : r(k) = n(k)

H1 : r(k) = s(k)ej(2πk∆ f+∆θ) + n(k)
(5)
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Among them, r(k) represents the sampled received signal, s(k) represents the sampled
sequence, and n(k) represents the sampled sequence of Gaussian white noise signal, with
a mean of 0 and a variance of σ2

n ; ∆ f and ∆θ represent carrier frequency offset and phase
offset, respectively.

Usually, in binary hypothesis problems, it is necessary to set a reliable judgment
threshold based on certain judgment criteria to determine whether H0 holds or H1 holds.
Common criteria include the maximum a posteriori estimation criterion, the minimum
probability of miscarriage of justice criterion, etc. When the received signal exceeds the
threshold value, it is determined that the signal exists. On the contrary, it is determined
that the signal does not exist. The minimum probability of misclassification criterion is to
choose a method that minimizes the probability of misclassification, thereby making the
judgment results more accurate. The discriminant results of the binary hypothesis include
four types, as shown in Table 1.

Table 1. Binary hypothesis judgment result.

Judgment
Hypothesis

H0 H1

H0 (H0/H0) (H0/H1)
H1 (H1/H0) (H1/H1)

The probability P(Hi/Hj) corresponding to the decision result (Hi/Hj) represents the
probability that the decision result is Hi if Hj is true. Among them, P(H1/H0) is defined
as the false alarm probability, P(H0/H1) is defined as the missed detection probability,
and P(H1/H1) is defined as the detection probability. P(H0/H0) represents the probability
that the judgment result is H0 when H0 is true, and there is no more specific definition
for it. In the training process of the model, we evaluated the values of P(H0/H0) plus
P(H1/H1), but, in the estimation performance analysis process, we did not care about
the indicator P(H0/H0), and we focused more on the results of P(H1/H1), which is the
detection probability.

This paper transforms the DSSS signal detection problem into a binary classification
problem using deep learning to replace threshold discrimination with softmax classifiers to
achieve DSSS signal detection and measuring the detection performance of the model’s
proposed method through detection probability.

3. Principle of Proposed DSSS Signal Detection Based on CNN

The detection of DSSS signals based on CNN mainly includes several parts: dataset
production, data preprocessing, CNN network model building, model training, and pre-
diction. The classification of signals and noise is achieved through the softmax layer of
the network. The feature data output through multiple convolutional layers is fed into
the softmax layer, and the confidence level of the corresponding category is output. The
category with the highest confidence level is the detection result. Finally, the trained model
can detect other untrained unknown signals, as shown in Figure 2.

3.1. Data Preprocessing

The network model in this article is built under the Tensorflow framework as the input
data requirement for the convolutional layer is 3D data of M× N × P; M× N represents
the size of input data, and P represents the number of input channels. Therefore, first
separate and store the data from the I/Q channels in the simulation-generated dataset into
two .csv files, read them separately, and use the np.array ([I_data, Q_data]) function to
combine them into the format of 2×M× N, where 2 represents the number of channels,
so we also need to use the swataxes() function to change the format of the dataset from
2×M× N to M× N × 2. In this way, the input format of the dataset is the same as the
input requirements of the network. Secondly, in order to reduce the impact of signal power
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on the model and speed up the training and rate of convergence of the network, the input
data shall be normalized before being input into the CNN network.

Figure 2. Overall block diagram of DSSS signal detection based on CNN.

Secondly, in order to reduce the impact of signal power on the model and speed up
the training and rate of convergence of the network, the input data shall be normalized
before being input into the CNN network using Equation (6).

r̂(k) =
r(k)

1
L1

∑L1−1
k=0 |r(k)|2

(6)

In the above equation, r(k) represents the received signal, and L1 represents the length
of the received signal.

3.2. Network Model and Algorithm Reasoning

The CNN network designed in this article consists of 6 convolutional layers, 5 max-
imum pooling layers, 1 global pool averaging layer, and 1 softmax layer. The network
structure is shown in Figure 3.

In the above figure, “m× n Conv1D,c,/f” indicates that the convolutional kernel size
used in this one-dimensional convolutional layer is m× n. The number of channels is c, the
downsampling factor is f , and the parameters of the network model are shown in Table 2.

Assuming the training set of the network is shown in Equation (7)

< = {(r(1)train, l(1)train), (r
(2)
train, l(2)train), . . . , (r(n)train, l(n)train)} (7)

where r(i)train represents the i-th signal sample, with a size of 1× 2048× 2, l(i)train represents
the true label of the i-th sample. The activation function in this paper selects ReLu function.
After passing through multiple convolution layers and pooling layers, the new feature is
expressed as Y = [y1, y2, . . . , yN ], and, after passing through the global average pooling
layer, the output is shown in Equation (8).

z(y) =
1
N

N−1

∑
j=0

yj (8)

Finally, input the output of the global average pooling layer into the softmax layer and
calculate the confidence levels f (zn) of the input signal belonging to DSSS signal and noise
signal according to Equation (9).
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p(l(i)train = n|r(i)train, θ) =
eθT

n r(i)train

∑N
l=1 eθT

n r(l)train

(9)

The label corresponding to the maximum confidence level l̂(i)train is the estimation
result. In the training process, Adam algorithm is selected as the optimization algorithm to
minimize the loss function, and cross-entropy is selected as the error loss function. Then,
the network parameters are updated as Equation (10) [17].

θn = θn−1 − η
ŝn√

v̂n + ε
(10)

where θ is the vector composed of the weights and deviations of the network, η is the
learning rate, ŝn and v̂n are the first-order moment and the deviation from the second-
order moment, respectively, and ε is a small constant, aimed at increasing the stability of
the algorithm.

Figure 3. CNN structure diagram.
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Table 2. CNN network model parameters.

Network Layer Name Dimension Network Layer Name Dimension

Input 1× 2048× 2 MaxPooling1D 1× 151× 64
Conv1D 1× 4096× 32 Conv1D 1× 151× 128
Conv1D 1× 4096× 32 Dropout 1× 151× 128
Dropout 1× 4096× 32 MaxPooling1D 1× 50× 128

MaxPooling1D 1× 1365× 32 Conv1D 1× 50× 128
Conv1D 1× 1365× 64 Dropout 1× 50× 128
Dropout 1× 1365× 64 MaxPooling1D 1× 16× 128

MaxPooling1D 1× 455× 64 Globalaveragepool 1× 1× 128
Conv1D 1× 455× 64 Softmax 1× 1× 2
Dropout 1× 455× 64

4. Simulation Experiment and Result Analysis
4.1. Dataset Production

First, 17-bit information code is randomly generated, and then the original information
sequence is spread-spectrum-modulated using a 127 m sequence, and, finally, the spread
spectrum signal is modulated using the BPSK modulation method to obtain a direct
sequence spread spectrum signal, with a spread spectrum code rate of 1 Mbps and sampling
rate of 2 Mbps. The length of each signal obtained after sampling is 2048, and the actual and
imaginary parts are the input data of the I and Q channels. The I/Q channels are used as
the channel dimensions of the dataset. Therefore, the size of a single sample in the dataset
is 1× 2048× 2. The range of signal-to-noise ratio is [−20:2:10] dB. Further, 1000 DSSS
sample signals are generated under each signal-to-noise ratio, and then noise signals of the
same size are generated. They are combined to form a complete dataset, which includes
DSSS signals under different signal-to-noise ratio conditions, allowing the trained single
network to adapt to different signal-to-noise ratios. Before training, the entire dataset needs
to be unordered, and then 75% of it needs to be taken as the training dataset and 25% as the
testing dataset.

4.2. Training Environment and Process

The model training was completed on a computer with a CPU model of Intel(R)
Core(TM)i7-10875H@2.30 GHz and a GPU model of NVIDIA GeForce RTX 2060 6 GB, with
a running memory of 32 GB. The training parameters of the CNN network are shown in
Table 3. In the training process, the change in the accuracy and loss function is shown in
Figure 4, where acc and loss, respectively, represent the accuracy and loss function; val
of the training set in the model training process_Acc and val_Loss indicate the correctness
rate and loss function of the test set, respectively. Observing Figure 4b, it was found that
loss no longer decreased after training 100 epochs. At the same time, observing Figure 4a,
it can be observed that, after training 100 epochs, the accuracy of the training and testing
sets tends to stabilize and no longer increases. In the end, the accuracy rate of the training
set was 89.49%, while the accuracy rate of the test set was 87.46%. It is worth mentioning
that, during the training process, the signal-to-noise ratio range of the training set signal we
used is from −20 dB to 10 dB. Although the large signal-to-noise ratio range affected the
overall accuracy to some extent, it also improved the generalization ability of the model.

Table 3. CNN model training parameters.

Parameter Parameter Value

Initial learning rate 0.001
Training rounds 150
Small batch size 8

Learning rate decline cycle 50
Learning rate decline coefficient 0.1
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Table 3. Cont.

Parameter Parameter Value

Droupout Rate 0.33
Optimizer Adam

Figure 4. Training process: (a) accuracy curve, (b) loss function curve.

4.3. Estimation Performance Analysis under Different Signal-to-Noise Ratios

This section verifies the detection performance of the CNN-based DSSS signal detec-
tion method proposed in this paper under different signal-to-noise ratio conditions. The
generation method of the test dataset is the same as that of the dataset in Section 4.1, with
100 test signals generated for each signal-to-noise ratio. The newly generated data are
tested using the trained model, and the results are shown in Figure 5. From the figure, it can
be seen that the detection probability of the proposed method for DSSS signals continues to
increase with the increase in signal-to-noise ratio, reaching a detection probability of 1 at
−8 dB. It can also be observed that, when the detection probability of the method in this
paper is below −10 dB, the detection probability decreases faster with the signal-to-noise
ratio, indicating that the detection performance of the method in this paper decays faster
when it is below −10 dB.

Figure 5. Detection probability curves under different signal-to-noise ratios.
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4.4. Estimation Performance Analysis under Different Spread Spectrum Code Lengths

The previous experiment verified the detection performance of the CNN model pro-
posed in this article for DSSS signals under different signal-to-noise ratios. In order to verify
the generalization ability of the CNN model proposed in this article, this section used a
trained CNN model to detect DSSS signals with spreading code lengths of 255, 511, 1023,
and 2048 under different signal-to-noise ratios. The results are shown in Figure 6, where
PNLen represents the length of the selected spreading code. From Figure 6, it can be seen
that the detection probability continuously increases with the increase in signal-to-noise
ratio. When the signal-to-noise ratio reaches −8 dB, the detection probability of DSSS
signals generated by using different lengths of spread spectrum codes reaches 1, which is
the same as the detection performance when the spread spectrum code length is 127. When
the length of the spread spectrum code used for DSSS signals is below −8 dB, the detection
probability varies. Under the same signal-to-noise ratio, the maximum difference in detec-
tion probability is 0.16. However, there is no obvious relationship between the detection
probability and the length of the spread spectrum code under the same signal-to-noise
ratio. Therefore, the detection performance of the CNN model in this paper is not affected
by the length of the spread spectrum code used for DSSS signals and has a certain degree
of generalization ability.

Figure 6. Detection probability curve under different spread spectrum code lengths.

4.5. Estimation Performance Analysis under QPSK Modulation

This section verifies and analyzes the detection performance of the CNN model
proposed in this article on QPSK-modulated DSSS signals (abbreviated as QPSK-DSSS)
under different signal-to-noise ratios, and the results are shown in Figures 7 and 8. Figure 7
shows the comparison curve of the detection probabilities of the QPSK-DSSS signal and
BPSK-DSSS signal with a spreading code length of 127 under different signal-to-noise
ratios using the proposed algorithm and traditional autocorrelation algorithm. Observing
Figure 7, it can be observed that the detection probability of the QPSK-modulated DSSS
signal reaches 1 at −4 dB, while the detection probability of the BPSK-modulated DSSS
signal reaches 1 at −8 dB, indicating that the detection performance of the model in this
paper for QPSK-DSSS signals is reduced by 4 dB compared to the BPSK-DSSS signal. In
addition, comparing the results of our algorithm with traditional autocorrelation algorithms,
it can be found that, when the signal-to-noise ratio is below−16 dB, the detection probability
of traditional autocorrelation algorithms is 0, and, when the signal-to-noise ratio approaches
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0 dB, the detection probability is 1, indicating significantly lower detection performance
than our model.

Figure 7. Comparison curve of detection probability between QPSK- and BPSK-modulated DSSS
signals using the proposed algorithm and traditional autocorrelation algorithm.

Figure 8. Detection probability curve during QPSK modulation.

Figure 8 shows the curve of the detection probability of QPSK-DSSS signals with
different lengths of spread spectrum codes as a function of signal-to-noise ratio, where
PNLen represents the length of the selected spread spectrum code. Observing the detection
probability of QPSK-modulated DSSS signals using different lengths of spread spectrum
codes, it can be found that, after the signal-to-noise ratio reaches −6 dB, the detection
probability is completely unaffected by the length of the spread spectrum code used.
When the noise level is below −6 dB, the detection probability of QPSK-DSSS signals with
different spreading code lengths under the same signal-to-noise ratio conditions is not
entirely the same in this model. However, no obvious pattern was found when observing
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the relationship between detection probability and spreading code length. Therefore, this
model is still applicable to QPSK-DSSS signals, and the detection performance is only
related to the signal-to-noise ratio and almost independent of the spreading code length.
However, the overall detection performance is lower than that of BPSK-DSSS signals.

4.6. Estimation Performance Analysis of Spread Spectrum Codes Using Gold Sequences

The Gold sequence is a pseudo-random sequence with good characteristics proposed
and analyzed by R. Gold in 1967 based on the m-sequence. It is composed of two optimum
pairs of m-sequences with equal code length and the same code clock rate, which is added
by modulo 2. Gold code sequence is a code sequence based on the m-sequence, which has
excellent autocorrelation and cross-correlation characteristics and generates a large number
of sequences. In this section, the Gold sequence was selected as the spreading code. Under
each signal-to-noise ratio, 100 DSSS signals of different lengths of spreading codes were
generated. The trained CNN model was used to detect them, and the results are shown in
Figures 9 and 10. Figure 9 shows a comparison of the detection probabilities of the proposed
algorithm and the traditional autocorrelation algorithm for DSSS signals with a spreading
code length of 255, using the m sequence and the Gold sequence, respectively. Observing
Figure 9, it can be observed that, regardless of using the m sequence or the Gold sequence
for spread spectrum modulation, the detection probability reaches 1 at−8 dB, which means
that the DSSS signal can be accurately detected at −8 dB. When the signal-to-noise ratio
is below −8 dB, the detection probability of DSSS signals using the Gold sequence is
lower than that of DSSS signals using the m sequence, with a maximum difference of
0.08. In summary, it indicates that the model proposed in this paper is also applicable
to DSSS signals using Gold sequences for spread spectrum modulation. However, when
the signal-to-noise ratio is below −8 dB, the detection probability of DSSS signals using
Gold sequences decreases faster. In addition, comparing the results of our algorithm with
traditional autocorrelation algorithms, it can be found that, when the signal-to-noise ratio
is below −14 dB, the detection probability of the traditional autocorrelation algorithm for
DSSS signals using both Gold and m sequences is 0, and, only when the signal-to-noise
ratio is greater than −4 dB, the detection probability is 1, which is 4 dB different from
our model.

Figure 9. Detection probability curve of spread spectrum code using m-sequence and Gold sequence
of the same length using the proposed algorithm and traditional autocorrelation algorithm.
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Figure 10 shows the detection probability of DSSS signals using Gold sequences of
different lengths as a function of signal-to-noise ratio. From the figure, it can be seen
that, regardless of the length of the spread spectrum code sequence selected in the DSSS
signal, the detection probability of the DSSS signal reaches 1 at −8 dB, indicating that the
model in this paper is completely unaffected by the length of the spread spectrum code
above −8 dB for DSSS signals modulated by Gold sequences. When the length of the Gold
sequence is below −8 dB, the detection probability varies. At the same signal-to-noise ratio,
the maximum difference between the maximum and minimum detection probabilities is
0.07. However, there is no significant relationship between the fluctuation and the length
of the spread spectrum code. This indicates that the performance of the model in this
paper is unstable when detecting DSSS signals below −8 dB, but the fluctuation of the
detection probability does not exceed 0.07. From Figure 10, it can also be observed that
the detection probability of the DSSS signal using the Gold sequence as the spreading
code sequence decreases faster when it is below −10 dB, which is consistent with the
results when using the m sequence as the spreading code sequence. This indicates that the
detection performance of the model in this paper decays faster when it is below −10 dB.

Figure 10. Detection probability curve of spread spectrum code using Gold sequences of
different lengths.

4.7. Comparative Analysis of Different Methods

This section compares the CNN-based DSSS signal detection method proposed in this
article with traditional autocorrelation detection methods, and the results are shown in
Figure 11. From the figure, it can be seen that, at −14 dB, the traditional autocorrelation
detection method has completely failed and cannot detect DSSS signals. However, the
detection probability of the method proposed in this paper is 0.71 at −14 dB, indicating
that the detection performance of the method in this paper is much higher than that of the
autocorrelation detection algorithm in low signal-to-noise ratio situations. Moreover, from
Figure 11, it can be observed that the detection probability of the autocorrelation detection
method only reaches 1 at −4 dB, while the detection probability of the method proposed
in this paper has already reached 1 at −8 dB. Therefore, compared to the autocorrelation
detection method, the overall performance gain of the CNN-based detection method
proposed in this paper is 4 dB.
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Figure 11. Detection probability curve using different methods.

5. Conclusions

In order to solve the problem of insufficient intelligence in electronic reconnaissance
technology in modern electronic warfare, this paper conducted extensive research on signal
detection in electronic reconnaissance technology and attempted to apply the favored
neural network model to DSSS signals detection.

In this paper, deep learning technology is introduced into DSSS signal detection, and a
six-layer CNN network is designed to realize the detection of DSSS signals. We model the
presence detection of DSSS signals as a binary classification problem with a CNN network.
During network training, the I/Q data of standard DSSS signals are directly input into the
CNN model, and appropriate network parameters are set, and the respective characteristics
of DSSS signals and noise signals are automatically obtained after training. The training
dataset contains the BPSK-modulated DSSS signal with a spreading code length of 127 and
a signal-to-noise ratio (SNR) from −20 dB to 10 dB, which has a large range of SNR. The
signal to be tested is input into the trained network for detection. The experimental results
show that the detection probability of this method reaches 100% at −8 dB, which improves
the overall performance by 4 dB compared with the traditional autocorrelation detection
method. It is also verified that the DSSS signal uses different spreading code lengths, QPSK
modulation, and Gold sequence. The model is still applicable and has good experimental
results, which shows that the model has good robustness.

In the future, we will attempt to use neural network models with better performance
for more precise signal recognition and parameter estimation, such as spreading code
period estimation.
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