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Abstract: Passive rehabilitation training in the early poststroke period can promote the reshaping
of the nervous system. The trajectory should integrate the physicians’ experience and the patient’s
characteristics. And the training should have high accuracy on the premise of safety. Therefore,
trajectory customization, optimization, and tracking control algorithms are conducted based on a new
upper limb rehabilitation robot. First, joint friction and initial load were identified and compensated.
The admittance algorithm was used to realize the trajectory customization. Second, the improved
butterfly optimization algorithm (BOA) was used to optimize the nonuniform rational B-spline fitting
curve (NURBS). Then, a variable gain control strategy is designed, which enables the robot to track
the trajectory well with small human–robot interaction (HRI) forces and to comply with a large HRI
force to ensure safety. Regarding the return motion, an error subdivision method is designed to slow
the return movement. The results showed that the customization force is less than 6 N. The trajectory
tracking error is within 12 mm without a large HRI force. The control gain starts to decrease in 0.5 s
periods while there is a large HRI force, thereby improving safety. With the decrease in HRI force, the
real position can return to the desired trajectory slowly, which makes the patient feel comfortable.

Keywords: upper limb rehabilitation; trajectory customization; compliant control; error subdivision

1. Introduction

With global aging and the increasing number of patients with limb motor dysfunction
caused by nerve injury, how to meet the urgent rehabilitation demand and improve the
quality of life of patients is a key issue to be solved [1]. Compared to the traditional
manual rehabilitation method by therapists, the robot-assisted rehabilitation method has
the advantages of high repeatability, high precision, and accurate quantitative evaluation,
which has become a research hotspot worldwide [2]. Clinical results have shown that
passive rehabilitation training can promote neural remodeling in the initial post-stroke
period [3], which helps the muscles of the affected limb regain the ability to contract
spontaneously. Traditional rehabilitation training is effective due to the practical experience
of the physiotherapist and the real-time interaction. At present, the training trajectory
of most rehabilitation robots can only be of some regular curves represented by clear
mathematical functions. On the other hand, the training strategy cannot deal with a large
HRI force, which might exert damage to the patient. Therefore, it is needed to study the
customization of training trajectory and compliant control of passive rehabilitation training.

Emken et al. [4] proposed a teaching control strategy for a lightweight two-degree-of-
freedom (DOF) lower limb rehabilitation robot. Feng et al. [5] fixed an accelerometer on the
lower limbs to collect data during the training stage as expected input for rehabilitation
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training. Morita et al. [6] adopted an impedance control strategy to drag upper limb rehabili-
tation robots and used the least square method to fit the original noise data to approximate
the intention of the rehabilitation physician. You et al. [7] designed a torque control algorithm
based on the self-developed DC motor, where the weight of the robot arm and the joint friction
torque of the robot are compensated to achieve easy dragging. Yang et al. [8] directly used the
admittance algorithm in Cartesian space to calculate the inverse joint position solution to
drag the lower limb rehabilitation robot, without optimizing and tracking the personalized
trajectory. However, the doctor and the patient’s hands are coupled to the end of the robot,
inevitably resulting in an unsmooth trajectory.

As for trajectory optimization, it is generally based on polynomials, including time-
optimal, energy-optimal, and acceleration-optimal methods [9,10]. In this paper, the raw
trajectory points are first compressed using the Douglas–Puke method [11] and then the
NURBS curve [12] is used to interpolate between the compressed points. Dong improved
the solution process of the B-spline for the joint trajectory fitting of the 6R robot [13]. Mei
optimized the end trajectory of the 6-DOF high-speed parallel robot by combining the
joint minimum acceleration and the B-spline curve. They focused on reducing the accelera-
tion of the joint and the fitting trajectory has a large deformation relative to the original
trajectory [14]. However, there is no smoothness optimization of the fitting trajectory.

As for the trajectory tracking control, Wu et al. designed a fuzzy sliding mode con-
troller to achieve position tracking of the exoskeleton upper limb rehabilitation robot [15].
The physiotherapist can manually adjust the admittance parameters of the outer loop
according to the patient’s condition so that the HRI force is included in the position control.
Mushage et al. [16] designed a fuzzy neural network and an error-adaptive nonlinear con-
troller based on state observation to track the trajectory of the 5DOFs upper limb exoskeleton
and simulate the performance of the controller. Li et al. [17] designed a robust anti-interference
controller to improve the trajectory tracking accuracy of the robot. Jia et al. [18] combined RBF
neural network and PID for trajectory tracking control of a lower extremity exoskeleton
robot. It can be seen that most researchers aim to improve the tracking accuracy with
the complex controller. Good trajectory tracking ability can ensure the training effect, but
the larger rigidity may make the patient feel uncomfortable or even injured once there is
a large HRI force. Therefore, in a normal situation, the upper limb rehabilitation robot
should enable trajectory tracking and, in an emergency, it should ensure safety. Trigili,
Emilio et al. [19] use series elastic joint elements to achieve compliance of the rehabilitation
robot. Miao et al. [20] design a position controller for passive training with a bilateral
end-effector upper limb rehabilitation robot and an adaptive variable parameter controller
to achieve compliance. Guo et al. [21] use a reinforcement learning algorithm to design
a variable admittance control algorithm to achieve rehabilitation training matching the
stiffness characteristics of patients’ lower limbs. Among them, the structure and modeling
of special flexible components are complex and will have errors. Other compliance control
algorithms can modify the parameters online but the algorithms are slightly complex for
passive rehabilitation training. Furthermore, the return movement after compliance was
not considered before.

Therefore, based on the self-developed 3DOFs end-effector upper limb rehabilitation
robot, the methods of trajectory demonstration and optimization are proposed here. A
variable gain control strategy is designed, enabling the robot to track the trajectory well
with small HRI forces and comply with large HRI forces to ensure safety. Moreover, when
the HRI force is reduced with a large position error, the position can also return to the
desired trajectory with subdivision error, which means that the return action is not too
rushed. It will be comfortable for the patient to continue the unfinished passive training.
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2. Materials and Methods
2.1. Upper Limb Rehabilitation Robot System

The upper limb rehabilitation robot used in this paper is a self-developed 3DOF
end-effector upper limb rehabilitation robot, which is mainly used for the training of the
shoulder and elbow joints. It includes two horizontal rotating joints and a vertical prismatic
joint. Figure 1 is a brief diagram of its structure, where Z1, Z2, and Z3 represent the axes of
the three joints, and q1, q2, and q3 are the position variables of the three joints. The first two
rotating joints are driven by two AC servomotors equipped with absolute encoders, and
the third joint is driven by a double-acting cylinder. A displacement sensor is installed at
the end of the cylinder and a three-dimensional force sensor is installed under the cylinder.
Figure 2 is the prototype of the rehabilitation robot system. The program is developed
with MATLAB software on the host computer. The slave computer executes the compiled
control algorithm. The cylinder output force is controlled by a proportional pressure valve.
Because of the overall height of the robot, the total stroke of the cylinder is 150 mm, which
limits the training range of the shoulder joint in the sagittal plane. Furthermore, to ensure
safety, the two rotating joints are mechanically limited. The working range of the robot in
the vertical direction is the stroke of the cylinder which is very clear. Therefore, only the
working space in the horizontal plane is shown in Figure 3.

Figure 1. Robot structure.

Figure 2. The apparatus of the rehabilitation robot system.
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Figure 3. The horizontal workspace of the robot.

2.2. Trajectory Customization

While customizing, the patient and the therapist simultaneously exert an interactive
force at the end; the resultant force is as follows:

Fint = Ft + Fp (1)

where Ft represents the force exerted by the physiotherapist and Fp represents the force of
the patient.

Therefore, part of Ft should counteract Fp so that the robot can move as the therapist
wishes. The force Fp is variable and difficult to predict. However, for patients who have
almost completely lost the ability to move, their interaction force can be assumed to be 0.
The robot will move to utilize a force-based admittance control algorithm.

To realize effortless teaching, the rotational friction Ff must be compensated. The
interaction force Fint is then converted into torques τh of joints according to Equation (2),
where J is the Jacobin matrix of the robot. Then the admittance algorithm (3) is applied to
generate the desired input of the joint position. Therefore, the robot can rotate when there
are interaction forces.

τh = JTFint (2)

k∆q = τh (3)

where k is the admittance coefficient and ∆q is the increment of the joint angle.
Regarding the prismatic joint, the static friction force will be tested and compensated

according to Equation (4). In addition, the vertical load at the end can be detected and
compensated with the help of the force sensor. The force applied by the physiotherapist
FPZ is detected by the force sensor at the end and then the amount of pressure change in
the rodless chamber is calculated by Equation (5). Therefore, the cylinder with different
loads can be easily moved.

Ff = 15sgn(FPZ) (4)

where FPZ represents the vertical force exerted by the therapist.

FPZ = ∆P×A1 (5)
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where A1 is the area of the cylinder’s piston, ∆P indicates the amount of change in pressure.

2.3. Trajectory Interpolation

A kth-degree NURBS curve defined by n + 1 polygon control vertices can be repre-
sented as a segmented rational polynomial function. The point on the NURBS curve for a
given parameter u is obtained as follows.

P(u) =
∑n

i=0 ωidi Ni,k(u)
∑n

i=0 ωi Ni,k(u)
(6)

where ωi is the weight factor, which is related to the control points di. The larger the
value of the weight factor, the closer the curve is to the control vertex. The first and last
weight factors ω0, ωn > 0 and the rest ωi≥0, which prevent the denominator from being
zero, retain the convex wrapping nature and do not degrade the curve to a point due
to the weight factor. Ni,k(u) is a kth-degree normal B-spline basis function defined by a
non-periodic and nonuniform node vector U = [u0, u1, · · · , un+k+1] deduced from the
Cox–De Boor recursive formula expressed as follows.

Ni,0 =

{
1 ui 6 u 6 ui+1

0 Otherwise
Ni,k(u) =

u−ui
ui+k−ui

Ni,k−1(u) +
ui+k+1−u

ui+k+1−ui+1
Ni+1,k−1(u)

Define 0
0 = 0

(7)

To make a kth-degree NURBS curve pass through a given set of points Pi(i = 0, 1, . . . , n),
it is necessary to ensure that the first and last points of the curve coincide with the points
P0 and Pn, while ensuring that the nodes ui+k(i = 0, 1, . . . , n) in the curve definition field
correspond to Pi one-to-one. A kth-degree NURBS curve with n segments will be defined
by n + 3 control points Di(i = 0, 1, . . . , n + 2), the weight factors ωi, and the node vector
U = [u0, u1, . . . , un+k+3].

To parameterize compressed points Pi, three parameterization methods, named uni-
form parameterization, cumulative chord length parameterization, and centripetal parame-
terization, can be used. The second method can accurately reflect the distribution of the
points Pi and the fitting accuracy is high [22]. Therefore, the cumulative chord length
parameterization is used to parameterize the points Pi. The method is represented below.

u0 = u1 = u2 = u3 = 0
ui+3 = ui+2 + |Pi − Pi−1|/ ∑n

i=1|Pi − Pi−1|
un+3 = un+4 = un+5 = un+6 = 1

(8)

Variables that affect the fitting effect of the NURBS curve are control points, curve
nodes, and weight factors [23]. In the experiment, to simplify the calculation, the weight
factors are set to 1. The different compression thresholds lead to different initial via points
as well as the shape and smoothness of the fitted NURBS curves. Therefore, an intelligent
optimization algorithm, with curvature as the objective function and compression threshold
as the variable for optimization, is proposed to produce a continuous smooth curve as the
training trajectory. The curvature of a point on the NURBS curve is written as follows.

κc =
‖Ṗ(u)× P̈(u)‖
‖Ṗ(u)‖3 (9)

where Ṗ(u) and P̈(u) are the first and second derivatives of the curve that can be calculated
according to Leibniz’s rule. Simplify Equation (6) as follows.

P(u) =
A(u)
W(u)

(10)
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Therefore, the kth-order derivative is deduced as

P(k)(u) =
A(k)(u)−∑k

i=1 Ci
kW(i)(u)P(k−i)(u)

W(u)
(11)

Finally, the objective function is written as

obj =
m

∑
j=0

κc(j) (12)

where m represents the number of interpolation points on the curve.
In addition, the trajectory should be limited to the workspace of the robot. According

to the inverse kinematics model of the robot, the position q of three joints can be obtained
from the coordinate points in Cartesian space. The optimization constraint is expressed as:

q
i
≤ qi ≤ q̄i i = 1, 2, 3 (13)

where q
i

and q̄i represent the minimum and maximum limits of the joint i.

2.4. Optimization Algorithm

The Butterfly Optimization Algorithm (BOA) is a new type of metaheuristic group
intelligence optimization algorithm inspired by the foraging and courtship behavior of
butterflies in nature based on sensed fragrance [24]. It includes global search and local
search. Compared with some existing metaheuristic algorithms, the basic BOA operation
is simple, with few adjusted parameters and good robustness, and it has achieved good
results in the preliminary application of engineering practice [25].

The fragrance is formulated as a function of the physical intensity of the stimulus as follows:

f = cIa ac ∈ [0, 1] (14)

where f is the perceived magnitude of the fragrance, that is, how strong the fragrance is
perceived by other butterflies, c is the sensory modality, I is the stimulus intensity, and a is
the power exponent dependent on the modality, which accounts for the variable degree
of absorption. Generally, c = 0.01 and a = 0.1. In the case of a maximization problem, the
intensity can be proportional to the objective function.

Before the BOA enters the local or global search, the algorithm randomly generates
the locations of individuals and produces their respective scents accordingly. Each butterfly
moves to the current global optimal position g∗ during the global search phase. The global
searching rule is written as:

xt+1
i = xt

i + fi
(
r2

1g∗ − xt
i
)

(15)

where xt
i is the position of the ith butterfly in the tth iteration. Here, g∗ represents the

current best position. The fragrance of the ith butterfly is represented by fi and r1 is a
random number in [0, 1].

The local search phase can be represented as follows.

xt+1
i = xt

i + fi
(
r2

1xt
j − xt

k
)

(16)

where xt
j and xt

k are positions of the jth and kth butterflies, respectively. In the butterfly
foraging, whether it is in the local search phase or the global search phase, it is determined by
the switching probability Pstatic = 0.8. Each iteration compares a random number r2∈ [0, 1] with
Pstatic. The final position update formula of the butterfly algorithm is as follows.

xt+1
i =

{
xt

i + fi
(
r2

1g∗ − xt
i
)

r2 ≤ Pstatic

xt
i + fi

(
r2

1xt
j − xt

k

)
r2 > Pstatic

(17)
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To solve the problems of slow convergence speed, low convergence accuracy, and
easily falling into local optima of standard BOA, many researchers have improved the
algorithms [26–28]. The improvements deal with multidimensional optimization problems.
In this study, the trajectory data compression algorithm and BOA are combined to reduce
the optimization problem from three-dimensional to one-dimensional. Therefore, in the
iterative operation process, dynamic switching probability and t-variation strategies are
used to improve the convergence speed and accuracy of BOA.

The idea of dynamic switching probability can be expressed in the following expression.

Pd = (
Tmax − n̂

Tmax
)3 (18)

where Tmax represents the maximum number of iterations and n̂ represents the current number
of iterations. In the iterative process, random numbers r2

1 are replaced with a t-distribution
function, preventing local optimization and improving the convergence speed.

The probability density function of the standard t-distribution is as follows.

f (t) =
Γ( n+1

2 )√
nπΓ( n

2 )
(1 +

t2

n
)−

n+1
2 (19)

where n is the freedom of the gamma function Γ.
With the number of iterations of BOA correlated, Equation (19) can be rewritten as

f (t̄) =
Γ( n+1

2 )√
nπΓ( n

2 )
(1 +

(n̂/Tmax)2

n
)

n+1
2 (20)

where t̄ = n̂/Tmax. In the experiment, let n = 20, the improved BOA algorithm is written
as follows.

xt+1
i =

{
xt

i + fi( f (t̄)g∗ − xt
i ), r2 ≤ Pd

xt
i + fi( f (t̄)xt

j − xt
k), r2 > Pd

(21)

The flow chart of the optimization is shown in Figure 4. Chose four test functions to
test the performance of the proposed algorithm. The functions are listed in Table 1. The opti-
mization results are shown in Figure 5. The iterative optimization processes of the improved
BOA and the classical BOA are shown in Figure 6. The minimum sum of curvature of the
improved BOA is 31.1908 after 100 iterations and the corresponding optimal compression
threshold is 24.9157. The results of the classical BOA are 31.3277 and 24.042. It can be seen
that the improved algorithm has a better regression speed and accuracy. The blue solid line
represents the proposed improved algorithm. The red dashed line is the classical algorithm. It
can be seen that improved BOA is better than the classical BOA.

Table 1. Test functions.

Function Dimension Interval Minimum

f = x2
1 + x2

2 2 [−10 10] 0

f = x2
1 + 2x2

2− 0.3cos(3πx1)− 0.4cos(4πx2)+ 0.7 2 [−10 10] 0

f = −20e−0.2
√

(x2
1+x2

2)/2 −
e(cos(2πx1)+cos(2πx2))/2 + 20 + e

2 [−10 10] 0

f = |x1|+ |x2|+ |x1||x2| 2 [−10 10] 0
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Figure 4. The optimization process of the improved BOA.
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Figure 5. Optimization of the test functions.
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Figure 6. The curvature optimization process.
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The interpolation curve is shown in Figure 7, where the blue dotted line represents the
raw trajectory and the red line represents the optimized interpolation curve.

Figure 7. The NURBS interpolation curves of an arbitrary spatial trajectory.

2.5. Trajectory Tracking Controller
2.5.1. RBF Net-Based Controller

To realize the training motion planned by the rehabilitation physician, passive rehabili-
tation training requires good trajectory tracking performance under the premise of ensuring
safety. First, a sliding mode controller based on the RBF approximation is designed to
ensure good tracking performance in the training process. The dynamic equation of the
n-joint robot is as follows.

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) + τd = τ (22)

where M(q) is the n× n positive-definite inertia matrix, C(q, q̇) is the n× n Coriolis matrix,
G(q) is an n× 1 vector of gravity forces, F(q̇) is an n× 1 vector of friction forces, τd is the
unknown applied interference and satisfies ‖τd‖ ≤ d, d is the upper bound of τd, and τ is
the control input. Define the tracking error as follows.

e = qd − q (23)

Define the sliding surface as Equation (24)

r = ė + Λe (24)

where Λ = ΛT > 0. Substitute (23) into (24); we have the following expression.

q̇ = −r + q̇d + Λe (25)

Then, by substituting (25) and its derivative into (22), we obtain the simplified expression

M(q)ṙ = −C(q, q̇)r− τ + Q(x)+ τd (26)

where Q(x) = M(q)(q̈d + Λė) +C(q, q̇)(q̇d + Λe) + G(q) + F(q̇). This is the model uncer-
tainty, which needs to be approximated. Since the RBF network has universal approxima-
tion characteristics, the RBF neural network is used to approximate the unknown nonlinear
function Q(x) and the RBF network algorithm is defined as follows.
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 ϕj = exp
(
‖x−cj‖2

2σ2
j

)
Q(x) = W∗ Tϕ(x) + ε

(27)

where x is the input of the network, j is the jth node of the implicit layer of the network,
ϕ(x) is the output of the Gaussian function of the network, and W∗ is the ideal weight of
the network. The approximation error of the network is ε and ‖ε‖ ≤ εN.

The input vector of the network is x =
[

eT ėT qT
d q̇T

d q̈T
d

]
. The robot control

input is designed as below.
τ = Q̂(x) + Kvr− v (28)

where Kv is a diagonal matrix with each element larger than 0 and Q̂(x) = ŴT
ϕ(x) is the

estimation output of the network. Define W̃ = W∗ − Ŵ and then we have Q(x)− Q̂(x) =
W̃T

ϕ(x) + ε. Substituting (28) into (26), we obtain

M(q)ṙ = −(Kv + C(q, q̇))r + ζ1 (29)

where ζ1 = W̃T
ϕ(x) + (ε + τd) + v.

Define the Lyapunov function as below.

V =
1
2

rTM(q)r +
1
2

tr
(

W̃T
Ξ−1W̃

)
(30)

where tr
(

W̃T
Ξ−1W̃

)
is the trace of the matrix W̃T

Ξ−1W̃ and Ξ is a positive diagonal
matrix. The derivative of V is written as

V̇ = rTM(q)ṙ +
1
2

rTṀ(q)r + tr
(

W̃T
Ξ−1 ˙̃W

)
(31)

Substitute (29) and Ṁ(q)− 2C(q, q̇) = 0 into (31) to obtain the following expression.

V̇ = −rTKvr + tr W̃T
(

Ξ−1 ˙̃W +ϕrT
)
+ rT(ε + τd + v)

To make the system stable, design the adaptation law as ˙̃W = − ˙̂W = −Ξϕ(x)rT with
Ξ > 0. Additionally, design a robust term v = −(εN + d) sgn(r) so that we can obtain
V̇ = −rTKvr ≤ 0. According to the LaSalle theorem, the closed-loop system is asymptotic
and stable.

2.5.2. Variable Gain Strategy

Because the third joint of the robot is perpendicular to the first two rotating joints,
the motion is decoupled between them, which can be controlled separately. Considering
the compressibility of the gas, the position control of the cylinder is controlled by the PID
combined with a velocity feedforward controller. Because the third joint is driven by air
pressure resulting in compliant properties, only the first two joints are designed with a
variable gain strategy to cope with excessive HRI force and ensure the safety of the training.

Now, define the driving torque of the servomotor as follows.

τc = τ + τh (32)

where τh is calculated according to Equation (2).
Based on the control strategy mentioned above, the control gain is Kv of Equation (28).

According to the HRI force Fh, the variable gain strategy is designed as follows.

Kv = γe−F2
h /σ1 (33)
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where γ is a 2 × 2 positive definite diagonal matrix. This determines the maximum of Kv. Fh
is the resultant force of FX and FY. This is a scaler. σ1 is a scaler and determines the working
range of Fh. The smaller the value of σ1, the smaller Fh resulting in a maximum of Kv.

According to (32) and (33), the value of Kv will be small when there is a large HRI
force, meaning that τh becomes the main driving torque and the robot will move away
from the desired trajectory. Once the HRI force decreases, Kv increases, returning the real
position to the desired trajectory to continue training. But if the value of the control gain
is large, the return motion will be very fast, causing an uncomfortable feeling. Therefore,
design the position error subdivision strategy so that the trajectory tracking process is
gradually completed through small errors.

Assume the expected position of the deviated joint is qd, the actual position is qr, and the
position error is E. Set a constant χ to divide the error E and each small segment of error will
form a transitional expected position qdi, as shown in Figure 8. The formula is as follows.{

qdi = qr + E/χ
χ = ceil(λ|E|) (34)

where the ceil() function returns the smallest integer greater than or equal to the specified
expression. This function makes the parameter χ vary with the error E. For instance, in the
beginning, E is large, making χ large, which ensures the subdivided error is small and the
motion is slow. If χ is a fixed constant, the subdivided error will be large in the beginning
and very small in the end, which leads to fast motion in the beginning and not being able
to return to the desired trajectory in the end. The absolute value of E is taken to prevent χ
from being zero. As the error in the tracking process always exists, so the minimum of χ
is 1. The coefficient λ amplifies |E| to a value that is greater than 1, thereby avoiding the
situation where χ is always 1.

Figure 8. Subdivision of the error.

The control algorithm proposed here is shown in Figure 9.



Sensors 2023, 23, 6953 13 of 21

Figure 9. The control algorithm.

3. Tracking Experiments and Results
3.1. Trajectory Customization Experiment

The first two joints are driven by servomotors. Different input voltages lead to different
output torque. Therefore, ramp signals are used to test the static friction of the rotation
joints. As shown in Figure 10, the voltage that drives joint 1 to start rotating is 2.2v (point A)
and that for joint 2 is 3.7v (point B). They are used as compensation for the static friction of
the rotating joint.

Figure 11 shows the customization force of the first two joints. The blue lines represent
the force of the X and Y directions (denoted FX and FY), which are measured by the
force sensor. The orange lines represent the position of X and Y. Some force is still
needed to rotate the robot, as the static friction and inertia forces may vary with the robot
configurations. However, the largest force is 5.021 N, which means that it is easy to rotate
the first two joints.
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Figure 11. The customization test of joint 1 and joint 2.

Regarding the prismatic joint, the vertical load at the end can be detected and compen-
sated with the help of the force sensor. The static friction force test is shown in Figure 12.
The solid blue line is the force and the crest and trough corresponding to the moments
when the cylinder starts to move down and up. So, the force can be regarded as the friction
force. The static friction is compensated according to Equation (4). Figure 13 is divided into
three parts (A, B, and C) showing compensation with three different vertical loads (22.5 N,
30.8 N, and 34.3 N). The orange solid line represents the displacement of the cylinder and
the blue line represents the vertical load as well as the customization force. The cylinder
can easily stay at different positions with compensation. The maximum customization
force is 6.41 N of Part A, 5.16 N of Part B, and 4.6 N of Part C. That is, the cylinder can be
easily moved with different loads.

0 5 10 15 20 25 30

Time/s

-20

-10

0

10

20

30

40

D
is

p
la

c
e

m
e

n
t 

o
f 

th
e

 c
y
lin

d
e

r/
m

m

F
o

rc
e

/N

The static force of the cylinder

Force Displacement

X= 717

Y= 14.96

X= 1449

Y= -14.83

t=7.17 s

y=14.96 N

t=14.49 s

y=-14.83 N

Figure 12. The static friction of joint 3.



Sensors 2023, 23, 6953 15 of 21

0 20 40 60 80 100 120 140

Time/s

15

20

25

30

35

40

F
o

rc
e

/N

-20

0

20

40

60

80

100

120

140

P
o

s
it
io

n
/m

m

The customization force of joint 3

F
PZ Load one Load two Load three Position of joint 3

F= 16.09

F= 35.96

F= 29.7

30.8 N

34.3 N

A

B C

22.5 N
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3.2. Trajectory Tracking Experiment

Let a = 15, b = 10, σ1 = 500, so the upper bound of Kv is 25. The two joints use the
same control parameter. During the experiment, the subject does not exert an active force
and the tracking result is shown in Figure 14. The blue dashed line is the desired trajectory
and the orange solid line is the real trajectory. Figure 15 shows the tracking performance
in the horizontal plane and Figure 16 displays the cylinder tracking result. It can be seen
that the tracking error (Figure 17) is mainly from the third joint. The maximum tracking
error is shown in Table 2. From the experiment results, it can be concluded that, without a
large HRI force, better trajectory tracking can be achieved, which can meet the needs of
passive training.

Figure 14. Trajectory tracking results.
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Table 2. Maximum trajectory tracking error.

Direction X Y Z

Maximum error 7.437 mm 8.269 mm 11.19 mm

3.3. Compliant Control Experiment

During the experiment, the subjects randomly applied active force and the tracking
results are shown in Figure 18. It can be seen that the actual position (solid orange line)
deviates from the expected trajectory (blue dashed line). That is, trajectory tracking can
adapt to the interaction forces randomly applied by subjects during the training process,
verifying the effectiveness of variable parameters. Figure 19 shows the changes in the
control parameter Kv caused by the interaction force. The black dotted line represents the
change in control parameters, the blue solid line represents the force FX in the X direction,
and the blue dotted line represents the force FY in the Y direction. Obviously, as the
interaction force increases, the control gain decreases from the maximum value of 25. It can
be seen from the enlarged figure of first compliance that the response time of impedance
parameters to the interaction force is within 0.5s. At this point, the main torque to drive the
robot to move is τh, so the tracking can be compliant with the interaction force. It also can
be seen that Kv changes almost simultaneously with the interaction force.
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Figure 18. The performance of compliant properties in the horizontal plane.
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Figure 20 shows the displacement of robot joint 1 with the variation of the parameter
Kv. The black dotted line in the figure represents the parameter Kv. The pink stepped
dash-dotted line represents the sampled expected position when the position of joint 1
deviates. The solid blue line represents the expected position of joint 1 in real-time. The red
dotted line represents the actual position. There were three significant position deviations
in the experiment, with three sampled expected positions (−0.656, 0.159, −0.608 rad).
Taking the first large displacement deviation as an example: when t = 7.45 s, the value
of Kv begins to decrease. From the enlarged image indicated by the arrow, it can be seen
that the actual position starts to deviate from the expected position at t = 7.6 s. It can be
considered that the controller can comply with the interaction force in 0.1 s. Sample the
first desired position at t = 7.88 s, which is the position that needs to be returned to after
the first deviation. The actual position returned to −0.656 at t = 13.09 s, while the value of
Kv returned to 24.98 at t = 9.92 s. It can be concluded that it takes 3.17 (13.09–9.92) seconds
to return to the expected position after the significant external force disappears. So, the
strategy designed here can comply with large forces quickly and return slowly, ensuring
both safety and comfort. Figure 21 shows the displacement of robot joint 2. The three
deviation positions are 1.793, 1.471, and 1.401 rad. The same analysis process as for joint 1
can lead to the same conclusion.

Figure 20. The position of joint 1 with the variation of Kv.
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4. Discussion

The customization trajectory combines the training experience of rehabilitation physi-
cians with the different characteristics of patients. Therefore, the training trajectory is
of physiological significance and more effective. Hou et al. designed a load-adaptive
zero-force control algorithm based on joint torque sensors [29]. However, installing a
sensor at every joint will make the structure complex. Additionally, the control algorithm
is complicated. The robot system in this study is only equipped with a three-dimensional
force sensor at the end to detect the HRI force. Therefore, the vertical load and the gravity
of the third link can be detected and compensated directly. As for the first two links of the
robot, there is no need to compensate for their gravity because they rotate in the horizontal
plane. However, the static friction of the rotating joint is identified and compensated.
Meanwhile, the interactive force is converted into the joint space by the Jacobi matrix and
then the admittance algorithm is used to achieve easy dragging of the robot. The approach
avoids the inverse kinematic model compared with the direct application of the admittance
algorithm in Cartesian space. Most studies only filtered the original trajectory data to
reduce jitters after obtaining the trajectory [30]. Although the high-frequency noise was
removed, some extreme points corresponding to the range of joint motion of the upper limb
may be deleted too. In this paper, the data compression algorithm can retain the outermost
point of the original trajectory and maintain the topological shape of the trajectory, which
will ensure the maximum motion position. Then the improved BOA algorithm is adopted
to obtain an interpolation NURBS curve with the smallest sum of curvature. However,
the velocity and acceleration planning of the interpolation curve are not carried out in
this study and they are just generated by the derivative of the NURBS curve, which can
be adjusted by changing the density of interpolating points and the time to complete the
training trajectory. The maximum tracking error in trajectory tracking control is within
12 mm, which may be due to the RBF network not being able to accurately approximate
the dynamic model of the robot. The compliant control strategy can realize the compliant
tracking property and slow returning movement. Compared with the parameter adaptation
control strategy [31], the adaptability here may be inferior but the design of the controller
is simpler, which is convenient for deployment and application.

5. Conclusions

In this paper, we introduced the self-developed upper limb rehabilitation training
robot system briefly. The robot is a 3 DOFs end-effector robot, with the third prismatic
joint vertical to the first two rotating joints. So, the motion of the third joint is uncoupled
from the first two joints, which simplified the motion analysis and control. The trajectory
customization with human–robot coupling is completed by load and friction compensation
and admittance control. The customization forces are within 6 N making it easy to cus-
tomize a personal training trajectory. The NURBS curve is used to interpolate between the
compressed points and the curvature of the trajectory is optimized. It smooths the training
trajectory and retains the topological shape of the original trajectory. Finally, the variable
control gain algorithm based on the RBF network is designed. The proposed method
ensures the trajectory tracking error within 12 mm and compliance with the large HRI force
in 0.5 seconds to ensure the safety of passive training. With the method of error subdivision,
the return movement after compliance is slow, making the patient feel comfortable. In
the future, more useful rehabilitation modes will be studied and designed, especially the
assisted-as-needed active rehabilitation strategy that is suitable for the patient who has
regained some muscle strength.

Author Contributions: Conceptualization, L.L. and J.H.; methodology, L.L. and J.H.; writing—
original draft preparation, L.L.; writing—review and editing, J.H., X.L., B.G. and X.W.; project
administration, J.H.; funding acquisition, J.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Project of Science and Technology of Henan Province
(212102310890) and (212102310249).



Sensors 2023, 23, 6953 20 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All test data mentioned in this paper will be made available upon
request to the corresponding author’s email with appropriate justification.

Conflicts of Interest: The authors declared no potential conflict of interest with respect to the research,
authorship, and/or publication of this article.

References
1. Wang, W.; Jiang, B.; Sun, H.; Ru, X.; Sun, D.; Wang, L.; Feigin, V.L. Prevalence, incidence, and mortality of stroke in China clinical

perspective. Circulation 2017, 135, 759–771. [CrossRef] [PubMed]
2. Lin, D.J.; Finklestein, S.P.; Cramer, S.C. New directions in treatments targeting stroke recovery. Stroke 2018, 49, 3107–3114.

[CrossRef] [PubMed]
3. Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. Neuroeng.

Rehabil. 2018, 15, 1–15. [CrossRef] [PubMed]
4. Emken, J.L.; Harkema, S.J.; Beres-Jones, J.A.; Ferreira, C.K.; Reinkensmeyer, D.J. Feasibility of manual teach-and-replay and

continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans. Biomed. Eng. 2007, 55,
322–334. [CrossRef] [PubMed]

5. Feng, Y.; Wang, H.; Lu, T.; Vladareanuv, V.; Li, Q.; Zhao, C. Teaching training method of a lower limb rehabilitation robot. Int. J.
Adv. Robot. Syst. 2016, 13, 57. [CrossRef]

6. Morita, Y.; Nagasaki, M.; Ukai, H.; Matsui, N.; Uchida, M. Development of rehabilitation training support system of upper
limb motor function for personalized rehabilitation. In Proceedings of the 2008 IEEE International Conference on Robotics and
Biomimetics, Bangkok, Thailand, 22–25 February 2009; pp. 300–305.

7. You, Y.P.; Zhang, Y.; Li, C.G. Force-free Control for the Direct Teaching of Robots. J. Mech. Eng. 2014, 50, 10–17. [CrossRef]
8. Yang, H.; Han, J.H.; Li, X.P. Research on Drag and Teach of Horizontal Lower Limb Rehabilitative Robot. Mach. Des. Manuf. 2020,

272–275.
9. Fang, Y.; Hu, J.; Liu, W.; Shao, Q.; Qi, J.; Peng, Y. Smooth and time-optimal S-curve trajectory planning for automated robots and

machines. Mech. Mach. Theory 2019, 137, 127–153. [CrossRef]
10. Zhao, J.Y.; Zhang, P.; Li, F. Energy Saving Trajectory Planning for Industrial Robot in Manufacturing Environment. Robot. Robot.

2021, 653–663.
11. Wu, D.; Wang, Q.; Wang, H.Q. Multi-scale Representation and Compression Algorithm for Vector Data Based on Spline. Comput.

Eng. 2012, 38, 201–203.
12. Feng, F.; Jiang, W. A cubic b-spline-based vector data compression algorithm with boundary constraints. J. Math. 2021, 41,

247–256.
13. Dong, J.; Wang, T.; Dong, J.; Zhang, Y.; Tao, H. Applications of Improved B-Spline Curves to 6R Robot Trajectory Optimization.

China Mech. Eng. 2018, 29, 193–200.
14. Mei, J.; Zhang, F.; Zang, J.; Zhao, Y.; Yan, H. Trajectory optimization of the 6-degrees-of-freedom high-speed parallel robot based

on B-spline curve. Sci. Prog. 2020, 103, 458–469. [CrossRef]
15. Wu, Q.; Wang, X.; Wu, H.; Chen, B. Fuzzy Sliding Mode Admittance Control of the Upper Limb Rehabilitation Exoskeleton Robot.

Robot 2018, 40, 457–465.
16. Mushage, B.O.; Chedjou, J.C.; Kyamakya, K. Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control

of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dyn. 2017, 87, 2021–2037. [CrossRef]
17. Li, X.; Zhong, J. Research on upper limb rehabilitation robot system based on robust control theory. Inf. Technol. 2018, 5–10.
18. Shi, J.; Xu, L.; Cheng, G.; Xu, J.; Chen, S.; Liang, X. Trajectory tracking control based on RBF neural network of the lower limb

rehabilitation robot. In Proceedings of the 2020 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing,
China, 13–16 October 2020; pp. 117–123.

19. Trigili, E.; Crea, S.; Moisè, M.; Baldoni, A.; Cempini, M.; Ercolini, G.; Marconi, D.; Posteraro, F.; Carrozza, M.C.; Vitiello, N.
Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation.
IEEE/ASME Trans. Mechatron. 2019, 24, 1485–1496. [CrossRef]

20. Miao, Q.; Peng, Y.; Liu, L.; McDaid, A.; Zhang, M. Subject-specific compliance control of an upper-limb bilateral robotic system.
Robot. Auton. Syst. 2020, 126, 103478. [CrossRef]

21. Bingjing, G.; Jianhai, H.; Xiangpan, L.; Lin, Y. Human-robot interactive control based on reinforcement learning for gait
rehabilitation training robot. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839584. [CrossRef]

22. Huo, Y.G.; Gao, Y.; Song, X.D. Effect of Different Parameterization Methods on the Cubic NURBS Curve Fitting Errors. Mech.
Electr. Eng. Technol. 2019, 48, 54–57.

23. Zhang, M.; Li, Y.J.; Deng, C.Y. Optimizing NURBS Curves Fitting by Least Squares Progressive and Iterative Approximation.
J. Comput. Aided Des. Comput. Graph. 2020, 32, 568–574.

http://doi.org/10.1161/CIRCULATIONAHA.116.025250
http://www.ncbi.nlm.nih.gov/pubmed/28052979
http://dx.doi.org/10.1161/STROKEAHA.118.021359
http://www.ncbi.nlm.nih.gov/pubmed/30571435
http://dx.doi.org/10.1186/s12984-018-0383-x
http://www.ncbi.nlm.nih.gov/pubmed/29866106
http://dx.doi.org/10.1109/TBME.2007.910683
http://www.ncbi.nlm.nih.gov/pubmed/18232376
http://dx.doi.org/10.5772/62445
http://dx.doi.org/10.3901/JME.2014.03.010
http://dx.doi.org/10.1016/j.mechmachtheory.2019.03.019
http://dx.doi.org/10.1177/0036850419880115
http://dx.doi.org/10.1007/s11071-016-3173-7
http://dx.doi.org/10.1109/TMECH.2019.2907465
http://dx.doi.org/10.1016/j.robot.2020.103478
http://dx.doi.org/10.1177/1729881419839584


Sensors 2023, 23, 6953 21 of 21

24. Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734.
[CrossRef]

25. Gao, W.X.; Liu, S.; Xiao, Z.Y.; Yu, J.F. Butterfly Optimization Algorithm Based on Cauchy Variation and Adaptive Weight. Comput.
Eng. Appl. 2020, 56, 43–50.

26. Shouyu, L.I.; Qing, H.E.; Nisuo, D.U. Butterfly Optimization Algorithm for Chaotic Feedback Sharing and Group Synergy.
J. Front. Comput. Sci. Technol. 2021, 16, 1661–1672.

27. Tubishat, M.; Alswaitti, M.; Mirjalili, S.; Al-Garadi, M.A.; Rana, T.A. Dynamic butterfly optimization algorithm for feature
selection. IEEE Access 2020, 8, 194303–194314. [CrossRef]

28. Arora, S.; Singh, S.; Yetilmezsoy, K. A modified butterfly optimization algorithm for mechanical design optimization problems.
J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 21. [CrossRef]

29. Hou, C.; Wang, Z.; Zhao, Y.; Song, G. Load Adaptive Force-free Control for the Direct Teaching of Robots. Robot 2017, 439–448.
30. Huang, Y.L.; Chen, N.J.; Fan, Z. Robot Compliance Teaching and Reappearance Based on Human-Robot Interaction. J. Univ. Jinan

Sci. Technol. 2021, 35, 108–114.
31. Ayas, M.S.; Altas, I.H. Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control.

Eng. Pract. 2017, 59, 44–54. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00500-018-3102-4
http://dx.doi.org/10.1109/ACCESS.2020.3033757
http://dx.doi.org/10.1007/s40430-017-0927-1
http://dx.doi.org/10.1016/j.conengprac.2016.11.015

	Introduction
	Materials and Methods
	Upper Limb Rehabilitation Robot System
	Trajectory Customization
	Trajectory Interpolation
	 Optimization Algorithm
	Trajectory Tracking Controller
	RBF Net-Based Controller
	Variable Gain Strategy


	Tracking Experiments and Results
	Trajectory Customization Experiment
	Trajectory Tracking Experiment
	 Compliant Control Experiment

	Discussion
	Conclusions
	References

