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Abstract: The Internet of Things (IoT) represents a cutting-edge technical domain, encompassing
billions of intelligent objects capable of bridging the physical and virtual worlds across various
locations. IoT services are responsible for delivering essential functionalities. In this dynamic
and interconnected IoT landscape, providing high-quality services is paramount to enhancing user
experiences and optimizing system efficiency. Service composition techniques come into play to
address user requests in IoT applications, allowing various IoT services to collaborate seamlessly.
Considering the resource limitations of IoT devices, they often leverage cloud infrastructures to
overcome technological constraints, benefiting from unlimited resources and capabilities. Moreover,
the emergence of fog computing has gained prominence, facilitating IoT application processing in
edge networks closer to IoT sensors and effectively reducing delays inherent in cloud data centers. In
this context, our study proposes a cloud-/fog-based service composition for IoT, introducing a novel
fuzzy-based hybrid algorithm. This algorithm ingeniously combines Ant Colony Optimization (ACO)
and Artificial Bee Colony (ABC) optimization algorithms, taking into account energy consumption
and Quality of Service (QoS) factors during the service selection process. By leveraging this fuzzy-
based hybrid algorithm, our approach aims to revolutionize service composition in IoT environments
by empowering intelligent decision-making capabilities and ensuring optimal user satisfaction. Our
experimental results demonstrate the effectiveness of the proposed strategy in successfully fulfilling
service composition requests by identifying suitable services. When compared to recently introduced
methods, our hybrid approach yields significant benefits. On average, it reduces energy consumption
by 17.11%, enhances availability and reliability by 8.27% and 4.52%, respectively, and improves the
average cost by 21.56%.

Keywords: Internet of Things (IoT); service; composition; heuristic algorithm; cloud computing; fog
computing; service composition; meta-heuristic algorithm; ABC; ACO; fuzzy logic

1. Introduction

The Internet of Things (IoT) is a network that connects various pervasive objects,
such as smartphones, sensors, actuators, and Radio Frequency Identification (RFID) tags,
through the Internet [1–4]. It bridges the gap between the physical and virtual worlds,
becoming essential to everyday life [5–7]. This dynamic network infrastructure possesses
self-configuring capabilities facilitated by standard and interoperable communication
protocols [8–12]. To enable connectivity, various communication technologies are employed
in this field, including Near-Field Communication (NFC), Wireless Sensor Networks (WSN),
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Long-Term Evolution (LTE), Radio Frequency Identification (RFID), and others [13–16].
Components like wireless sensor networks, RFID, data acquisition, actuator networks,
and managerial control are integral aspects of the IoT [17]. The connected objects collect
data and share information about their operations [18,19]. Advancements in Information
Technology (IT) have led to rapid IoT development, allowing its implementation in diverse
fields such as agriculture, industry, the military, home monitoring, and more [20,21].

Cloud computing has revolutionized access to vast resources, offering easy and instant
availability [22–24]. Combined with the IoT, this integration enhances the virtual resource
infrastructure and available services [25–28]. By merging the cloud and IoT, both platforms
can mutually benefit. On the one hand, IoT can leverage the cloud’s extensive capabilities,
addressing its technological limitations in storage, processing, and communication. The
cloud’s limitless potential compensates for these shortcomings. IoT enables the cloud
to dynamically access real-world objects and extend its application to a broader range
of scenarios [29]. Moreover, the emergence of fog computing has addressed the need to
process IoT data in edge networks closer to IoT sensors [30–34]. This approach reduces
inherent delays in cloud data centers and facilitates the discovery of improved services [35].

Huge amounts of data are passed over the Internet every day [36]; therefore, we need
to find a way to merge these data and services to meet the needs of customers. Service
composition in the IoT can benefit from both fog and cloud computing, each with its
own advantages and disadvantages. Fog computing, a decentralized architecture that
enables computation closer to the data source, reduces latency, and improves overall per-
formance [37,38]. It is particularly suitable for real-time applications like video analytics
and those requiring high levels of security and privacy [39,40]. On the other hand, cloud
computing, a centralized architecture reliant on remote servers, is useful for applications
with extensive storage and processing requirements without immediate response times.
Therefore, the choice between fog and cloud computing for IoT service composition hinges
on the application’s specific needs. If low latency, high security, and real-time processing
are crucial, fog computing becomes the better choice. However, cloud computing is more
suitable when extensive storage, processing power, and scalability are required. In some
instances, a combination of both fog and cloud computing may provide the optimal solu-
tion to balance performance, security, and scalability requirements. IoT devices typically
exhibit heterogeneous and dynamic embedded characteristics, with each device responsible
for individual atomic services [41]. With the growing number of connected IoT objects,
the selection of web services becomes crucial in addressing user requests [42,43]. In cases
where a single service cannot handle user requests, multiple services need to be composed
to operate IoT-based system applications [44,45]. Therefore, integrating services provided
by IoT devices is necessary. Energy consumption is a critical concern, particularly because
most IoT smart devices rely on batteries for power [46,47]. Combining IoT and composite
services is essential to ensuring battery longevity and meeting user requirements while
optimizing energy consumption. In service composition, replacing energy-intensive intel-
ligent devices with more efficient alternatives that offer the same functionality and QoS
level is essential. Selecting the best web services to create an optimal composite service is
a challenging NP-complete problem [48,49]. A fuzzy-based hybrid algorithm combines
ACO and ABC methods to address this. This hybrid approach evaluates QoS parameter
values and energy consumption to achieve an optimal solution for IoT service composition.
The proposed algorithm models IoT service composition as a multi-objective optimization
problem with the primary goal of optimizing QoS parameters for the composite service. To
narrow down the solution search domain, candidate services are pre-selected to meet users’
QoS requirements and determine the optimal composite service. The service composition
problem is then transformed into finding an optimal path with specific QoS requirements
within a directed acyclic graph, representing possible service connections and interactions.
To find the best solution for the service composition problem, the hybrid algorithm com-
bines the strengths of ACO and ABC. These two algorithms provide different approaches
for solving similar problems, and the hybrid approach aims to leverage their advantages to
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achieve an optimal solution. The optimization process focuses on simultaneously reducing
energy consumption and optimizing QoS parameters. The primary objective is twofold:
first, to minimize energy consumption by reducing the resources utilized during the exe-
cution of composed services; and second, to optimize QoS parameters such as reliability,
response time, and other performance metrics. By addressing both aspects, the algorithm
seeks to create efficient and high-performing composite services for IoT applications. The
optimization process of the developed IoT service composition methods takes into account
both energy consumption and QoS parameters simultaneously, ensuring an efficient and
high-quality composition of services.

The main contributions and novelties of the developed IoT service composition meth-
ods can be summarized as follows:

1. Integration of cloud, fog, and IoT: The proposed methods aim to integrate cloud com-
puting, fog computing, and IoT technologies to leverage their respective advantages.
This integration enhances the virtual resource infrastructure and available services.
By combining these technologies, IoT devices can benefit from the unlimited resources
and capabilities of the cloud while reducing latency and processing data at the edge
networks through fog computing. The novelty lies in combining these technologies to
create a more efficient and scalable service composition approach.

2. Fuzzy-based hybrid algorithm: The developed IoT service composition methods
employ a fuzzy-based hybrid algorithm, which is a novel approach in the field. This
algorithm combines the ACO and ABC algorithms. The methods can handle the un-
certainty and imprecision inherent in IoT environments by integrating fuzzy logic into
the algorithm. The fuzzy-based hybrid algorithm considers multiple QoS parameters
simultaneously, leading to improved optimization and selection of services.

The organization of the rest of the paper is as follows: Section 2 provides an explanation
of related works in the field. In Section 3, the proposed method is presented. Section 4
covers the experiment results. Finally, Section 5 discusses the conclusion and future work.

2. Related Work

In this section, we review some recent studies investigating service composition
mechanisms in the context of IoT.

Asghari, Rahmani [41] proposed a privacy-aware service composition technique. They
employed a hybrid evolutionary algorithm and an IoT-based conceptual model to optimize
various Quality of Service (QoS) parameters in the service composition process. The hybrid
algorithm, SFLA-GA, combines a Genetic Algorithm (GA) and a Shuffled Frog Leaping
Algorithm (SFLA). The fitness value, representing the aggregation of different QoS factors,
is optimized using this method. Simulation results showed that SFLA-GA outperformed
other contemporary algorithms. One of the strengths of this method is its focus on privacy
awareness in cloud-IoT service composition as well as QoS optimization. However, it lacks
consideration for energy, security, and lightweight encryption.

Sefati and Navimipour [50] proposed an approach to optimize Quality of Service
(QoS) for service composition in the IoT. They combined an Ant Colony Optimization
(ACO) algorithm with a hidden Markov model to address the service composition issue.
The method employed Markov clustering based on differentiating operators, which were
repeatedly applied to the network to identify clusters. This process involves increasing
edge values within clusters while decreasing edge values between clusters. These operators
are faster, simpler, and more natural for clustering, making them suitable for various
applications. The evaluation of QoS in this research was accomplished via the ACO
algorithms, which helped to find an appropriate path. The primary focus of this approach
was on achieving high reliability and availability. However, energy efficiency was not a
major consideration in their work.

Souri and Ghobaei-Arani [51] proposed a service composition method specifically
designed for cloud manufacturing and Industrial IoT applications. The significance of
this approach lies in its applicability to industrial settings. The method utilized a formal
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verification strategy based on a Labeled Transition System (LTS) to evaluate the proposed
solution. Moreover, the Whale Optimization Algorithm (WOA) was employed to enhance
Quality of Service (QoS) for cloud services. The verification process focused on ensuring
reachability factors, deadlock-free conditions, verification time, and memory usage based
on different cloud providers and various Linear Temporal Logic (LTL) properties. Despite
the achievements in formal verification and QoS improvement using WOA, the proposed
algorithm had some drawbacks. The WOA exhibited slow convergence, a tendency towards
local optima, and lower accuracy compared to other optimization algorithms. Additionally,
the energy consumption aspect was not adequately addressed in their approach. This
service composition method for cloud manufacturing and IoT applications is notable for its
industrial relevance and formal verification approach. However, improvements are needed
to address the WOA’s limitations and include energy consumption considerations in the
optimization process.

Moreover, Chai, Du [46] presented an algorithm for IoT service composition that
aimed to achieve better QoS while considering energy efficiency. The proposed algorithm
combined QoS-aware service composition with a fast energy-centered algorithm, FSCA-
EQ, utilizing a hierarchical optimization method. First, the algorithm selected candidate
services with better QoS using a Customer Relationship Management (CRM) approach.
Subsequently, the relative dominance concept was employed to determine the highest-
quality service from the pool of candidate services. The results demonstrated that the
proposed method achieved better energy consumption, selection time, and overall opti-
mality. However, a limitation of this approach was that it did not account for the dynamic
characteristics of the IoT. As a consequence, the service selection process for energy effi-
ciency needed to be rerun frequently, resulting in a high computational cost. The proposed
algorithm combined QoS-awareness and energy optimization effectively. Nevertheless, the
lack of consideration for the IoT’s dynamic nature led to increased computational expenses
due to frequent service selection reruns.

Ibrahim, Rashid [52] proposed an energy-aware mechanism to enhance mobile cloud
service composition. The approach utilized a hybrid algorithm based on the Shuffled Frog
Leaping Algorithm (SFLA) and Genetic Algorithm (GA), called SFGA, to optimize service
composition based on multiple quality measurement parameters: cost, energy, and response
time. By employing the SFGA algorithm, service selection was performed faster, and the
overall service composition process was carried out more effectively regarding service cost
and response time. The proposed method outperformed existing approaches, increasing
the likelihood of service composition with minimal reaction time, energy consumption,
and cost for mobile cloud components, as evidenced by testing results. However, it is
worth noting that this approach did not consider other important IoT parameters, such as
reliability and availability. While the method excelled in energy-aware service composition,
it did not address other critical aspects that are essential in IoT applications.

Jian, Li [53] proposed a strategy for optimizing QoS-based service composition in
edge computing. They combined Multi-Objective Particle Swarm Optimization (MPSO)
and the Bird Swarm Algorithm (BSA) to enrich the search information throughout the
optimization process and avoid getting trapped in local optima. The results demonstrated
that their proposed method outperformed other papers considered in the research in
terms of providing a better solution for achieving the global optimal QoS value for edge
services. The algorithm ensured high reliability and low execution time, making it a strong
choice for QoS-based service composition in edge computing applications. However, it is
important to note that the algorithm did not consider energy consumption and availability
during optimization. While the proposed method focused on QoS optimization, it did not
address energy efficiency and service availability, which are crucial considerations for edge
computing and IoT applications.

Guzel and Ozdemir [45] proposed a multi-objective IoT service composition frame-
work designed for fog-based IoT environments. This framework aims to generate service
composition strategies that consider Quality of Service (QoS), energy consumption, and
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fairness. The task is treated as a multi-objective optimization problem to obtain effective
composition techniques for IoT applications. A generic QoS model was developed and
integrated into the framework to handle the diversity and ever-changing characteristics
of the IoT domain. The application requests were divided into time windows, and each
window was optimized using the defined optimization model. The optimization method
focused on reducing energy consumption, minimizing the repeated use of the same IoT
services, and minimizing the number of broken Service Level Agreements (SLAs). The
test findings showed a trade-off between energy consumption and fairness goals. The
architecture tended to prioritize IoT services with low energy consumption, driven by the
energy consumption goal. However, this approach did not consider scalability, which is a
crucial aspect for IoT systems that may need to accommodate a growing number of devices
and users. In summary, Guzel and Ozdemir’s multi-objective IoT service composition
framework for fog-based IoT environments provides composition strategies considering
QoS, energy consumption, and fairness. The use of a generic QoS model allows adaptability
to diverse IoT characteristics. However, the framework does not address scalability, which
could be a limitation in scenarios with increasing IoT device and user numbers.

Naseri and Navimipour [54] introduced a hybrid method that combines an agent-
based approach with the Particle Swarm Optimization (PSO) algorithm for efficient service
composition in cloud computing. The method identifies relevant Quality of Service (QoS)
parameters and selects the best services based on a fitness function. The results demon-
strated the effectiveness of this approach in reducing resource usage and waiting time
and optimizing resource allocation via the efficient composition of independent services
into composite services. This can lead to cost savings and improved resource utilization.
The hybrid PSO algorithm showcased promising results compared to other algorithms,
suggesting its efficiency in finding suitable composite services. This can ultimately en-
hance performance and service quality in cloud computing environments. However, it
is worth noting that the agent-based method used for service composition might lack a
clear mechanism for combining resources. The PSO algorithm was incorporated to address
this limitation, which may introduce additional complexity to the overall system. The
proposed hybrid method for cloud service composition effectively combines an agent-based
approach with the PSO algorithm to optimize resource usage and waiting time. Although
it enhances the composition process, integrating the PSO algorithm may add complexity
to the system. The proposed method demonstrates promising results in finding the right
composite services for cloud computing environments.

Chen, Wang [55] introduced an optimal objective for web service composition selection,
incorporating the concept of QoS satisfaction degree. The authors proposed the use of
a genetic algorithm to solve this problem and provided test results that demonstrated
the feasibility and effectiveness of their proposed solution. By considering the subjective
feelings of users, the proposed model aimed to enhance users’ satisfaction and experience
during web service composition selection. The utilization of a genetic algorithm in their
approach offers a robust and efficient method to address the multi-objective optimization
problem, potentially leading to improved solutions. Their research primarily focused on
QoS satisfaction as the main objective for web service composition selection. It is important
to note that the effectiveness and feasibility of the proposed solution may vary depending
on the specific context and the range of services available. Different scenarios and diverse
sets of web services may influence the results.

Ullah, Ali [56] proposed an energy optimization strategy for the smart grid integrated
with renewable energy sources to minimize operational costs and carbon emissions. To
handle the uncertainty of solar and wind energy sources, probability density functions
are used to predict their behavior. Demand response programs involving residential,
commercial, and industrial consumers were introduced with incentive-based payment
packages to optimize energy consumption. The optimization model employed a Multi-
Objective Genetic Algorithm (MOGA) to solve the energy optimization problem. The
simulations compared the proposed MOGA-based model with an existing one that utilized
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the Multi-Objective Particle Swarm Optimization algorithm, showing better performance
in reducing operational costs and carbon emissions. The proposed strategy effectively
integrated solar and wind energy sources into the smart grid, enabling better utilization
of renewable energy and reducing dependence on fossil fuels. The use of probability
density functions for predicting the behavior of solar and wind energy sources helped
handle the inherent uncertainty in renewable energy generation, leading to more accurate
and reliable optimization results. The proposed energy optimization strategy based on
MOGA demonstrates the potential to optimize smart grids’ operational costs and carbon
emissions when integrated with renewable energy sources. Addressing computational
complexity and conducting real-world validation will be essential for practical deployment
and ensuring the model’s effectiveness under diverse operating conditions.

Ullah, Khan [57] proposed a new Demand-Side Management (DSM) strategy for the
day-ahead scheduling problem in smart grids with high wind energy integration. The
strategy aimed to optimize a tri-objective problem by minimizing operating costs, pollution
emissions, and load curtailment costs while ensuring coordination between wind turbine
output power and demand. The model used the Monte Carlo simulation for wind energy
prediction to account for the uncertainty of wind energy. The DSM strategy involved real-
time pricing and incentives, forming a hybrid demand response program (H-DRP). The
optimization technique used to solve the tri-objective smart grid scheduling problem was a
multi-objective genetic algorithm that incorporated a decision-making mechanism to find
the optimal solution. The simulation results demonstrated the successful optimization of
the objective functions using the proposed model. The integrated DSM strategy, distributed
energy resources, and H-DRPs lead to environmental benefits by minimizing pollution
emissions and economic benefits by reducing operating costs.

Ali, Ullah [58] introduced the demand-side management (DSM) strategy in a smart
grid to optimize energy management by involving distributed energy resources and consid-
ering different types of consumers. The day-ahead scheduling problem was solved using a
multi-objective wind-driven optimization algorithm to optimize operational cost, pollution
emissions, load curtailment cost, and coordination between wind energy generation and
shiftable loads. The model also considered consumer behavior and the probabilistic nature
of wind energy forecasting using probability distribution functions. Simulation results
showed that the proposed model effectively reduced operational costs and pollution emis-
sions. Through day-ahead scheduling with multi-objective optimization, the DSM strategy
enables efficient energy management by simultaneously considering various objectives.
The model’s implementation reduced operational costs for the utility grid, particularly
when involving distributed energy resources such as wind turbines, diesel generators, and
energy storage systems. Including multi-objective optimization and probabilistic modeling
makes the proposed approach more complex to implement and understand, potentially
requiring specialized expertise. Overall, the advantages of the proposed DSM-based multi-
objective day-ahead scheduling model outweighed the potential disadvantages. However,
further research, testing, and real-world implementation are necessary to fully validate its
applicability and performance in different smart grid scenarios.

Hafeez, Wadud [59] focused on meeting the increasing electrical energy demand in
IoT-enabled residential buildings and proposed an energy management strategy using
the Wind-driven Bacterial Foraging Algorithm (WBFA). The strategy aimed to optimize
the power usage of smart appliances and participate in demand response (DR) programs
to manage energy consumption efficiently. Simulations demonstrated that the WBFA-
based strategy outperformed benchmark algorithms regarding energy consumption, cost
of electricity, peak-to-average ratio, and user comfort. The study concluded that employing
price-based DR programs, particularly the Time-of-Use Price-based DR program, yields
favorable outcomes for consumers and Distribution System Operators. Future research di-
rections include extending energy management to coordinate with power grids, renewable
energy sources, energy storage, and electric vehicles (EVs) for prosumers (consumers who
generate and sell energy). The study suggested using machine learning to explore fog and
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cloud-based energy management, hybrid generation systems, and intelligent forecasting,
additionally proposing innovative energy management models for cloud computing and
integrating time- and power-flexible appliances to provide economical and sustainable so-
lutions. The WBFA-based strategy optimized the power usage of smart appliances, leading
to increased energy efficiency and effective energy utilization in IoT-enabled residential
buildings. By participating in demand response (DR) programs and scheduling power
usage during off-peak hours, consumers can benefit from lower electricity costs, saving
money on their utility bills. The proposed WBFA-based energy management strategy
offered several advantages, including energy efficiency, cost reduction, and peak load
management. However, there are challenges, such as complexity, compatibility issues, and
potential reliability concerns. Careful planning, education, and addressing technological
limitations are essential to maximizing the benefits and overcoming the disadvantages of
this approach.

A summary of the related works is presented in Table 1.

Table 1. Summary of related works.

Reference Methodology Strengths Limitations

Asghari, Rahmani [41] Hybrid algorithm
(GA + SFLA)

• Privacy-aware service
composition

• Computational model
for privacy level

• Scalability
• Improved user

satisfaction

• Lack of consideration for
energy, security, and
lightweight encryption

• Complexity in
implementation

• Computational overhead
• Parameter tuning
• Limited real-world data

validation

Sefati and Navimipour [50] ACO algorithm + Hidden
Markov model

• Flexible service
composition

• Efficient cost reduction
• Robustness and

reliability

• Inefficiency in energy
optimization

• Computational
complexity

• Parameter tuning
• Limited validation
• Scalability issues
• Overfitting

Souri and Ghobaei-Arani [51] Formal verification + Whale
Optimization Algorithm

• Flexibility
• Scalability
• Resource efficiency

• Slow convergence
• Algorithm complexity
• Data privacy and

security concerns
• Overhead and latency
• Lack of energy

consumption
consideration

Chai, Du [46] Hierarchical optimization

• Composite service
flexibility

• Resource efficiency
• Real-time decision

making

• High computational cost
• Limited details on

implementation
• Scalability challenges
• Algorithm complexity
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Table 1. Cont.

Reference Methodology Strengths Limitations

Ibrahim, Rashid [52] Shuffled Frog Leaping
Algorithm (SFGA)

• Faster service selection
• Effective composition in

service cost and response
time

• Improved connectivity
• Enhanced productivity
• Convenience

• Lack of consideration for
reliability, availability,
and other important IoT
parameters

• Privacy and security
risks

• Dependency on
infrastructure

• Information overload

Jian, Li [53]
Modified Bird Swarm
Optimization Algorithm
(MBSA)

• Improved global search
ability

• Efficient execution time
• Multi-objective

optimization
• Enriched diversity

• Computational
complexity

• Scalability
• Lack of guaranteed

optimality

Guzel and Ozdemir [45] NSGA-II-based model

• Energy consumption
optimization

• Fairness among IoT
services

• Time window
optimization

• Improved energy
efficiency without QoS
degradation

• Computational
complexity

• Scalability challenges

Naseri and Navimipour [54] Agent-based + PSO

• Resource optimization
• Scalability
• Reduced waiting time
• Improved performance

• Complexity of the hybrid
method

• Limited distribution
factor handling

Chen, Wang [55] Genetic Algorithm

• Enhanced service quality
• Multi-objective

optimization
• Time efficiency

• Scalability challenges
• Local optima traps

Ullah, Ali [56]
Multi-Objective Genetic
Algorithm + Demand
response programs

• Carbon emission
reduction

• Renewable energy
integration

• Multi-objective
optimization

• Uncertainty
management

• Implementation costs
• Complexity in DRP

participation
• Scalability issues
• Data privacy and

security

Ullah, Khan [57]
Multi-Objective Genetic
Algorithm + Decision-Making
Mechanism

• High flexibility
• Multi-objective

optimization
• Non-dominated

solutions

• Computational
complexity

• Data privacy and
security concerns

• Communication and
control overhead
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Table 1. Cont.

Reference Methodology Strengths Limitations

Ali, Ullah [58] Multi-Objective Wind-Driven
Optimization

• Energy efficiency
• Reduced operational

costs
• Adaptability and

scalability

• Complexity
• Sensitivity to input data
• Limited flexibility
• High implementation

costs

Hafeez, Wadud [59] Wind-Driven Bacterial
Foraging Algorithm

• Energy efficiency
• Cost reduction
• User comfort

• Reliability concerns
• Complexity
• Limited compatibility

3. Proposed Method

This section outlines the proposed method for solving the service composition problem
in the context of IoT. Section 3.1 presents the system model; Section 3.2 is about the
service composition model; Section 3.3 is about the energy model; and Section 3.4 is about
fuzzification. In Section 3.5, a hybrid algorithm is presented.

3.1. System Model

This section introduces the proposed composition strategy for a fog-/cloud-based IoT
environment, where the architecture combines the advantages of fog and cloud computing
to create a more efficient data handling system. The architecture is designed such that fog
computing operates at the network’s edge, enabling real-time data processing and analysis.
In contrast, cloud computing is utilized for storing and analyzing large volumes of data
over an extended period. The fog layer, comprising small, low-power devices located
near the data source, is responsible for real-time data processing and analysis. These
devices can be programmed to take specific actions based on the results of their analysis.
On the other hand, the cloud layer consists of larger, more powerful servers typically
situated in centralized data centers, handling more complex data processing tasks such as
machine learning and big data analytics. The combination of fog and cloud computing
offers various benefits, including reduced latency and improved response times through
real-time processing at the fog layer and the ability to handle more resource-intensive tasks
using the cloud layer’s storage and processing capabilities. This architecture enhances data
processing and analysis, improving organizations’ performance, efficiency, and scalability.
Moreover, it also leads to cost reduction and enhanced security. The proposed technique
adopts a three-tier architecture comprising IoT, fog, and cloud layers (Figure 1) [60,61].
The IoT layer encompasses sensors and smart nodes, like computers and cell phones,
forming the Internet of Things layer. The fog layer between the cloud and the IoT smart
nodes contains fog colonies. Sensors at the lower layer collect diverse information and
send data packets to the fog layer. Here, fog nodes intelligently accept and process all
requests. Depending on whether they rely on real-time applications, queries are either
handled within the fog layer or sent to the top layer, the cloud layer. By adopting this three-
tier architecture, the proposed technique aims to optimize data processing and analysis
within the IoT environment, promoting efficient decision-making and intelligent service
composition.
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Figure 1. System Architecture.

3.2. Service Composition Model

In the context of the IoT, IoT nodes serve as encapsulated IoT services and are cat-
egorized into specific service classes based on their functionalities [62]. The services in
the IoT service composition fall into two distinct categories: Concrete services (Cs) and
Abstract services (As) [46]. As is also called an abstract service class. Cs, or atomic services,
represent invocable services provided by IoT components. Cs can be described by two
attributes: non-functional features and functional characteristics. Functional attributes per-
tain to the specific functions offered by a service, while non-functional attributes encompass
quality-of-service (QoS) aspects such as response time, reliability, cost, and energy profiles
for services operating on battery-powered devices, among others. Figure 2 illustrates the
fundamental process of IoT service composition [46]. In a composite service, atomic services
can be interconnected using various structural patterns. There are six types of composition
structure patterns that a single composite service can comprise: sequential, AND split
(Fork), XOR split (Conditional), Loop, AND join (Merge), and XOR join (Trigger) [63,64].
Here, only the sequential model is considered. However, it is worth noting that other
models can be simplified or transformed into sequential models using existing approaches,
as mentioned in [65].
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In the IoT, each object has the capability to offer multiple specific services. Some
IoT services may provide the same functionality but exhibit different Quality of Service
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(QoS) performance levels. Therefore, evaluating QoS parameters becomes essential to
differentiate between services. In this paper, service composition is approached at a high
level, considering the sequence of services as a workflow. QoS in the context of IoT services
encompasses various non-functional characteristics of an application, such as throughput,
response time, availability, security, and reliability. Service providers may offer some QoS
values while the users determine others. QoS is user-dependent, meaning different users
may have varying requirements for attributes like availability, response time, reliability,
resource costs, packet loss rate, etc. For the assessment of services, four QoS properties
have been selected in this paper:

(1) Availability: This represents the percentage of time a service is accessible during a
specific time interval.

(2) Reliability: Refers to the percentage of a service’s capability to perform correctly
without errors or failures.

(3) Cost: This denotes the price a user pays to obtain the required service.
(4) Energy: This represents the energy a service consumes during its operation.

As Table 2 outlines, the paper employs specific QoS aggregation functions for each
attribute to evaluate the proposed dynamic service composition scheme. By applying these
QoS values, the scheme can effectively determine the optimal service composition based on
users’ requirements and preferences, taking into account factors like availability, reliability,
cost, and energy consumption.

Table 2. QoS aggregation functions for composite services.

QoS Attributes Aggregation Function

Availability qa (S) = ∏n
i=1 qa (si)

Reliability qr(S) = ∏n
i=1 qr (si)

Cost qc (S) = ∑n
i=1 qc (si)

Energy qe (S) = ∑n
i=1 qe (si)

Since there is a major distinction in the QoS index range and estimation unit, combining
diverse QoS indexes directly when the objective function is calculated is impossible. In
order to map the four aggregated QoS right into a global value, the Simple Additive
Weighting (SAW) approach is used. Given that the minimization objective function is
considered in this paper, the positive and negative normalization formulations are shown
in (1) and (2), respectively [54]. In the two equations below, the ith attribute value of
the concrete service is represented by Cs.Qi. The highest and the lowest values of the ith
attribute among all the concrete services in the service candidate set are represented by
Qi

max and Qi
min respectively.

NCs.Qi =


Qi

max−cs.Qi

Qi
max−Qi

min

1

Qi
max 6= Qi

min

Qi
max = Qi

min
(1)

NCs.Qi =


cs.Qi−Qi

min
Qi

max−Qi
min

1

Qi
max 6= Qi

min

Qi
max = Qi

min
(2)

The fitness function influences the algorithm’s convergence and the search for an
optimal solution. The fitness of an individual solution is calculated using the formula
below [66]:

Fitness = ∑4
i=1 Wi ∗Qi (3)

Wi indicates the weight value of the ith QoS attribute of one atomic service, 0 ≤W ≤ 1,
∑4

i=1 Wi = 1. Qi indicates the ith QoS aggregation attribute value of the solution.
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3.3. Energy Model

The amount of energy consumed in IoT service composition greatly affects devices
hosting the candidate service. Each candidate service must possess a parameter repre-
senting its energy consumption. This parameter allows the composer to select services
with a better energy-saving effect. The energy profile of concrete service EproFile(Csij) is a
composition of the following variables [46]:

The autonomy of the service SA(Csij) is defined as the energy level of the device that
hosts this service:

SA(Csij) = CE(Csij) − ET(Csij) (4)

In this equation, CE(Csij) describes the current energy level of the battery-powered
device that hosts service Csij. ET(Csij) means the energy threshold of the battery-powered
device that can host service Csij.

The energy consumption EC(Csij) for running a concrete service Csij is constant and
can be calculated according to the equation below:

EC(Csij) = ECR(Csij) × RT(Csij) (5)

In this equation, RT(Csij) means the average running time of service Csij, and ECR(Csij)
means the energy consumption rate.

Therefore, the following equation is proposed for the energy profile EproFile(Csij) in
the service Csij.

EProFi
(
Csij

)
=

EC
(
Csij

)
SA
(
Csij

) (6)

A low amount of energy profile means that the IoT device hosting the service Csij has a
relatively long service life. Consequently, the following equation is proposed for the energy
profile of composite services CEProFile(x):

CEProFi(x) = ∑n
i=1 EProFile

(
xi
)

(7)

In this equation, xi is the ith component in the composite service selected from the
abstract service class.

3.4. Fuzzification

Many industries and scholars utilize fuzzy logic since it can operate in artificial sys-
tems when automated decision-making is required [67]. Mamdani and Assilian [68] have
introduced the fuzzy logic controller, which is currently considered one of the most critical
applications of fuzzy set theory [69]. Some of its relevant characteristics are fuzzy rules,
linguistic variables, and fuzzy sets. A fuzzy set is a group of objects characterized by
a membership function ranging between 0 and 1 [70]. In this process, the variable type
utilized is words rather than numbers called linguistic variables (e.g., fast, medium, and
slow) [71]. The values employed to describe linguistic variables are called terms, and their
collection is called a term set. Fuzzy rules (IF-THEN) are utilized to evaluate the situations.
Following the fuzzification phase, crisp inputs are converted to linguistic variables, the
fuzzy rules assess them, and the outputs are created. The linguistic values from the outputs
are converted to crisp values during the defuzzification stage. The fuzzy inference engine
proposed in this paper has one output and four inputs. All inputs are described according
to the same membership functions in Figure 3. These inputs are normalized availability,
reliability, cost, and energy. In order to define the high and low terms, trapezoidal-shaped
functions are utilized, whereas triangular-shaped functions are employed for the medium
term, as can be seen in Figure 3. The Mamdani inference system with a centroid of area
defuzzification strategy is employed for our fuzzy engine. In this strategy, the pheromone
for the ant is determined by the output value of the fuzzy inference system (Figure 4).
IF-THEN fuzzy rules employ fuzzy sets to create output in the inference system. A fuzzy
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system can play a significant role in service composition in the IoT by providing intelligent
decision-making capabilities. Fuzzy systems in service composition in the IoT enable
handling uncertainty, incorporate context-awareness, support decision-making processes,
and facilitate service matching and optimization. By leveraging fuzzy logic techniques, IoT
systems can dynamically and intelligently compose services to meet specific requirements
and adapt to changing conditions flexibly and robustly. The advantages of using a fuzzy-
based hybrid algorithm that combines the ABC and ACO algorithms in service composition
in IoT include handling uncertainty, flexible fitness evaluation, dynamic parameter tuning,
context-aware decision-making, improved optimization, and enhanced performance and
scalability. These advantages enable the algorithm to generate more robust, adaptive, and
high-quality service compositions, aligning them with IoT environments’ diverse require-
ments and dynamic nature. Some advantages of using a fuzzy-based hybrid algorithm that
combines the ABC and ACO algorithms for service composition in IoT:

• Handling Uncertainty: IoT environments often involve uncertain and imprecise infor-
mation due to varying data quality, incomplete knowledge, and ambiguous conditions.
Fuzzy logic, employed in the hybrid algorithm, allows for representing and reasoning
with imprecise and uncertain data. It enables the algorithm to handle uncertainty in
evaluating service quality attributes, decision-making, and optimization, resulting in
more robust and adaptable service compositions.

• Flexible Fitness Evaluation: The fuzzy-based hybrid algorithm allows flexible fitness
evaluation by considering multiple quality attributes simultaneously. The fuzzy
system, integrated into the hybrid algorithm, utilizes membership functions and fuzzy
rules to evaluate the suitability and relevance of IoT services based on attributes such
as availability, reliability, cost, and energy. This comprehensive evaluation leads to
more accurate fitness assessments by considering various factors relevant to service
composition in the IoT.

• Dynamic Parameter Tuning: The hybrid algorithm combines the strengths of the ABC
and ACO algorithms. The fuzzy system enhances this combination by facilitating
dynamic parameter tuning based on the problem context and performance feedback.
Fuzzy rules are employed to adjust algorithm parameters such as pheromone evap-
oration rate, colony size, and exploration-exploitation balance. This adaptability
enables the algorithm to navigate the search space effectively and optimize the service
composition process.

• Context-Aware Decision-Making: The fuzzy system integrated into the hybrid algo-
rithm enables context-aware decision-making. The algorithm can adapt its decision-
making process by considering contextual factors such as user preferences, environ-
mental conditions, and resource constraints. Fuzzy inference mechanisms assess the
importance and relevance of different decision criteria, allowing for more intelligent
and personalized service composition in IoT scenarios.

• Improved Optimization: The hybrid algorithm, with the fuzzy system, provides
enhanced optimization capabilities. Fuzzy optimization techniques can be employed
to refine and optimize the service compositions generated by the algorithm. These
techniques explore different combinations of services, adjust parameters, and optimize
resource allocations to achieve near-optimal solutions. The hybrid algorithm can
effectively balance trade-offs, handle constraints, and consider user preferences during
optimization by leveraging fuzzy logic.

• Enhanced Performance and Scalability: The combination of the ABC and ACO al-
gorithms, empowered by the fuzzy system, can lead to improved performance and
scalability in service composition for IoT. The fuzzy-based hybrid algorithm allows
for efficient exploration of the search space, exploitation of the best solutions, and
dynamic adaptation to changing conditions. It can handle complex and large-scale IoT
environments effectively, providing more efficient and scalable service compositions.
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3.5. Hybrid Algorithm

In 2005, Abd-Alsabour and Randall [72] introduced the so-called ABC, an intelligent
swarm algorithm. There are three types of bees in the colony. They are Onlooker Bees
(OBees), Employed Bees (EBees), and scout bees. At first, the food source positions are
created (N). Each food source is devoted to an employed bee. Having exploited the food
sources, EBees send the nectar amount information to OBees. Subsequently, OBees initiate
the exploitation of food sources, giving priority to those with higher quality. When a source
is depleted, scouts start to search for a new food source. However, the nectar information
is, in fact, the quality of the available food source solution. The number of food sources
and the population of EBees and OBees are equal.

In the early 1990s, Dorigo and his colleagues proposed ACO [73]. This algorithm
consists of real ants’ coordinated behavior and their self-organizing principles to find a
solution for complex combinatorial optimization problems. Ants are considered social
insects that can find the shortest route between the nest and the food source through
pheromone updates, evaporation, and path construction. The ABC algorithm and the ACO
algorithm are both metaheuristic optimization algorithms that can be used to solve a wide
range of complex problems. Here are some disadvantages of both algorithms:

• Slow convergence: ABC and ACO algorithms can converge slowly, especially when
dealing with complex problems with a large search space. This can result in longer
optimization times and may be unacceptable in some applications.

• Premature convergence: Both algorithms can suffer from premature convergence,
where the algorithm gets stuck in a local optimum and cannot find the global optimum.
This can result in suboptimal solutions and may require additional optimization runs
to obtain better solutions.

• Parameter sensitivity: The ABC and ACO algorithms have several parameters that
need to be set, and their values can significantly affect the algorithm’s performance.
Setting these parameters can be challenging, and incorrect values can lead to poor
optimization results.
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• Inability to handle constraints: Both algorithms are not well-suited for problems with
constraints, as they do not provide an explicit mechanism for handling them. This can
result in infeasible solutions, which may not be useful in some applications.

• Limited memory: Both algorithms do not store the previous search history, which can
limit their ability to explore the search space efficiently. This can result in inefficient
searches and longer optimization times.

Hybrid algorithms combine two or more optimization techniques to enhance the algo-
rithm’s overall performance. ACO and ABC are two optimization techniques successfully
used in solving various optimization problems. Here are some advantages of using a
hybrid algorithm:

• Improved global search: The hybrid approach can combine the strengths of both the
ACO and ABC algorithms to improve global search. ACO is good at exploring the
search space, while ABC exploits good solutions. By combining the two approaches,
the hybrid algorithm can better balance exploration and exploitation, resulting in
better optimization results.

• Faster convergence: The hybrid algorithm can converge faster than the individual
algorithms since it can take advantage of the strengths of both algorithms. This can
result in shorter optimization times, which can be important in many applications.

• Robustness: The hybrid algorithm can be more robust than the individual algorithms
since it can handle a wider range of optimization problems. This is because the hybrid
algorithm can adapt to different problem characteristics, taking advantage of the
strengths of both the ACO and ABC algorithms.

• Better handling of constraints: The hybrid algorithm can handle constraints better
than individual algorithms since ACO has a mechanism for handling constraints. This
can result in more feasible solutions, which can be important in many applications.

• Flexibility: The hybrid algorithm can be easily customized to suit different optimiza-
tion problems by adjusting the parameters of the individual algorithms. This can make
it a more versatile approach for solving different optimization problems.

Due to too many intensifications by the OBees, ABC’s convergence is accompanied
by a delay, and on the other hand, ACO during intensification has stagnation. Ants create
the initial set of solutions, and the routes are handed over to bees for exploitation to tackle
these issues in the proposed AC-ABC hybrid algorithm. The advantages of the ACO and
ABC algorithms are hybridized and synergized in the proposed algorithm. In the proposed
algorithm, ants create paths that combine optimal services. These services are, in fact, the
initial food sources for the bee colony. When sources are given to ABC, the EBees search
the services, their neighborhoods, and the information sent to the OBees. The OBees tend
to be the food source with higher quality (fitness), so solutions with higher fitness will have
more chances of being selected by the OBees. Then the scout bees replace the exhausted
food sources with new, random ones. Bee-optimized food sources are given to ants as their
path to updating pheromones based on a fuzzy inference system. In the next iteration, ants
will tend to follow paths with more pheromones. Finally, the algorithm will halt when
it reaches a predetermined number of iterations. The comprehensive explanation of the
suggested algorithm and the equations included are considered below:

Step 1: Initialize the algorithm parameters. In this step, the necessary parameters for
the algorithm are set, such as the number of ants, the number of iterations, the evaporation
rate of pheromones, and any other parameters specific to the problem being solved (Number
of iterations: 100, number of ants: 20, α = 0.6, β = 0.4, evaporation rate of pheromones: 0.2).

Step 2: Normalize QoS Values. The QoS values, which represent the performance
attributes of candidate services, are normalized to a common scale. This step ensures that
the QoS values can be compared and combined effectively.

Step 3: The Qscore is calculated for each of the candidate services for each task [66].
Qscore is a measure of the quality of a candidate service based on its QoS attributes. The
Qscore is calculated using a weighted sum of the QoS attribute values, multiplying each
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attribute by a corresponding weight. The weights determine the relative importance of
each attribute.

Qscore = ∑4
i=1 Wi ∗Qi (8)

Wi denotes the weight value of the ith QoS attribute of one atomic service, 0 ≤Wi ≤ 1,
∑4

i=1 Wi = 1. Qi denotes the ith QoS attribute value. Four in (8) is considered as the number
of the parameters that should be optimized.

Step 4: The probability of selecting ij path by ant k is calculated due to the pheromone
and service’s score [74]. The probability of selecting a particular path (combination of
services) by an ant is calculated based on the pheromone level on the path and the Qscore of
the services in the path. The pheromone level determines the attractiveness of the path,
while the Qscore reflects the quality of the services. The influence of pheromones and Qscore
is controlled by positive parameters, alpha (α) and beta (β), respectively.

Pk
ij=


τα

ij Qβ
score ij

∑mεNk
i

τα
im Qβ

score im
jεNk

i

0 otherwise
(9)

where α and β are positive numbers to determine the influence of pheromones and quality
of the candidate services, respectively. τij is the amount of pheromone on path ij. Nk

i is the
set of possible neighborhoods that ant k could pass through them.

Step 5: The probability values of services are entered into a roulette wheel selection,
and a service is selected for each task. The probability values calculated in the previous step
are used to perform roulette wheel selection. Each ant selects a service for each task based
on these probabilities. This selection process ensures that services with higher probabilities
(higher pheromones and Qscore) are more likely to be selected.

Step 6: The paths created by the ants are given to the EBees as the initial solutions.
The paths created by the ants, which represent solutions, are passed to the EBees as their
initial solutions. The EBees will further explore and improve these solutions.

Step 7: EBees receive solutions and start to look for a neighboring food source by
“neighborhood search” or “local search” based on Equation (10) [75,76]. The EBees started
to carry out a local search to improve the solutions they received. They perform a neigh-
borhood search or local search for each task. This search involves evaluating the QoS
parameters of the selected service and creating a virtual service based on these parame-
ters. The most similar service to the virtual service in the same task is found using the
Euclidean distance.

Q′ij = Qij +φ
(

Qij −Qkj

)
(10)

ϕ is a random number between [0, 1]. Q is one of the QoS parameters in the selected
service i in task j. K is a randomly chosen number k ∈ {1, 2,..., n} (I 6= k). N is the total
number of services in task j. For instance, the reliability component R′ij is calculated by:

R′ij = Rij +φ
(

Rij − Rkj

)
(11)

After calculating all four parameters in this way, we get a QoS vector (A′ij, R′ij, C′ij, E′ij).
These parameters represent a virtual service, and the most similar service to the virtual
service in the same task should be found. In order to find the most similar service, we use
Euclidean distance, as in (12), between the virtual service Vij and candidate services Sij in
the same task. Our answer is the service with the smallest distance with the virtual service.
This method is called the Approximate-Mapping local search method [77].

D
(
Sij , Vij) =

√√√√(Aij − A′ij)
2 + (Rij − R′ij)

2+

(Cij − C′ij)
2 + (Eij − E′ij)

2 (12)
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Finally, the EBees compare the fitness of the original service against the obtained
service and choose the better service for the next time’s local search.

Step 8: In this step, OBees are devoted to solutions for the local search based on
probabilities given from solutions’ fitness. Solutions with better fitness have more chances
of being selected. The probabilities are calculated by the following equation and are given
to the roulette wheel to select solutions [75]:

Pi =
f iti

∑SN
n=1 f itn

(13)

f iti is equal to the fitness of ith solution I ∈ {1, 2, . . ., SN} chosen by EBees. SN is the
total number of EBees in the population.

OBees carry out a local search on the selected solutions. The local search is carried out
like the EBees local search in Step 7. If the fitness of the new solution is better than that of
the old solution, the new one is replaced with the old one.

Step 9: If the fitness of a path cannot improve after a certain number, this path is
deleted, and scout bees create a new path.

Step 10: The solution returns from the bee colony to the ant colony, and the pheromone
is updated based on the fuzzy module; evaporation updates are carried out using the
(14) [78]. After the EBees and OBees have performed their local searches, the solutions are
returned to the ant colony. In this step, the pheromone levels on the paths are updated based
on a fuzzy inference system. This system takes into account the fitness of the solutions and
adjusts the pheromone levels accordingly. Additionally, evaporation updates are performed
to decrease pheromone levels gradually.

τij (t + 1)← (1− ρ)× τij(t) (14)

0 < ρ ≤ 1 is the evaporation rate of the pheromone.
Step 11: Go back to step 3 until the predetermined number of runs is attained. The

pseudo-code (Algorithm 1) of the method and flowchart (Figure 5) is illustrated as follows:

Algorithm 1: Proposed Method:

Initialized the algorithm’s parameters
While (the termination condition is reached)

For ant = 1: population
Lunch an ant to construct a solution

For task = 1: the number of tasks
Calculation of the probability of each service

Selecting a service by a roulette wheel
End for

End for
The paths are given to EBees as initial solutions
While (the termination condition is reached)
EBees start to carry out the local search for solutions
Onlooker Bees select solutions based on their probability of local search
Scout Bees create a new solution instead of the solution that has not been improved
End while
EBees solution returns to ant colony optimization
Pheromones are updated based on the fuzzy system
Evaporation update is carried out

End while
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4. Experiment Results

This section describes the simulation tools, the data set, and the results obtained.

4.1. Simulation Tools and Dataset

The simulation is carried out utilizing a CPU core i7 2.4 GHz (4GByte RAM). The
simulator program is Matlab R2017a. Matlab is used to simulate metaheuristic algorithms
in many papers [46,79], and it is known as one of the best tools. Unfortunately, there are no
multiple datasets available on the service composition in IoT domains, and the available
datasets are confined to three datasets, QWS [80], WS-DREAM [81], and OWLS-Xplan [82],
and datasets that are generated randomly. We considered the QWS dataset [83], similar



Sensors 2023, 23, 7233 19 of 29

to the work of some other scholars [41,84], to approve and validate our theory. The QWS
dataset comprises a set of QWS measurements for 2507 service implementations. To tackle
the issue of QoS value fluctuation during service runtime in dynamic IoT environments,
QoS values are updated randomly after each service iteration by multiplying each QoS
value with a random number [0.9, 1.1]. The energy model proposed in [85] can be studied
to become acquainted with battery-operated objects’ energy consumption. This paper
assumes that every device possesses a maximum battery charge (Cmax) and an initial
charge (Cinitial). The amount of Cmax is 1500 mA.h, and Cinitial is randomly created in
the range of 0.7 Cmax to 1.0 Cmax. Furthermore, if any device’s energy level drops below
Cthroud (0.3 Cmax), the device will no longer provide any services and will not contribute
to the composition process. In addition, a specific amount of power is consumed in every
run, and this value is subtracted from the battery level of the device providing services.

4.2. Obtained Results

The three strategies presented in the articles [46,54,55]. are compared with our pro-
posed method. Our method, a fuzzy-based hybrid algorithm with ACO-ABC, leverages
fuzzy logic and optimization techniques to find an optimal service composition based on
various QoS factors. Fuzzy logic enables handling uncertainty and imprecise information,
while the ACO-ABC optimization approach aims to strike a balance between exploration
and exploitation in the search space. This algorithm effectively considers multiple QoS fac-
tors simultaneously and finds a trade-off solution. In contrast, the FSCA-EQ approach [46]
adopts a hierarchical optimization approach. It employs the compromise ratio method
(CRM) to pre-select services that meet the user’s QoS requirements. The optimal service is
then chosen based on relative dominance, considering energy profiles, QoS attributes, and
user preferences. However, the FSCA-EQ approach for IoT service composition has some
disadvantages, including:

1. Limited consideration of dynamic user demands: One of the drawbacks of the FSCA-
EQ approach is its lack of explicit consideration for dynamic user demands. As user
requirements change over time, the approach may not adapt effectively, potentially
leading to suboptimal service composition.

2. Complexity of hierarchical optimization: The hierarchical optimization mechanism
used in FSCA-EQ adds complexity to the service composition process. Managing and
implementing this hierarchical approach can become challenging, especially when
dealing with numerous IoT components and services.

3. Lack of flexibility in service selection: FSCA-EQ relies on the relative dominance
concept for selecting the optimal service in the composite service. While it considers
energy profiles, QoS attributes, and user preferences, this approach may limit the
flexibility of service selection. It could overlook certain services that, although not
dominant, could contribute to a more optimal composition.

4. Limited adaptation to changing IoT environments: The FSCA-EQ approach may
face difficulties in adapting to dynamic changes in the IoT environment. As the IoT
landscape evolves, new services may become available or existing ones may become
obsolete. FSCA-EQ may not effectively handle such changes and might require
manual adjustments or updates to its selection criteria.

5. Potential bias in service selection: The use of relative dominance and specific selection
criteria in FSCA-EQ may introduce biases in the service composition process. De-
pending on how these criteria are defined and weighted, certain services or attributes
may receive preferential treatment, potentially leading to imbalanced or suboptimal
composite services.

Naseri and Navimipour [54] presented a new hybrid method for efficient service
composition in cloud computing. The primary objective is to select suitable services based
on QoS parameters while optimizing resource allocation. The proposed method combines
an agent-based approach with the PSO algorithm to compose services and identify the
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best services based on a fitness function. However, some potential disadvantages of this
approach for service composition in cloud computing could include:

1. Complexity and implementation challenges: Implementing a hybrid method that
combines agent-based approaches with optimization algorithms like PSO can be com-
plex [86]. Developing and deploying the algorithm effectively may require specialized
expertise and resources.

2. Challenges in the distribution factor of importance: The method may face challenges
when the distribution factor of importance is significant. In such cases, where the
distribution of data centers is crucial, the method’s performance may be affected.

3. Lack of adaptability to dynamic environments: The proposed method may struggle
to adapt to dynamic changes in the cloud environment, such as varying workloads,
service availability, or QoS requirements. It may not possess real-time adaptation
capabilities, limiting its responsiveness to dynamic service composition needs.

4. Sensitivity to fitness function and parameters: The effectiveness of the hybrid method
heavily relies on the design and selection of the fitness function and parameter values.
The algorithm’s performance may vary significantly depending on the chosen metrics
and their weights, requiring careful tuning and experimentation.

One potential disadvantage of the method proposed by Chen, Wang [55] is its focus
on a specific aspect of web service composition selection, primarily centered around QoS
satisfaction degree as the primary objective. Some potential disadvantages of this approach
for service composition include:

1. Limited scope: The method concentrates on optimizing QoS satisfaction degree as
the primary objective, which might overlook other essential considerations, such as
energy efficiency, cost-effectiveness, or security. Ignoring these factors could lead to
suboptimal service compositions in scenarios where different aspects are equally critical.

2. Domain specificity: The effectiveness and feasibility of the proposed solution could
vary depending on the specific context and the range of web services available.
The genetic algorithm’s performance and adaptability might differ based on the
characteristics and diversity of the available services, making it less suitable for
certain application domains.

3. Algorithm parameter tuning: Genetic algorithms often require careful parameter
tuning to achieve optimal results. The effectiveness of the proposed approach could
be sensitive to the selection of genetic algorithm parameters, making it crucial to
fine-tune these settings for each application scenario.

4. Computational complexity: Genetic algorithms can be computationally intensive,
especially when dealing with a large number of web services and complex service
composition scenarios. As the size of the search space increases, the time and resources
required for optimization may become significant.

5. Limited multi-objective consideration: While the genetic algorithm is used for multi-
objective optimization, the method primarily focuses on QoS satisfaction degree as
the primary objective. It may not handle other competing objectives or trade-offs
effectively, potentially limiting the range of service composition solutions [87,88].

6. Lack of real-world validation: Although the authors present test results indicating the
feasibility and effectiveness of their solution, a comprehensive real-world validation
might be necessary to assess the method’s performance and generalizability across
diverse scenarios and user preferences.

The fuzzy-based hybrid algorithm with ABC and ACO offers several advantages over
using PSO and GA for optimization tasks, especially in the context of service composition.
Here are some key advantages:

1. Handling uncertainty: Fuzzy logic, which is incorporated into the fuzzy-based hybrid
algorithm, allows for handling uncertainty and imprecise information. In service
composition, where QoS parameters and user preferences may be ambiguous, fuzzy
logic can provide better decision-making capabilities by considering linguistic vari-
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ables and fuzzy rules. PSO and GA, on the other hand, do not inherently address
uncertainty in the optimization process.

2. Comprehensive exploration and Exploitation: The hybrid nature of the fuzzy-based
algorithm combines both ABC and ACO techniques. ACO is excellent at exploring
the solution space to find optimal paths, while ABC excels at exploitation to refine the
solutions found. This combination allows the algorithm to conduct a more compre-
hensive search, potentially leading to better-quality solutions compared to PSO and
GA, which may focus more on exploration or exploitation alone.

3. Efficient convergence: The fuzzy-based hybrid algorithm’s ability to exploit the
strengths of both ABC and ACO algorithms can result in more efficient convergence.
By leveraging the synergistic effects of the two techniques, the algorithm may find
optimal solutions more quickly, especially for complex optimization problems like
service composition.

4. Consideration of multiple QoS factors: The fuzzy-based hybrid algorithm can effec-
tively handle multiple QoS factors simultaneously, considering their interdependen-
cies. This careful consideration of various QoS parameters ensures a more balanced
and optimal composition of services. PSO and GA may face challenges in efficiently
managing multiple objectives in the optimization process.

5. Better adaptability: The fuzzy-based hybrid algorithm with ABC and ACO may
exhibit better adaptability to dynamic changes in the optimization landscape. As
service requirements or constraints change, the algorithm can adjust its search strat-
egy more effectively compared to PSO and GA, which may require more manual
parameter tuning.

6. Reduced sensitivity to parameters: The fuzzy-based approach typically involves
fewer parameters requiring tuning than PSO and GA. This reduces the algorithm’s
sensitivity to parameter settings and simplifies optimization.

7. Increased robustness: The hybridization of ABC and ACO techniques adds robustness
to the fuzzy-based algorithm. Combining two complementary approaches makes
the algorithm less likely to get trapped in local optima, leading to more robust and
globally optimal solutions.

Four important parameters of the quality of services, such as availability, reliability,
energy, and cost, are considered. The results validate that the proposed method has great
performance. We utilized 10, 30, 50, 70, and 100 service classes (each class is related to a
task) with 50 candidate services to assess the quality of service in simulation tests. Figures 6
and 7, respectively, represent the logarithm (base 10) of the results obtained for the real
value of availability and reliability parameters. As can be seen, in all three parameters
mentioned, the proposed method has achieved good results. In Figure 8, the figure for the
cost parameter of the proposed approach is smaller than that of other algorithms. When the
number of requests goes up, this parameter declines dramatically. The reason for this issue
is rooted in the optimal selection of services in the proposed algorithm. In our research,
two scenarios to evaluate the energy parameter are considered. In the first one (Figure 9),
the proposed method, considering both the energy profile and QoS (cost, availability, and
reliability) in the selection process, is compared with the same method considering either
the energy profile or QoS. In Figure 10, which illustrates the second scenario, the energy
parameter in the proposed method is compared with the mentioned algorithms [46,54,55].
As shown in Figure 9, the amount of the energy consumed by the method when both
energy and QoS are considered is close to that of when energy is only considered, and it is
just between 12% and 28% higher than that. In addition, the energy consumption of the
proposed method when both energy and QoS are considered is from 42% to 68% lower
than that when QoS is only considered.. Table 3 shows the improvement percentages of
energy, cost, reliability, and availability in the proposed method (both QoS and energy are
considered) compared with the same parameters in FSCA-EQ, GA, and PSO.
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Table 3. The improvement percentage.

Availability Reliability Cost Energy

The Proposed Method
Compared to FSCA-EQ 5.02% 4.22% 9.68% 10.33%

The Proposed Method
Compared to GA 7.14% 5.89% 25.60% 23.55%

The Proposed Method
Compared to PSO 12.68% 3.45% 29.48% 17.46%

5. Conclusions and Future Work

This section discusses the accomplishments and summary of the paper, along with
future investigation tips for IoT in various fields. The importance of IoT in pervasive com-
puting is undeniable, as embedded devices are increasingly prevalent in all aspects of life,
even interpersonal interactions. These devices generate data that need to be processed and
combined to extract meaningful insights. This paper presents a novel fuzzy-based hybrid
algorithm that combines an ACO algorithm and an ABC algorithm for IoT service composi-
tion. Initially, the service composition problem is transformed into finding an optimal path
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with specific QoS requirements in a directed acyclic graph. The hybrid algorithm effectively
leverages the strengths of both the ACO and ABC algorithms to obtain the optimal solution.
The analysis and experiments demonstrate that this hybrid approach outperforms the
individual ACO and ABC algorithms in terms of efficiency and flexibility. Our algorithm
efficiently combines IoT services based on their QoS, surpassing the ant colony and bee
colony optimization algorithms, and effectively fulfills user requests. Additionally, the
proposed method exhibits better reliability, availability, and cost-effectiveness. Given IoT
deployments’ increasing complexity and scale, our research opens up new possibilities for
QoS-aware service composition, leading to enhanced user experiences, improved system
reliability, and sustainable IoT ecosystems.

However, some unresolved issues and intriguing areas still require further investi-
gation. Presently, no mechanism addresses all aspects related to IoT service composition.
While some methods consider QoS parameters such as reliability, response time, and con-
vergence time, others ignore these critical factors. It is essential to evaluate additional
quality criteria to enhance service composition performance. Furthermore, inter-service
dependencies and conflicts are significant concerns in QoS-aware service composition, but
only a few papers focus on addressing these issues. In some IoT-based service composition
scenarios, service selection for each task occurs independently of other tasks, leading to
potential conflicts and inefficiencies. Future research should explore incorporating different
QoS parameters and addressing inter-service dependencies and conflicts to further enhance
service composition methods in IoT applications. By addressing these challenges, we can
create more robust and efficient IoT systems to meet the ever-growing demands of users
and applications.

However, it is essential to acknowledge that technological constraints can challenge
the service composition process. The selection of services in a composition heavily depends
on various restrictions, such as time and location. Unfortunately, many IoT researchers
have not thoroughly explored inter-service dependencies and conflicts. As such, the current
study has some limitations that need to be addressed.

1. Scalability: The proposed algorithm’s scalability is not explicitly addressed. As the
number of devices and services in the IoT ecosystem grows, the algorithm’s ability to
handle larger-scale compositions may become a limitation. It is crucial to consider
the method’s performance and efficiency when dealing with a large number of IoT
devices and services.

2. Real-world Deployment: The practical aspects of implementing the proposed ap-
proach in real-world IoT systems are not discussed. It would be valuable to address
the compatibility, interoperability, and deployment challenges that may arise when
integrating cloud and fog computing infrastructures.

For future research, the following directions can be considered:

1. Extension of QoS Parameters: Future work could focus on expanding the QoS pa-
rameters considered in the service composition process. Investigating additional
metrics related to service quality, such as security [89,90], privacy [91,92], and net-
work bandwidth, would provide a more comprehensive evaluation and improve the
performance of the service composition method.

2. Inter-Service Dependencies and Conflicts: Addressing inter-service dependencies and
conflicts in IoT service composition should be a priority. Developing techniques or
algorithms that explicitly handle conflicts between service compositions and address
the challenges posed by inter-service dependencies would be beneficial.

3. Real-World Implementation and Performance Evaluation: Testing the proposed
method via implementation in a real IoT application would provide valuable in-
sights into its practicality and performance in a realistic setting.

4. Edge Computing Optimization: Considering the emerging paradigm of edge comput-
ing, future work could explore optimizations that leverage the potential of processing
IoT applications at the edge networks near the devices. Investigating how the pro-
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posed service composition method can be enhanced or adapted for edge computing
environments would be valuable.

5. Combination of the applied algorithm with some powerful techniques: In many
cases, the hybrid algorithms have delivered good results. Therefore, we can com-
bine the proposed algorithm with some other algorithms, such as the greedy algo-
rithm [93–95], active subspace random optimization [96], neural networks [97], and
deep/federated/machine learning [98–100].

Finally, the main novelty and impact of the current research are:

1. Comparison with state-of-the-art methods: To assess the impact and novelty of the
research, a detailed comparison of the proposed hybrid algorithm for service com-
position with recently introduced methods is necessary. This analysis would help
determine the advancements and improvements achieved by the proposed approach.

2. Integration of fog computing: The proposed cloud-/fog-based service composition
approach acknowledges the emergence of fog computing as a paradigm to process
IoT applications at the edge networks. Assessing the benefits and performance
enhancements achieved via this integration would further highlight the novelty of
the research.
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