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Abstract: Object detection and tracking are vital in computer vision and visual surveillance, allowing
for the detection, recognition, and subsequent tracking of objects within images or video sequences.
These tasks underpin surveillance systems, facilitating automatic video annotation, identification of
significant events, and detection of abnormal activities. However, detecting and tracking small objects
introduce significant challenges within computer vision due to their subtle appearance and limited
distinguishing features, which results in a scarcity of crucial information. This deficit complicates the
tracking process, often leading to diminished efficiency and accuracy. To shed light on the intricacies
of small object detection and tracking, we undertook a comprehensive review of the existing methods
in this area, categorizing them from various perspectives. We also presented an overview of available
datasets specifically curated for small object detection and tracking, aiming to inform and benefit
future research in this domain. We further delineated the most widely used evaluation metrics for
assessing the performance of small object detection and tracking techniques. Finally, we examined the
present challenges within this field and discussed prospective future trends. By tackling these issues
and leveraging upcoming trends, we aim to push forward the boundaries in small object detection
and tracking, thereby augmenting the functionality of surveillance systems and broadening their
real-world applicability.
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1. Introduction

Detecting and tracking moving objects in various forms of visual media is a critical
aspect of numerous applications, from video surveillance [1] to intelligent traffic manage-
ment [2] and digital city infrastructure [3]. The platforms implementing these tasks range
from closed-circuit televisions (CCTVs) [4] and aircraft [5,6] and unmanned aerial vehicles
(UAVs) [7] to the transport of nano-particles in soil for environmental protection [8].

Object detection involves identifying a target object within a single frame or image,
whereas object tracking focuses on estimating or predicting the object’s position throughout
the video sequence, given its initial location [8–10]. These capabilities are essential in a
wide array of computer vision tasks, including surveillance, autonomous navigation for
vehicles and robots, and more. Object tracking typically occurs in two distinct contexts.
Single object tracking (SOT) is focused on a singular target throughout the video, whereas
multiple object tracking (MOT) or multiple target tracking (MTT) involves keeping track
of numerous objects simultaneously [11]. For instance, the military may use tracking
for national surveillance, including border patrols and base perimeter security, or for
improving missile guidance systems. In the sporting domain, systems like Hawk-eye
monitor ball movement, aiding line judges and player strategy development.

Detecting and tracking objects in infrared (IR) images is another critical application
where the target might vary in size or approach at different velocities [12]. The tasks in-
volved in detection and tracking largely depend on the granularity of information the user
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seeks to extract [13]. Tracking can be quite intricate due to numerous factors. Challenges
arise when objects move rapidly, experience occlusion, or become invisible. Difficulties
also emerge in the presence of noise, non-rigid objects, rotation, scale changes, and mov-
ing cameras. Despite notable advancements, these complexities persist, especially when
tracking small objects from a considerable distance [14].

A small object is one that appears tiny within the video frame, like a distant paraglider
or soccer ball, often due to being tracked from afar. These objects, common in applications
such as UAVs, remote sensing, and ball sports, may exhibit poor appearance attributes
and are challenging to detect and track due to their size. They can often be mistaken for
noise due to their minuscule size, negatively impacting tracking accuracy. The term “small
objects” is commonly defined in two ways. First, it may refer to objects that are physically
smaller in the real world. Alternatively, as per the MS-COCO [15] metric evaluation, small
objects are those with an area of 32 × 32 pixels or less, a threshold generally accepted for
datasets involving common objects. Small object detection and tracking thus represent
a specialized facet of object detection and tracking, necessitating distinct techniques for
handling digital images and videos. For instance, aerial images often require advanced
methods due to the inherent nature of small objects [16]. Figure 1 provides several examples
of small objects.
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Figure 1. Some representative instances of small objects.

Previous research primarily focused on the detection and tracking of larger objects
within scenes, with lesser emphasis on smaller targets. This revealed a necessity for more
nuanced and precise algorithms to address small object detection and tracking. Despite
the prevalent usage and inherent challenges associated with small object detection and
tracking, a comprehensive review focusing specifically on this subject has been noticeably
absent. As such, the main purpose of this study was to thoroughly review the existing
methods and provide a structured taxonomy.

The primary findings of this research can be outlined as follows:

- A detailed review of methods for detecting and tracking small objects, thereby ad-
dressing a significant research gap. To our knowledge, such a comprehensive review
has not been previously conducted. The proposed taxonomies aim to provide re-
searchers with a broader and more profound understanding of small object detection
and tracking.

- Classification of existing methods into five categories: filter-based methods, search-
based methods, background detection-based methods, classical computer-vision-
based methods, and deep-learning-based methods.

- Segregation of public datasets used for small detection and object tracking into two
categories: spectrum-based video datasets and source position-based video datasets.
The datasets are introduced, and the most commonly employed evaluation metrics
for detecting and tracking small objects are presented.

- A discussion on the primary challenges in this field, coupled with an analysis of
the strengths and weaknesses of methods within each category. We also highlight
potential future research trends.

In the ensuing sections of this paper, we propose a comprehensive taxonomy for small
object detection and tracking methods. Section 2 undertakes a review of existing methods
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from various perspectives. Section 3 provides details on the types of public datasets used
for small object detection and tracking. Section 4 presents common evaluation metrics for
the detection and tracking phases. In Section 5, we delve into the current challenges in the
field and propose potential future trends. Section 6 concludes the paper.

Our goal in reviewing existing methods, addressing challenges, and suggesting future
directions is to advance the field of small object detection and tracking. By doing so, we
hope to facilitate improvements in various computer vision applications such as surveil-
lance systems, autonomous navigation, and object tracking in dynamic environments.

2. Taxonomy and Review the Small Object Detection and Tracking Methods

Although many different approaches have been suggested in the field of detection
and tracking of large objects, these methods are limited for detection and tracking of small
objects which can be classified into two main groups such as unified track-and-detection
methods and track-by-detection methods.

Unified track-and-detection methods are grouped into two categories as filter-based
methods and search-based methods. Also, track-by-detection methods are divided as
three other categories, including background detection-based methods, classical computer-
vision-based methods, and deep-learning-based methods. This section will provide an
overview of these methods.

2.1. Unified Track-and-Detection Methods

These types of methods perform the tracking and detection processes together in a
singular framework without a distinct detector. These methods typically require manual
initialization, and the number of objects in the initial frame is fixed. Subsequently, these
objects are located and tracked throughout the succeeding frames. We review these methods
in the subsections below.

2.1.1. Filter-Based Methods

The methods under this category primarily employ Kalman and Particle filters for
the tracking process. For instance, in Huang et al. [17], an adaptive particle filter coupled
with an effective proposal distribution was proposed to handle cluttered backgrounds
and occlusions efficiently. To facilitate a more diverse proposal distribution, an adaptive
motion model was used. Additionally, the template correlation was integrated with motion
continuity and trajectory smoothness in the observation likelihood, further eliminating
visual distractions.

In the study by Habibi et al. [18], tracking was integrated with a super-resolution tech-
nique wherein a high-resolution image was created from multiple low-resolution images.
Given that super-resolution enhanced the visual quality of small objects, the process provided
more tracking information, thereby increasing precision. The tracking process was then
conducted through an adaptive Particle filter, as proposed in Huang et al. [17].

Liu et al. [19] put forth an approach grounded in super-resolution, using convolutional
neural network (CNN) to track small objects. A deep-learning network was deployed to en-
hance the visual quality of small objects, subsequently improving the tracking performance.
A Particle filter was then employed for tracking [20].

In their research, Wu et al. [21] proposed an enhanced kernel correlation filter (KCF)-
based approach for tracking small objects in satellite videos. Occlusion presents a significant
hurdle in object tracking, especially apparent in satellite videos due to the minute size of
objects, making them more susceptible to occlusion. The methodology in this study used
the average peak correlation energy and the peak value of the response map to determine
potential object occlusion. The object’s subsequent location was forecasted employing a
Kalman filter.
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2.1.2. Search-Based Methods

Search-based methods attempt to discover the best tracks through extensive searching,
with a particular focus on small object tracking. Notable among these methods is the
algorithm proposed by Blostein et al. [22], dubbed Multiple Hypothesis Testing (MHT).
This method operates under the assumption that the intensity values of background and
noise are lower than the mean target intensity. In this approach, the track tree roots are
chosen from a predetermined number of points with the highest intensity value. For each
root, the algorithm selects neighboring points in the subsequent frame to construct a track
tree. Within MHT, there are two thresholds—T_1 and T_2—against which each point on
the track is compared. If the new point surpasses T_2, the algorithm records the track and
proceeds to the next frame. If the point falls below T_1, the track is rejected. However, if
the new point lies between T_1 and T_2, the algorithm defers the decision to the next frame.
Ultimately, the tree is pruned to yield a desired number of tracks. Nonetheless, this method
faces challenges when tracking fast-moving small objects, as the search area increases
exponentially. This makes current MHT algorithms computationally impractical for objects
moving at speeds exceeding 1 pixel/frame. In response to this problem, Ahmadi et al. [23]
utilized the Multi-Objective Particle Swarm Optimization algorithm (MOPSO) [23] to
identify the most optimal track within each root.

Salari et al. [24] presented an effective algorithm for tracking dim targets within digital
image sequences. The algorithm operates in two stages: noise removal and tracking.
Initially, the Total Variation (TV) filtering technique is employed to improve the Signal
Noise Ratio (SNR) and eliminate the image’s noise. Subsequently, to detect and track dim
tiny targets, a genetic algorithm with associated genetic operators and encoding is used.
In the study by Shaik et al. [25], Bayesian techniques were deployed for the detection and
tracking of targets in infrared (IR) images. The algorithm begins by applying preprocessing
to incoming IR targets to reduce noise and segmentation. The initial position of the object is
ascertained utilizing ground truth (GT) data. Subsequently, a grid composed of segments
around the target’s position in the ensuing frame is chosen, and regions with high-intensity
within this segment are highlighted. Employing Bayesian probabilistic methodologies, the
likelihood of the object shifting its position from the current frame to any high-intensity
location within this grid is then calculated. The position suggesting the highest probability
is chosen, and the object’s position in the following frame is established. Given that an
object’s intensity may not necessarily be the highest in a frame, the position and intensity
of the object in the previous frame are considered in the Bayesian probabilistic equation to
determine its position in the next frame.

2.2. Track-by-Detection Methods

In track-by-detection methods, the detector autonomously identifies the desired object
or objects in each frame. Subsequently, the tracking process is conducted to associate the
detected objects across successive frames. The objects are initially detected, and then their
trajectories are linked. This category of methods is capable of handling frames containing
a variable number of objects. Thus, if a new object enters the scene, unlike methods in
the previous category, these methods will not face any complications. This flexibility has
made them more popular, and the majority of studies presented in the field of small object
detection and tracking fall within this category. However, it should be noted that the
efficacy of these methods largely depends on the accuracy of the detector they utilize. In
the following sections, we will investigate and review such methods.

2.2.1. Background Detection-Based Methods

Methods utilizing frame differencing and background subtraction gained considerable
attention due to their simplicity and robust performance in real-time applications. For
instance, the study outlined by Archana et al. [26] employed this technique to detect
and track a tennis ball and players within video frames. Initially, the input images are
smoothed, and background images are accumulated to create an average background
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model. To execute detection in the current frame, the difference between the frame and its
predecessor is calculated, and the logical AND operation is executed between the difference
image and the derived background. Subsequently, the ball and player candidates are
determined based on the size of the identified contour. Ultimately, tracking is executed
separately for the ball and players using the centroid of the detected contour. In another
study, [27], the authors proposed an adaptive background subtraction algorithm for the
detection and tracking of moving objects within a video sequence. They extracted the
video’s background image and applied a median filter to denoise the video sequence.
The objects were then identified utilizing an adaptive background subtraction algorithm
along with mathematical morphology. The tracking process employed the objects’ centers.
Importantly, this method incorporates an update of the background at each stage.

An alternative methodology was introduced by Srivastav et al. [28], which incorpo-
rated three-frame differencing and background subtraction for detecting moving objects
in videos. The procedure commences with the selection of three successive frames from
the image sequence. Subsequently, the difference between the first and second frames is
computed, denoted as D_1. Similarly, the outcome of the difference between the second
and third frames is labeled as D_2. If DB signifies the result of subtracting the background
from the current frame, moving objects are detected by implementing a pixel-wise logical
OR operation on D_1, D_2, and DB. Finally, background noise is eliminated by utilizing a
median filter.

Zhu et al. [29] incorporated three-frame differencing and operations such as “AND”
and “XOR” for swift detection of moving objects. The difference image, p_1, is obtained
by calculating the difference between the initial two frames, and p_2 is obtained from the
difference between the second and third frames. Subsequently, a new image, p_3, is created
by performing p_1 AND p_2. The next step involves obtaining p_2 XOR p_3, resulting in a
new image, p_4. Ultimately, the detection image is derived from p_1 AND p_4. Following
detection, noise is mitigated using post-processing algorithms. In their research, Yin et al. [30]
proposed an algorithm known as Motion Modeling Baseline (MMB), designed to detect and
track small, densely clustered moving objects in satellite videos. The process commences
with the extraction of candidate slow-moving pixels and region of interest proposals using
accumulative multi-frame differencing (AMFD). The full targets are then efficiently detected
using low-rank matrix completion (LRMC). Lastly, the motion trajectory-based false alarm
filter mitigates false alarms by compiling the trajectory over time, underlining that authentic
moving targets are more likely to exhibit continuous trajectories.

Zhou et al. [31] presented a study that utilized an efficient and unsupervised approach,
employing background subtraction for object delineation in Wide Area Motion Imagery
(WAMI). Initially, background subtraction is used to detect low contrast and small objects,
leading to the extraction of objects of interest. Following this, a convolutional neural
network (CNN) is trained to reduce false alarms by considering both temporal and spatial
data. Another CNN is subsequently trained to forecast the positions of several moving
targets within a specified area, thus reducing the complexity of the necessary multi-target
tracker. A Gaussian Mixture-Probability Hypothesis Density (GM-PHD) filter is finally
employed to correlate detections over time.

Teutsch et al. [32], proposed an algorithm for detecting moving vehicles in Wide Area
Motion Imagery that enhanced object detection by utilizing two-frame differencing along
with a model of the vehicle’s appearance. The algorithm amalgamates robust vehicle
detection with the management of splitting and merging, and applies an appearance-
based similarity measure to estimate assignment likelihoods among object hypotheses in
consecutive frames.

Aguilar et al. [33] proposed a multi-object tracking (MOT) technique for tracking small
moving objects in satellite videos. They used a patch-based CNN object detector with a
three-frame difference algorithm to concentrate on specific regions and detect adjacent
small targets. To improve object location accuracy, they applied the Faster Region-based
convolutional neural network (Faster R-CNN) [34] since the three-frame difference algo-
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rithm neither regularizes targets by area nor captures slow-moving targets. Furthermore,
they applied a direct MOT data-association approach facilitated by an improved GM-PHD
filter for multi-target tracking.

This approach was advanced by Aguilar et al. [35], where the performance of Faster
R-CNN’s object detection was significantly boosted by merging motion and appearance
data on extracted patches. The new approach comprises two steps: initially obtaining
rough target locations using a lightweight motion detection operator and, then, to enhance
the detection results, combining this information with a CNN. An online track-by-detection
methodology is also applied during the tracking process to convert detections into tracks
based on the Probability Hypothesis Density (PHD) filter.

In the research conducted by Lyu et al. [36], a real-time tracking algorithm was in-
troduced, specifically designed for ball-shaped, fast-moving objects, leveraging frame
difference and multi-feature fusion. The process initiates by applying frame difference
between two consecutive frames, after which the resulting differential image is segmented
into smaller contours. A multi-feature-based algorithm is then used to determine if these
are moving areas with ball-shaped objects.

Hongshan et al. [37] proposed a wiener filter-based infrared tiny object detection and
tracking technique that optimizes filtering under stable conditions based on the least mean
square error metrics. Given that the background is distributed in the image’s low-frequency
part and the high-frequency part primarily encompasses small objects, an adaptive back-
ground suppression algorithm is performed, taking advantage of the low-pass Wiener
filter’s characteristics. Appropriate segmentation then reveals potential targets. The rela-
tionship between multiple frames, including the continuity and regularity of target motion,
is utilized for detection and tracking.

In the research conducted by Deshpande et al. [38], they applied max-mean and max-
median filters on a series of infrared images for the detection of small objects. The initial
step involves applying either the max-mean or max-median filter to the unprocessed image.
Subsequently, the filtered image is subtracted from the original one to highlight potential
targets. A thresholding step, which is guided by the image’s statistical characteristics,
limits the quantity of potential target pixels. Finally, the output images are cumulatively
processed to track the target. The post-processing algorithm is equipped to detect the
continuous trajectory of the moving target.

2.2.2. Classical Computer-Vision-Based Methods

These types of methodologies use algorithms and techniques that are based on mathe-
matical models and heuristics to execute detection and tracking processes. For example,
a study conducted in 2016 used frequency and spatial domain information to track small
dim objects in infrared image sequences [39]. This method consists of three stages: initially,
each frame produces six high-frequency sub-bands using the Dual-Tree Complex Wavelet
Transform (DT-CWT). The potential targets in these high-frequency sub-bands are then
detected by the Constant False Alarm Rate (CFAR) detection module. Finally, the potential
targets are refined using an SVM classifier.

In their research, Ahmadi et al. [40] proposed an algorithm to identify and monitor
small and dim infrared targets by integrating three mechanisms of the Human Visual
System (HVS). The procedure involves four stages. Initially, a multi-scale Difference of
Gaussians (DOG) filter is applied to the current image frame to create a series of feature
maps at different scales. These maps are subsequently consolidated to form a saliency map.
In the next stage, a Gaussian window is established at a location near the target, referred to
as the visual attention point, on the saliency map. After normalizing the entire image, the
target’s position within the current frame is determined. Finally, the Proportional-Integral-
Derivative (PID) algorithm is used to forecast the location of the visual attention point in
the following frame.

Dong et al. [41] also introduced a method for detecting small moving targets in infrared
images. Initially, the points of interest, including moving targets, are extracted using DOG



Sensors 2023, 23, 6887 7 of 22

filters. These interest points are tracked across multiple frames, and the relationship
between these points in the first and last frames is established. Ultimately, based on
the relationships, these interest points are divided into two clusters: target points and
background points.

In the study by Zhang et al. [42], an algorithm was presented to detect and track dim
moving points with low Signal-to-Noise Ratio (SNR) in IR image sequences. This algorithm
first applies a temperature non-linear elimination and Top-hat operator to preprocess the
original images. Then, a composite frame is obtained by reducing the three-dimensional
(3D) spatio-temporal scanning of an object to 2D spatial hunting. The tracking process,
conducted in the final step, finds the object trajectory using the condition of a constant false
alarm probability.

Lastly, Shaik et al. [43] proposed a strategy based on object preprocessing, tracking,
and classification for infrared target sequences. Initially, preprocessing stages comprising
normalization, rank order filtering to enhance the object features in the frame, and morpho-
logical operations to remove noise from frames are conducted in sequence. For tracking
multiple objects, a correlation matrix is utilized, and the objects’ positions in the frames are
determined. Finally, a self-organizing map (SOM) is employed for classification based on
various features, such as statistics and the object’s shape.

An aggregation signature was utilized by Liu et al. [44] for small object tracking. This
method suppresses the background through the aggregation signature, achieving highly
distinctive features for small objects. The approach also generates a saliency map for frames
and performs tracking. The tracker employs both the target’s prior information and the
context data to relocate the tracked target.

In the study by Tzannes et al. [45], temporal filters were applied to detect point targets
in IR imagery. The central concept involves exploiting the difference in temporal profiles
between target and clutter pixels. The “temporal profile” refers to the changing pixel value
over a short period in an IR sequence. The pixels of a point target exhibit a pulse-like
temporal profile. In this study, the implementation of the continuous wavelet transform
(CWT) was explored for these temporal pixel profiles.

Bae et al. [46] introduced a technique for detecting small targets in sequences of
infrared images, grounded in the cross-product of temporal pixels, relying on temporal
profiles. Small targets display temporal characteristics that are distinguishable from various
backgrounds. Consequently, the approach discriminates target and background pixels
based on the cross-product of pixel values within the temporal profile. The method aggre-
gates temporal background pixels to forecast the temporal background in the target region.
Small target detection is then executed by measuring the absolute difference between the
original temporal profile and the predicted background temporal profile, postulating that
the absolute difference in target pixels exhibits a higher grey level. Ultimately, the target’s
trajectory is determined using a threshold that validates the presence or absence of a target
based on each pixel’s value in the calculated difference.

Bae [47] proposed a spatial and temporal bilateral filter (BF) intended for the identi-
fication of small trajectories in his study. This approach functions through the extraction
of spatial target details via a spatial BF, and temporal target data via a temporal BF. The
detection of small targets is realized by subtracting the anticipated spatial and temporal
background profiles from the original infrared image and the original temporal profile,
respectively. Similar to previous methods, this technique employs a threshold to ascertain
a small target trajectory.

In the work presented by Choudhary [48], an automated process for the identification
and tracking of targets within sequences of infrared images was achieved through the
application of morphological connected operators. It involved two stages: intraframe
and interframe. In the intraframe stage, the background is minimized to enhance the
targets’ visibility, and a binary image is created using adaptive double thresholding. In
the interframe stage, the algorithm first assigns labels to the binary detections from the
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previous stage, ensuring that detections associated with the same target receive the same
label. Finally, targets not consistently detected in the sequence are eliminated.

In the research conducted by Son et al. [49], a model for tracking minuscule drones
was put forth, featuring a predictor based on the Kalman filter and multiple trackers. This
model is composed of two distinct trackers, a predictor, and a refining operation. The
first tracker employs motion flow to identify a moving target, while the second utilizes
histogram features to establish the region of interest. The trajectory of the target is then
forecasted using the Kalman filter. Lastly, the refinement operation is employed to settle on
the precise location of the target.

2.2.3. Deep-Learning-Based Methods

In this category, deep learning is used to detect small objects and, afterwards, their
tracking. Deep networks can learn features and classifiers for detection and tracking tasks.
For example, convolutional neural networks (CNNs) can learn intricate and distinctive
features from massive datasets, deal with various kinds of objects and scenes, adjust to
changing situations and appearance changes, and transfer to new settings and domains.
They have several benefits, such as high precision, reliability, and flexibility. However,
CNN-based methods also have some limitations, such as high computational expense,
large memory usage, vulnerability to scale and occlusion, and challenge in handling small
objects [35].

In the study conducted by Zhang et al. [50], three conventional convolutional neural
networks, namely Faster R-CNN, YOLOv3 [51], and YOLOv3 tiny, were employed for the
real-time detection and tracking of a golf ball within video sequences. Adiscrete Kalman
filter was utilized during the tracking phase, predicting the golf ball’s position based on
previous observations. To improve accuracy and processing speed, image patches, rather
than full images, were employed for detection purposes. Aktaş et al. [52] employed aerial
imaging for small object detection and tracking. Given the unique challenges of aerial
imagery due to wide-field images and tiny target objects, the standard Faster R-CNN
model is modified. The goal is to use both spatial and temporal information from the
image sequence, as appearance information alone is insufficient. The method adjusts the
anchors in the Region Proposal Network (RPN) stage and optimizes the intersection over
union (IoU) for small objects. After improving detection performance, the Deep SORT
algorithm [53] is applied for small object tracking.

Behrendt et al. [54] introduced a system to detect, track, and perform 3D localization of
traffic lights for automated vehicles using deep learning. A trained neural network detects
traffic lights (as small as 3 × 10 pixels), while the tracker triangulates the traffic lights’
locations in the 3D space using stereo imagery and vehicle odometry information. A neural
network is then used to correct the location estimate. In the study by Hurault et al. [55],
a self-supervised soccer player detector and tracker robust to small players and suitable
for wide-angle video games was presented. The detection framework involves sequential
training of a teacher and student for domain adaption and knowledge distillation, fol-
lowed by player trajectory tracking using spatial and visual consistency. Zhu et al. [56]
proposed a Multilevel Knowledge Distillation Network (MKDNet), which enhances feature
representation, localization abilities, and discrimination for tiny object tracking. MKDNet
performs three levels of knowledge distillation: score, feature, and IoU-level distillation. In
the study by Liu et al. [57], transformers were employed for aerial small object tracking.
Transformer, a popular network structure in deep learning, uses the attention module to
provide a global response between the template frame and the search frame, effectively
supplementing contextual information for small objects. Therefore, it can address the issue
of poor feature expression capability in small objects. Also, a template update strategy is
applied to manage template updates under occlusion, out-of-view, and drift conditions.

Huang et al. [58] proposed a deep autoencoder architecture called TrackNet for track-
ing tennis balls from broadcast videos. TrackNet generates a detection heatmap from either
a single frame or several consecutive frames to locate the ball and learn flying patterns.
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Yoshihashi et al. [59] presented the Recurrent Correlational Network (RCN) for joint detec-
tion and tracking of small flying objects, where detection and tracking are jointly carried
out on a multi-frame representation learned through an end-to-end, trainable, and single
network. A convolutional long short-term memory network learns informative appear-
ance change in the detection process, enabling correlation-based tracking over its output.
Another approach was proposed by Marvasti-Zadeh et al. [60], which used a two-stream
multitask network and an offline proposal approach to track aerial small objects. The net-
work, aided by the proposed proposal generation strategy, leverages context information
to learn a generalized target model and handle viewpoint changes and occlusions. The
reviewed methods are subsequently categorized based on the above taxonomy in Table 1.

Table 1. Categorization of the applied methods in the literature.

Types of Methods Category References

Unified track-and-detection
Filter-based [17–19,21]

Search-based [22–25]

Track-by-detection

Background-detection-based [26–38]

Classical computer-vision-based [39–49]

Deep-learning-based [50,52,54–60]

3. Types of Public Data Sets Used for Small Object Detection and Tracking

The datasets used for small object detection and tracking are essential for evaluating
and benchmarking the performance of various algorithms in this field. These datasets can
be broadly classified into two groups: spectrum-based video datasets and source position-
based video datasets. Spectrum-based datasets include infrared (IR) videos whereas source
position-based datasets include aerial videos, satellites videos, and normal videos. Note
that videos captured by satellites or Unmanned Aerial Vehicles (UAVs) present more
challenges due to larger dimensions, smaller objects, and the presence of many more objects
compared to normal videos. The difficulty is especially pronounced in satellite videos due
to the higher altitude of the target object. The following are some popular and publicly
available datasets in the field.

3.1. Small90 and Small112

Small90 is one of the most comprehensive datasets in the field of small object tracking
in normal videos. It includes 90 sequences of annotated small-sized objects. The dataset
was created from existing tracking datasets by selecting videos with an object area size
ratio smaller than 0.01 of the entire image. Additional challenges, such as target drifting
and low resolution, were also considered. Small112 extends Small90 by adding 22 more
challenging sequences. Each sequence in these datasets is classified using 11 attributes for
a comprehensive study of tracking approaches [44].

3.2. Large-Scale Tiny Object Tracking (LaTOT)

LaTOT stands for Large-scale Tracking of Tiny Objects, and it was developed as a
response to the limitations observed in the Small90 dataset, particularly its small-scale size
and limited challenges. The LaTOT dataset consists of 434 video sequences, encompassing
more than 217,000 frames, all captured in real-world scenarios. Each frame in the dataset
is meticulously annotated with high-quality bounding boxes. Additionally, the dataset
incorporates 12 challenging tracking attributes aimed at encompassing a wide range of
viewpoints and scene complexities [56].

3.3. Video Satellite Objects (VISO)

VISO is a large-scale dataset designed for the purpose of detecting and tracking
moving objects in satellite videos. It comprises 47 high-quality satellite videos, which were
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acquired using Jilin-1 satellite platforms. Within this dataset, there are 3711 object tracking
trajectories, and it contains over 1.6 million instances of interest specifically for object
detection tasks. Each image in the dataset possesses a resolution of 5000× 12,000 pixels, and
it encompasses a diverse array of objects varying in scale. The dataset encompasses various
types of moving objects, including trains, cars, ships, and planes, and it is formulated to
incorporate seven key challenges commonly encountered in object tracking research [30].

3.4. UAV123

UAV123 is a dataset for object tracking in UAV aerial imagery, comprising over 110K
frames and 123 video sequences. The sequences are high-resolution, fully annotated,
and captured from an aerial perspective at low altitudes. The dataset has three sections:
high-quality sequences taken at diverse heights, noisy and lower-quality sequences, and
synthetic sequences [61].

3.5. Dataset of Object deTection in Aerial Images (DOTA)

DOTA, which stands for detection in aerial images, is a valuable resource that facili-
tates object detection tasks in Earth Vision. This dataset contains a substantial collection
of 1,793,658 instances distributed across 11,268 images, encompassing 18 commonly en-
countered categories. Each object within the dataset is annotated with a bounding box,
which may be either horizontal or oriented. Despite the dataset containing a significant
number of small objects, it was observed that these objects are predominantly concentrated
in a limited number of categories, specifically within the “small-vehicle” category. This
concentration can be attributed to the high diversity of orientations observed in overhead
view images and the substantial variations in large-scale amongst the instances [62].

3.6. Vision Drone (VisDrone)

VisDrone is an extensive dataset collected through the use of drones, spanning various
urban and suburban regions across 14 distinct cities in China. This dataset is curated to
facilitate four essential computer vision tasks, namely image object detection, video object
detection, single object tracking, and multi-object tracking. For the image object detection
track, VisDrone consists of 10,209 images, each having a resolution of 2000 × 1500 pixels,
and the dataset encompasses a total of 542,000 instances representing 10 typical object types
commonly found in traffic scenes. The imagery in VisDrone was captured using drones
from multiple viewpoints within diverse urban settings, leading to variations in viewpoints
and significant occlusion. Consequently, the dataset includes a substantial number of small
objects [63].

3.7. Tsinghua-Tencent 100K (TT100K)

The TT100K dataset is utilized for realistic traffic sign detection in normal videos,
encompassing 30,000 instances of traffic signs distributed across 100,000 images. These
images represent 45 distinct classes of typical Chinese traffic signs. Each traffic sign within
the TT100K dataset is meticulously annotated, providing detailed bounding boxes and
instance-level masks. The images in TT100K were captured using Tencent Street Views,
which offers a wide range of weather conditions and illumination settings, adding to the
dataset’s realism. Notably, TT100K exhibits a considerable number of small instances,
leading to a long-tail distribution, with approximately 80% of instances occupying less than
0.1% of the entire image area [64].

4. Performance Evaluation Metrics

In the realm of small object detection and tracking, the majority of methods employ a
track-by-detection approach, commonly evaluating their detection and tracking modules
individually. This section elaborates on several evaluation metrics utilized in the quantita-
tive appraisal of algorithms during these two stages. During the detection stage, primary
metrics encompass Precision, Recall, F1-score, the Precision-Recall (PR) curve, Average
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Precision (AP), and mean Average Precision (mAP). Regarding the tracking stage, evalu-
ation measures encompass Overlap Success Rate (OSR), Distance Precision Rate (DPR),
Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP),
and Completeness.

4.1. Metrics for Detection

- Precision and Recall:

Before introducing these metrics, it is necessary to explain the following concepts:

– True Positive (TP): A ground-truth bounding box that is detected correctly;
– False Positive (FP): Mistakenly detecting an object that does not exist or detecting an

object that does exist in the wrong place;
– False Negative (FN): This term refers to an instance where a ground-truth bounding

box goes undetected.

The ability to distinguish between True Positive (TP) and False Positive (FP) is critical
for object detection [65]. Additionally, False Negative (FN) is the name given to missed true
targets. Precision is defined as the ratio of true positives to the detected targets as follows:

Precision =
TP

TP + FP
(1)

A detector’s capability to capture the targets is calculated using Recall [65]. This metric
is defined as the ratio of TP to the number of all existing true targets:

Recall =
TP

TP + FN
(2)

- F1-score

A traditional criterion for categorizing objects into either being targets or not is the
F1-score that is equivalent to Precision and Recall’s harmonic mean [30,35,66], i.e.,

F1− score =
2× Recall× Precision

Recall + Precision
(3)

Despite the widespread usage of Precision, Recall, and F1-score as evaluative measures
for object detection algorithms, these metrics have inherent limitations. It is crucial to
acknowledge their potential for unfairness before application and to discern chance or base
case levels of the statistic. In certain cases, a system with objectively lower quality, in terms
of informedness, may appear to possess superior quality when judged using these popular
metrics [67].

- Precision-Recall (PR) curve

The Precision-Recall (PR) curve serves as a graphical representation depicting the
trade-off between precision and recall at different threshold levels. A high precision value
indicates a low false-positive rate, whereas high recall corresponds to a low false-negative
rate. A large area under the PR curve signifies both high recall and precision, reflecting
accurate classifier results (high precision) and a substantial proportion of true positives
(high recall) [30]. It is important to note that the shape of this curve is influenced by the
threshold chosen, which, in turn, impacts the trade-off between precision and recall.

- Average-Precision (AP)

The AP metric, which is defined as the area under the Precision-Recall curve, is
a widely accepted measure of detection model accuracy [65]. However, calculating an
accurate Area Under the Curve (AUC) can be challenging in practice, primarily due to the
characteristic zigzag shape of the precision-recall plot. To mitigate this issue, the zigzag
behavior is eliminated by processing the precision-recall curve prior to estimating the AUC.
The two most common techniques for this processing are the 11-point interpolation and
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all-point interpolation. The 11-point interpolation method aims to capture the essence of
the precision-recall curve’s shape by calculating the average maximum precision values
at a series of 11 evenly spaced recall levels [0, 0.1, 0.2, ..., 1]. The shape of the precision ×
recall curve is summarized by the 11-point interpolation as:

AP11 =
1

11 ∑
R∈{0,0.1,...,0.9,1}

Pinterp(R) (4)

Pinterp(R) = max
∼
R:
∼
R≥R

P(
∼
R) (5)

Rather than using the observed precision P®at each recall level R, as specified in this
definition, one can determine the Average Precision (AP) by considering the maximum
precision Pinterp(R) with a recall value equal to or greater than R.

In the all-points interpolation method, instead of interpolating only at 11 evenly spaced
points, one can choose to interpolate at all points as follows:

APall = ∑
n
(Rn+1 − Rn)Pinterp(Rn+1) (6)

Pinterp(Rn+1) = max
∼
R:
∼
R≥Rn+1

P(
∼
R) (7)

In this case, the maximum precision with a recall value equal to or greater than Rn+1 is
used to interpolate the precision at each level. This provides a more accurate representation
of AP than merely relying on the precision observed at a limited number of points. Average
precision has some limitations. First, it assumes that precision is a continuous function of
recall, which is not true in practice. Moreover, this measure ignores the size and shape of
the objects, and it requires binarizing the output for multi-class or multi-label classification.

- mean Average-Precision (mAP)

Within a specific dataset, the accuracy of object detectors is evaluated across all classes
using the mAP, which is simply the average of the AP scores across all classes as follows:

mAP =
1
N

N

∑
i=1

APi (8)

where N indicates how many classes are being evaluated in total, and APi is the AP for the
ith class [65].

4.2. Metrics for Tracking

Evaluation criteria for the tracking stage are divided into two categories: single object
tracking and multiple object tracking, detailed as follows.

4.2.1. Single Object Tracking

Key metrics employed within this category involve the Overlap Success Rate (OSR)
and the Distance Precision Rate (DPR). The Distance Precision Rate (DPR) is determined
by computing the ratio of frames where the center location error, denoted as the Euclidean
distance between the centers of the predicted box (Bp) and the ground truth box (Bg), falls
below a designated threshold α. On the other hand, the Overlap Success Rate (OSR) is defined
as the proportion of frames where the overlap ratios with the ground-truth box surpass a
specified threshold β. The overlap ratio is mathematically expressed in Equation (9):

S =

∣∣Bp ∩ Bg
∣∣∣∣Bp ∪ Bg
∣∣ (9)
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where |.| indicates the number of pixels in an area ∩ and ∪ show the intersection and union
of two areas, respectively [68].

OSR and DPR rely on the selection of thresholds for determining the overlap rate and
the distance mistake, which can influence the sensitivity and specificity of the evaluation.
Furthermore, these measures neglect the scale variation of the target, which is a frequent
difficulty in tracking [69]. These are two important limitations for these metrics.

4.2.2. Multiple Object Tracking

- Multiple Object Tracking Accuracy (MOTA)

MOTA is a widely used metric for assessing the overall performance of a multiple-
object tracker. It evaluates the quality of the recovered tracks by considering identity
switches, missed targets, and false positives as follows:

MOTA = 1− ∑t(mt + fpt + mmet)

∑t gt
(10)

Here, gt represents the number of ground-truth objects at frame index t. The terms
mt, f pt, and mmet denote missed targets, false positives, and ID switches at the t-th frame,
respectively. MOTA provides an aggregate count of tracking errors and ranges from (−∞, 1]
with negative values indicating poor performance and one representing the highest possible
score [70].

- Multiple Object Tracking Precision (MOTP)

MOTP considers the distance between the detected objects and the ground truth
objects. It is a representative measure of a tracker’s precision performance and is defined
by the following equation:

MOTP =
∑t,i di

t

∑t ct
(11)

where di
t is the distance between the object oi and its corresponding hypothesis and ct is

the total number of matches in frame t among the true targets and the hypothesized objects.
The MOTP score falls in the interval [0, ∞), where a score of 0 indicates good performance,
and higher values indicate poorer performance [71].

It should be noted that MOTA and MOTP are not appropriate for real-time tracking
applications, because they need the ground truth information of all the frames in a video
sequence, which is not accessible in real-time situations. Moreover, they are not adaptable
to multi-class tracking problems, because they suppose that all the objects are in the same
class and have the same appearance model [72].

- Completeness

Completeness metrics evaluate the overall continuity of the tracking trajectory. Specif-
ically, trajectories resulting from combined tracker outputs can be classified into three
categories: Mostly Tracked (MT), Partially Tracked (PT), and Mostly Lost (ML). The MT
category suggests that the tracker output covers more than 80% of the ground truth trajec-
tory’s length, whereas the ML category signifies it covers less than 20%. The PT category
applies to all other instances. Therefore, an optimal tracker should ideally produce a larger
proportion of sequences classified as MT and a smaller proportion as ML [71].

Completeness metrics have some limitations. In this way, they do not measure the
accuracy of the location of the tracked objects, which can influence the quality of the
tracking results. Furthermore, these criteria do not consider the identity switches of the
tracked objects, which can lead to confusion and mistakes [73].

5. Challenges and Future Trends

In this section, we initially contrast the methods reviewed, focusing on their respective
strengths and shortcomings, before delving into a detailed analysis. We also discuss the
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challenges faced by existing object detection and tracking methods and explore potential
future trends to overcome these limitations. We also introduce a sensor fusion-based
approach that incorporates 3D LiDAR into the object detection and tracking processes.
Table 2 compares unified track-and-detection methods with tracking-by-detection methods
based on their advantages and shortcomings. Additionally, Figure 2 individually delineates
the taxonomy of small object detection and tracking methods along with the merits and
pitfalls of existing methods across each category. Note that the merits of methods across
each category are highlighted in boldface style.

Table 2. Comparison of unified track-and-detection methods versus track-by-detection methods.

Types of Methods Advantages Shortcomings

Unified track-and-detection Free of object detector Manual initialization,
Fixed number of objects to be tracked

Track-by-detection
Capable of managing a varying number

of objects in video,
Automatic initialization

Performance depends on object detection

According to Table 2, it can be concluded that the advantage of unified track-and-
detection methods is that these types of methods perform detection and tracking processes
in a unified manner and without a detector. In other words, these methods are free of object
detectors. However, their shortcomings are that they require a manual initialization with a
fixed number of objects in the first frame such that these objects are located and tracked
in the next frames. This means that when new objects enter the scene, these methods are
not able to manage them and so have limited applications. On the other hand, track-by-
detection methods are more popular and have more applications due to performing a
detection stage and automatically detecting objects in each frame by detection algorithms.
The advantages of these methods are automatic initialization and managing the scene with
a varying number of objects due to the detection stage. However, the performance of these
methods is highly dependent on the performance of the utilized object detector which is
their main shortcoming. This means that poor performance in the detection process can
adversely affect the performance of the tracking process. In brief, tracking-by-detection
methods are more widely used within the field of small object detection and tracking
because of discovering new objects and terminating disappearing objects automatically.
That is while unified track-and-detection methods cannot deal with these challenges.

As Figure 2 elucidates, in the context of Filter-based methods, the Kalman filter
generally enhances the tracking process’s efficiency through optimal estimations. Its
simplicity and minimal computational requirements make it apt for tasks necessitating
high real-time responsiveness. Nonetheless, the Kalman filter’s assumptions of Gaussian
distribution for state variables and its suitability only for linear systems are limitations.
The particle filter resolves these constraints, but its elevated computational cost renders
it unsuitable for real-time applications. It should be mentioned that there are a lot of
Kalman filter variations, such as the Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF), which are the famous heuristic variations of the Kalman filter for nonlinear
systems with Gaussian distribution [74,75]. Search-based methods, on the other hand,
suffer from slow speeds, high computational complexity due to the search process, and also
the potential to become trapped in local optima. Hence, they are unsuitable for real-time
applications. Yet, these methods’ utility lies in their ability to deliver near-optimal solutions
with acceptable error margins.
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Background-based methods boast simplicity, low computational complexity, and
high speed. As a result, these methods have good performance in real-time applications.
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However, they tend to generate considerable noise as the target object, necessitating post-
processing methods for noise removal. Moreover, they might fail to detect certain objects,
particularly those that are stationary or moving slowly. Classical computer-vision-based
methods exhibit excellent performance in object detection, effectively identifying objects
within video frames using mathematical and heuristics techniques. Unfortunately, these
methods often overlook the challenge of occlusion during the tracking stage, a common
and critical issue in object tracking. This occurs when objects appear to blend or merge
due to close proximity or background integration, potentially causing the tracker to lose or
erroneously track objects after overlapping [76]. In other words, occlusion means that an
object is partially or completely hidden by other objects, which reduces the appearance and
location information of the object. This issue is particularly prevalent with small objects
due to their diminutive size.

To counter occlusion, trackers typically employ data association. However, there are
various methods for small object detection and tracking under occlusion that can modify
accuracy, speed, robustness, and generality. Some of these methods are: using a large
number of anchor points to cover a wider search space, using multiple-frame receptive
networks for small object tracking, using motion as a strong cue for small object detection
in videos, using correlation filter to maintain the identity and trajectory of objects over time,
and using reconstruction methods to recover the appearance and location of the object
after occlusion [77,78]. For instance, Wang et al. [79] addressed occlusion by calculating
the correlation between different frames and learning motion information. In the study by
Wojke et al. [53], the Deep SORT algorithm integrated motion and appearance information
to solve this issue by utilizing Mahalanobis distance and a convolutional neural network
(CNN) trained on a large-scale person re-identification dataset. It should be noted that the
real-time performance and computational complexity of classical computer-vision-based
methods depend on several factors, such as the size and quality of the input images, and
the type and complexity of that methods.

Deep-learning-based methods offer the advantage of feature learning, facilitating
end-to-end functionality. However, these methods face challenges when directly applied to
small objects as these possess limited and poor features, which may get lost during deep
network processing, because these networks have many layers and, as a result, include
many processes. This challenge means that small objects have fewer and less distinguish-
able features than larger objects due to their small shape size. This makes it difficult for
deep networks to learn and extract suitable features for small object detection and tracking.
To solve this problem, various methods have been proposed to enhance and improve the
feature information of small objects that can improve accuracy, speed, robustness, and
generality. Some of these methods are: using feature enhancement modules (FEM) that
can use feature aggregation structures (FAS) and attention generation structures (AGS) to
reduce the interference of background by extracting multi-scale contextual information
and combining a coordinate attention mechanism, thus improving the perception of small
objects, using generative adversarial networks (GAN) to generate new high-quality images
that contain small objects, using self-supervised methods to learn features using motion,
and using supervised methods to learn features using annotations [80,81].

On the other hand, deep networks require substantial data for the training phase
to circumvent overfitting. The cause is that these networks need to learn intricate and
distinctive features from massive data, which are normally not accessible for small objects.
In addition, small objects usually have a lot of variety and change in their appearance,
shape, pose, colour, orientation, and location, which require very diverse and balanced
data [82]. Generally, deep networks are slow but there are different methods for small
object detection and tracking based on deep learning. As a result, each method has its
own advantages and limitations in terms of real-time performance and computational
complexity. Hence, it is impossible to find one optimal method for small object detection
and tracking that can achieve both high real-time performance and low computational
complexity. Various methods may work better for different situations and tasks based
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on the needs and limitations. Some potential directions for future research are creating
more efficient network structures, developing more effective loss functions, using more
contextual information, and adding more existing knowledge.

Multiple object tracking (MOT) is another vital consideration. Few works address
multiple small object tracking, primarily employing GM-PHD filters for this task. In
addition to creating sophisticated appearance and/or motion models to address challenges
like scale changes, out-of-plane rotations, and illumination variances (central to single object
tracking), MOT involves determining the variable number of objects and maintaining their
identities [11]. Traditionally, the track-by-detection paradigm has been employed for MOT,
leveraging the inherent separation of detection and data association tasks [83]. Thus, the
tracking performance is significantly influenced by the detection results [84,85]. The MOT
problem can be viewed as a data association task, aiming to connect detections across
video sequence frames [86]. In addition to the common challenges encountered in both
SOT and MOT, MOT faces unique concerns such as (1) initializing and terminating tracks,
(2) managing interactions among multiple objects, (3) dealing with frequent occlusions, and
(4) handling similar appearances. A similar appearance complicates the tracking process as
the object’s appearance information is insufficient for differentiation. The study by Dicle
et al. [87] applied motion dynamics as a cue to distinguish and track multiple objects with
similar appearances. This issue is addressed by formulating the problem as a Generalized
Linear Assignment (GLA) of tracklets that are dynamically similar, incrementally associated
into longer trajectories.

Scale variation is another important issue in this domain which means that the relative
size of objects to the image or camera is changing, which affects the appearance and location
information of the object. This can cause algorithms to fail to detect or track the object
correctly. To solve this problem, various methods have been proposed for small object
detection and tracking under scale variation in which accuracy, speed, robustness, and
generality are improved. Some of these methods are: using image pyramid to provide
images with different levels of details, using scale filter to estimate the target scale, using
multi-scale feature fusion to reduce scale mismatch, and using multiple-frame receptive
networks for small object tracking [56,88,89].

5.1. Sensor Fusion-Based Approach

Sensor fusion is a popular approach in modern perception systems, where information
from multiple sensors is combined to enhance the overall perception and understanding
of the environment. In the context of object detection and tracking, integrating 3D LiDAR
data with other sensors, such as cameras, can provide more accurate and comprehensive
information about the surrounding objects [90,91].

5.1.1. Hydro-3D: Hybrid Object Detection and Tracking for Cooperative Perception Using
3D LiDAR

One noteworthy system that utilizes this sensor fusion-based approach is the “hydro-
3D” framework, a hybrid object detection and tracking system for cooperative perception
using 3D LiDAR. By leveraging the high-resolution 3D point cloud data provided by
LiDAR, hydro-3D improves the accuracy and robustness of object detection and tracking
tasks. The 3D information allows the system to handle various challenges, such as occlusion
and object detection in complex scenarios [92].

5.1.2. Automated Driving Systems Data Acquisition and Analytics Platform

The development of advanced object detection and tracking systems, like the hydro-
3D, is further facilitated by automated driving systems data acquisition and analytics
platforms. These platforms provide a large-scale collection of diverse real-world driving
data, enabling researchers and developers to train and validate their algorithms using a vast
range of scenarios. The availability of such datasets accelerates progress in the field and
fosters the creation of more robust and reliable object detection and tracking systems [93].
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5.1.3. YOLOv5-Tassel: Detecting Tassels in RGB UAV Imagery with Improved YOLOv5
Based on Transfer Learning

In recent years, transfer learning has become a widely adopted technique in deep
learning-based object detection tasks. YOLOv5-Tassel is an example of a transfer learning-
based approach specifically designed for detecting tassels in RGB UAV imagery. By leverag-
ing pre-trained models and fine-tuning on tassel-specific datasets, YOLOv5-Tassel demon-
strates enhanced performance and efficiency in detecting small and intricate objects, like
tassels, in aerial images [94].

5.1.4. Comparison and Future Trends

In contrast to the methods reviewed earlier, the sensor-fusion-based approach using
3D LiDAR, exemplified by hydro-3D, provides a more comprehensive understanding of
the environment. By combining 3D LiDAR data with other sensor inputs, like cameras,
the system can address challenges related to occlusion, object detection, and tracking in
dynamic and complex scenarios.

Furthermore, the use of automated driving systems data acquisition and analytics plat-
forms facilitates the development and testing of advanced object detection and tracking
algorithms, enabling researchers to train and validate their models on diverse real-world data.

For deep-learning-based methods, transfer learning, as demonstrated by YOLOv5-
Tassel, becomes crucial in improving the performance of object detection on small objects
or objects with limited features. By utilizing pre-trained models and fine-tuning on specific
datasets, transfer learning allows the network to learn and generalize better, even with
limited training data.

Future trends in object detection and tracking may involve even more sophisticated
sensor fusion techniques, integrating data from various sensors, such as LiDAR, cameras,
radars, and more. Additionally, the continued advancement of deep learning and transfer
learning approaches is likely to enhance the accuracy and efficiency of small object detection
and tracking tasks.

In conclusion, the field of object detection and tracking is continually evolving, with
sensor-fusion-based approaches and transfer learning playing pivotal roles in overcoming
challenges and improving performance. Automated driving systems data acquisition
platforms contribute significantly to advancing research and development in this domain.
As technology continues to progress, we can expect further breakthroughs that will refine
and expand the capabilities of object detection and tracking systems, making them more
reliable and applicable across various real-world scenarios.

6. Conclusions

This paper reviewed different methods for detecting and tracking small objects, which
are important aspects of image and video analysis, mainly due to the limited and inferior
features of these objects. We introduced two main categories: unified track-and-detection and
track-by-detection methods. The former was split into filter-based and search-based methods,
while the latter was divided into background-based, classical computer-vision-based, and
deep-learning-based methods. This review also categorized public datasets for small object
detection and tracking, dividing them into spectrum-based video datasets and source position-
based video datasets. This classification helps researchers to do experimental work. Moreover,
we explained the usual evaluation metrics for detection, single object tracking, and multiple
object tracking, providing a basis for validating and comparing results.

A significant portion of this review was dedicated to discussing the prevalent chal-
lenges in small object detection and tracking. These challenges, encompassing issues such as
occlusion, scale variation, speed, computational cost, and the application of deep-learning
techniques for small objects, show the complexities in this domain. Moreover, sensor-fusion-
based approach with 3D LiDAR can help small object detection and tracking tasks owing
to providing more accurate and comprehensive information about the surrounding objects.
Concurrently, we assessed the strengths and limitations different methods in each category,
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providing an evaluation of current approaches and their potential suitability for different
scenarios. Furthermore, we outlined potential future research directions, emphasizing
the need for better performance and accuracy, especially in dealing with multiple object
tracking (MOT). Existing works in MOT are sparse, and more research is needed to handle
extra tasks, such as changing numbers of objects, keeping their identities, and managing
frequent occlusions or similar appearances.

In conclusion, this comprehensive review is a helpful guide for researchers within the
field of small object detection and tracking. Research could focus on dealing with multiple
object tracking and improving the performance and accuracy of small object detection
and tracking. By outlining the current challenges and future trends, this review gives a
roadmap to guide future research in this crucial area of image and video analysis.
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