
Citation: Yi, W.; Wang, C.; Xie, Q.;

Zhao, Y.; Jia, J. PSBF: p-adic Integer

Scalable Bloom Filter. Sensors 2023,

23, 7775. https://doi.org/10.3390/

s23187775

Academic Editor: Jose Manuel

Molina López

Received: 26 August 2023

Revised: 7 September 2023

Accepted: 8 September 2023

Published: 9 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

PSBF: p-adic Integer Scalable Bloom Filter
Wenlong Yi, Chuang Wang, Qiliang Xie, Yingding Zhao and Jing Jia *

School of Software, Jiangxi Agricultural University, Nanchang 330045, China; yiwenlong@jxau.edu.cn (W.Y.);
wangchuang@stu.jxau.edu.cn (C.W.); xieqiliangg@outlook.com (Q.X.); zhaoyingding@jxau.edu.cn (Y.Z.)
* Correspondence: kevinjia0120@jxau.edu.cn

Abstract: Given the challenges associated with the dynamic expansion of the conventional bloom
filter’s capacity, the prevalence of false positives, and the subpar access performance, this study
employs the algebraic and topological characteristics of p-adic integers to introduce an innovative
approach for dynamically expanding the p-adic Integer Scalable Bloom Filter (PSBF). The proposed
method involves converting the target element into an integer using a string hash function, followed
by the conversion of said integer into a p-adic integer through algebraic properties. This process
automatically establishes the topological tree access structure of the PSBF. The experiment involved
a comparison of access performance among the standard bloom filter, dynamic bloom filter, and
scalable bloom filter. The findings indicate that the PSBF offers advantages such as avoidance of
a linear storage structure, enhanced efficiency in element insertion and query, improved storage
space utilization, and reduced likelihood of false positives. Consequently, the PSBF presents a novel
approach to the dynamic extensibility of bloom filters.

Keywords: p-adic; number theory; access optimization; bloom filter; scalable

1. Introduction

The advent of contemporary information technologies, including big data, the Internet
of Things, and cloud computing, has resulted in a substantial increase in data volume,
posing significant challenges to computer systems in terms of data processing, storage,
and retrieval. The bloom filter, a well-established probabilistic data structure, serves the
purpose of determining the presence of a data element within a collection. This data
structure offers notable advantages such as efficient space utilization and expedited query
speed, rendering it extensively employed in various domains such as big data analysis [1],
optimization of data storage in the Internet of Things [2], and safeguarding data security
in cloud computing [3]. However, the conventional bloom filter exhibits a false positive
probability during member queries, wherein an element that does not actually belong
to the set is erroneously identified as a member of the set. As depicted in Figure 1, the
bloom filter essentially comprises a binary vector V of a specific size m and multiple hash
mapping functions H. The size of the bloom filter needs to be predetermined based on the
number of data elements E to be stored and the desired probability of false positives, which
poses challenges in accurately estimating the size of the stored elements in a system. The
increase in false positives is observed in a bloom filter upon surpassing a specific threshold
of stored elements. Fixed-size bloom filters are prone to significant storage space wastage or
elevated false positives. Consequently, the expandability of bloom filters holds substantial
research importance.

To address the aforementioned issues, previous studies have put forth over 60 en-
hanced bloom filters with the aim of enhancing their adaptability and performance [4].
These enhanced bloom filters exhibit enhanced flexibility and performance benefits in
various application scenarios, including content caching [5–10], data storage [11–15], and
other domains. By reducing false positives, optimizing implementation, augmenting collec-
tion diversity, and enriching functionalities, these enhanced bloom filters offer improved

Sensors 2023, 23, 7775. https://doi.org/10.3390/s23187775 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187775
https://doi.org/10.3390/s23187775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23187775
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187775?type=check_update&version=3

Sensors 2023, 23, 7775 2 of 14

adaptability and efficacy, thereby rendering bloom filters a more potent tool for handling
extensive datasets.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 15

1 0 1 0 1 0 1 1 0 1 1 1 0 1...

V[1] V[m]V[3] V[m-2]

E={ e1 e2 … en }

H={ h1 h2 h3 … hk }

V={ }

Figure 1. Data structure of a standard bloom filter.

To address the aforementioned issues, previous studies have put forth over 60
enhanced bloom filters with the aim of enhancing their adaptability and performance [4].
These enhanced bloom filters exhibit enhanced flexibility and performance benefits in
various application scenarios, including content caching [5–10], data storage [11–15], and
other domains. By reducing false positives, optimizing implementation, augmenting
collection diversity, and enriching functionalities, these enhanced bloom filters offer
improved adaptability and efficacy, thereby rendering bloom filters a more potent tool
for handling extensive datasets.

Despite the enhanced effectiveness of bloom filters in mitigating false positives, their
ability to address computational overhead and additional space consumption remains
limited. To tackle this issue, dynamic capacity expansion serves as a mechanism that
facilitates automatic expansion of the bloom filter’s capacity in line with the growth of
data volume. This approach not only significantly enhances the scalability of processing
extensive datasets but also diminishes the rate of misjudgment. A robust dynamic
expansion is crucial for enhancing the applicability of bloom filters and is a pivotal
consideration in the development of extensive data processing systems.

The p-adic number serves as a valuable parameterization tool for computations
within hyper-dimensional spaces [16]. Not only does it possess commendable algebraic
properties, but it also forms a finite commutative ring with addition and multiplication
operations while exhibiting favorable topological characteristics. The authors utilize the
algebraic and topological characteristics of p-adic numbers to present a pioneering and
scalable approach to bloom filters. The primary contributions are as follows:
1. The proposal of a bloom filter automatic expansion technique founded on p-adic

integers. This technique enables the bloom filter to dynamically adapt its size in
accordance with the actual number of stored elements, thereby resolving the
problems associated with inefficient storage utilization and elevated false positive
rates encountered in bloom filters employing fixed-size binary vectors;

2. Algorithms for the insertion and querying of a bloom filter, utilizing p-adic integers,
have been developed, and their effectiveness in terms of storage and query efficiency
has been validated through experimental analysis;

3. The algorithms address the limitation of conventional bloom filters in terms of
expandability when the number of stored elements is uncertain, thereby enhancing
the practicality and adaptability of bloom filters.
This paper is composed of five main sections. Section 1, Introduction, provides an

in-depth exploration of the research purpose, existing issues, and the authors’
contributions in the field of bloom filters. Section 2, Related Works, critically analyzes the

Figure 1. Data structure of a standard bloom filter.

Despite the enhanced effectiveness of bloom filters in mitigating false positives, their
ability to address computational overhead and additional space consumption remains
limited. To tackle this issue, dynamic capacity expansion serves as a mechanism that
facilitates automatic expansion of the bloom filter’s capacity in line with the growth of data
volume. This approach not only significantly enhances the scalability of processing exten-
sive datasets but also diminishes the rate of misjudgment. A robust dynamic expansion is
crucial for enhancing the applicability of bloom filters and is a pivotal consideration in the
development of extensive data processing systems.

The p-adic number serves as a valuable parameterization tool for computations within
hyper-dimensional spaces [16]. Not only does it possess commendable algebraic properties,
but it also forms a finite commutative ring with addition and multiplication operations
while exhibiting favorable topological characteristics. The authors utilize the algebraic and
topological characteristics of p-adic numbers to present a pioneering and scalable approach
to bloom filters. The primary contributions are as follows:

1. The proposal of a bloom filter automatic expansion technique founded on p-adic
integers. This technique enables the bloom filter to dynamically adapt its size in
accordance with the actual number of stored elements, thereby resolving the prob-
lems associated with inefficient storage utilization and elevated false positive rates
encountered in bloom filters employing fixed-size binary vectors;

2. Algorithms for the insertion and querying of a bloom filter, utilizing p-adic integers,
have been developed, and their effectiveness in terms of storage and query efficiency
has been validated through experimental analysis;

3. The algorithms address the limitation of conventional bloom filters in terms of ex-
pandability when the number of stored elements is uncertain, thereby enhancing the
practicality and adaptability of bloom filters.

This paper is composed of five main sections. Section 1, Introduction, provides an
in-depth exploration of the research purpose, existing issues, and the authors’ contributions
in the field of bloom filters. Section 2, Related Works, critically analyzes the current research
status and proposes research directions aimed at optimizing the performance of bloom
filtering. Section 3, Methods, elaborates on the design ideas and algorithms employed
in the p-adic Integer Scalable Bloom Filter (PSBF) in a comprehensive manner. Section 4,
Results, presents the execution of the selection experiment conducted to determine the
suitable hash function and the optimal prime p for the PSBF. Section 5, Discussion, presents
a comparative and analytical examination of the performance tests conducted on PSBF and
three other bloom filters. Additionally, Section 6, Conclusion, provides a summary of the
advantages exhibited by PSBF.

Sensors 2023, 23, 7775 3 of 14

2. Related Works

In contrast to conventional bloom filters, scalable bloom filters possess the ability to
adjust their size dynamically in order to accommodate expanding data scales. Almeida
et al. [17] addressed the issue of capacity limitations by proposing the utilization of multiple
bloom filters to construct an expandable bloom filter. Nonetheless, this approach presents
potential limitations, primarily including the division of data into multiple partitions and
the requirement for query operations to be conducted across multiple partitions, thereby
augmenting the query overhead. Additionally, the maintenance of multiple bloom filters
necessitates additional storage overhead.

The dynamic bloom filter, as proposed by Guo et al. [18], is a resizable bloom filter that
adjusts its size based on the cardinality of the designated dataset, resulting in a reduced
rate of misjudgment. However, the dynamic resizing process of the bloom filter may incur
additional time overhead due to memory allocation and data rearrangement. Furthermore,
the inclusion of counters or bitmaps for maintaining the bloom filter introduces storage
overhead. In response to these challenges, Patgir et al. [19] introduced rFilter, a member
filter that offers excellent expandability and efficient utilization of space. In contrast to the
conventional bloom filter, rFilter diminishes the likelihood of false positives; however, it is
constrained in its capacity to retain bit-sharing information to only twice, thereby limiting
its ability to share such information.

Kleyko et al. [20] conducted an analysis on the boundaries of false positives and true
positives in the counting bloom filter and introduced a technique known as the Autoscaling
Bloom Filter (ABF). The capacity of ABF can be adjusted based on the probability boundary
of false positives and true positives, thereby enhancing the extensibility of conventional
bloom filters by relaxing the need for a perfect true positive rate. ABF achieves this by
sacrificing a non-zero true positivity rate in exchange for a reduced false positivity rate,
which restricts the potential application scenarios where a non-zero true positivity rate
is acceptable.

Kim et al. [21] employed the cyclic displacement method to enhance the operational
speed of the standard bloom filter for both “add” and “query” operations while maintaining
the same false positive rate. However, it should be noted that this method solely focuses on
improving the computational efficiency of the standard bloom filter and does not address
the persistently high false positive rate observed in the fixed-length bloom filter when
processing extensive data. In contrast, Rottenstreich et al. [22] utilized Orthogonal Latin
Square codes, and polynomials defined modulo primes to represent data elements, thereby
leveraging the linear memory dependence of the dataset to accommodate a larger number
of data elements. Despite its ability to prevent false positives in cases where the number of
collection elements is below the set threshold, this method fails to account for the dynamic
nature of the dataset. In response to this limitation, Nayak et al. [23] introduced a bloom
filter known as RobustBF, which enhances the selection of hash functions and incorporates
them into the 2D bloom filter [24] to minimize false positives and optimize memory
usage. However, as RobustBF is currently implemented as a single-threaded system, its
performance may require further enhancements to effectively handle high-throughput or
low-latency data streams.

Dayan et al. [25] successfully incorporated InfiniFilter into the existing quotient fil-
ter [26]. This implementation utilizes a hash table to store the fingerprint of each entry, and
its adaptable hash slot format ensures consistent functionality for “insert”, “query”, and
“delete” operations. However, as the data volume increases, InfiniFilter’s performance in
the “insert” operation falls short compared to the original quotient filter. Cohen et al. [27]
introduced the concept of Spectral Bloom Filters (SBF), wherein the bit vector of the conven-
tional bloom filter is extended to incorporate a counter vector. The functionality of querying
and deleting SBF elements is facilitated by this counter operation. It is worth noting that
both SBF and standard bloom filters are constrained by the dimensions of the bit vector.
Kiss et al. [28] introduced the EGH filter, a data structure that enables bloom filter opera-

Sensors 2023, 23, 7775 4 of 14

tions while ensuring error-free operations within a constrained set and a limited number of
stored elements. However, the design limits the capability to handle dynamic collections.

These observations highlight the presence of challenging obstacles in the dynamic
expansion mechanism of the bloom filter. The urgent need for comprehensive research
lies in determining the optimal balance between the computing and memory overhead
resulting from expansion, as well as devising strategies to minimize the occurrence of false
positives in the filter.

3. Methods

This study proposes a solution to the issues associated with fixed-size bloom filters in
previous works, namely the excessive waste of storage space and high false positive rates.
Drawing inspiration from the design of the quotient filter [26], the authors introduce the
PSBF. By increasing the prime number p and depth d, the PSBF dynamically expands to
accommodate the storage elements, thereby optimizing the utilization of storage space.

As depicted in Figure 2, the data structure of the PSBF primarily consists of a tree
logical structure comprising a linked list and three key operations: “initialize”; “insert”;
and “query”. Initially, a Hash Function is employed to map any data element e to an integer
e∗. Subsequently, this integer is transformed into a p-adic integer using a prime number
p. Furthermore, the depth d of the bloom filter is determined based on the number of bits
present in the converted p-adic integer. Consequently, the storage structure of the PSBF
adopts a tree structure, thereby circumventing the linear storage structure employed in pre-
vious methodologies. This novel approach facilitates more efficient element management.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 15

its adaptable hash slot format ensures consistent functionality for “insert”, “query”, and
“delete” operations. However, as the data volume increases, InfiniFilter’s performance in
the “insert” operation falls short compared to the original quotient filter. Cohen et al. [27]
introduced the concept of Spectral Bloom Filters (SBF), wherein the bit vector of the
conventional bloom filter is extended to incorporate a counter vector. The functionality of
querying and deleting SBF elements is facilitated by this counter operation. It is worth
noting that both SBF and standard bloom filters are constrained by the dimensions of the
bit vector. Kiss et al. [28] introduced the EGH filter, a data structure that enables bloom
filter operations while ensuring error-free operations within a constrained set and a
limited number of stored elements. However, the design limits the capability to handle
dynamic collections.

These observations highlight the presence of challenging obstacles in the dynamic
expansion mechanism of the bloom filter. The urgent need for comprehensive research
lies in determining the optimal balance between the computing and memory overhead
resulting from expansion, as well as devising strategies to minimize the occurrence of
false positives in the filter.

3. Methods
This study proposes a solution to the issues associated with fixed-size bloom filters

in previous works, namely the excessive waste of storage space and high false positive
rates. Drawing inspiration from the design of the quotient filter [26], the authors
introduce the PSBF. By increasing the prime number p and depth d, the PSBF
dynamically expands to accommodate the storage elements, thereby optimizing the
utilization of storage space.

As depicted in Figure 2, the data structure of the PSBF primarily consists of a tree
logical structure comprising a linked list and three key operations: “initialize”; “insert”;
and “query”. Initially, a Hash Function is employed to map any data element e to an
integer *e . Subsequently, this integer is transformed into a p-adic integer using a prime
number p. Furthermore, the depth d of the bloom filter is determined based on the
number of bits present in the converted p-adic integer. Consequently, the storage
structure of the PSBF adopts a tree structure, thereby circumventing the linear storage
structure employed in previous methodologies. This novel approach facilitates more
efficient element management.

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 20 1 2

0 1 2 0 1 2 0 1 2

0 1 2

*
1e *

2e *
3e

1e 2e 3e

Hash
Function

d

Figure 2. Data structure of 3-adic Integer Scalable Bloom Filter.

1. The p-adic integer algebraic representation is defined as follows: Let α be an element
in the number domain Qp. It can be expressed as Equation (1).

Figure 2. Data structure of 3-adic Integer Scalable Bloom Filter.

1. The p-adic integer algebraic representation is defined as follows: Let α be an element
in the number domain Qp. It can be expressed as Equation (1).

α =
∞

∑
i=n

ai pi (1)

where p is a prime number, n is an integer, and ai ∈ Z. If i = 0 and ai ∈ {0,1,. . .,p−1}, then α
is an integer, and there exists a unique p-adic decomposition for α in the case of modulo p.
The p-adic expanded power polynomial is depicted in Equation (2).

α =an pn + an+1 pn+1 + an+2 pn+2 + . . . (2)

It is utilized to represent α. Specifically, the p-adic integer is chosen in the PSBF,
with n set to 0. Consequently, each coefficient is proposed to form a representation of its
corresponding coefficient, as illustrated in Equation (3).

α =anan+1 . . . an−2an−1.a0a1a2 . . . (3)

Sensors 2023, 23, 7775 5 of 14

where the point between the coefficients an−1 and a0 is referred to as the p-adic point, which
exclusively represents the symbol for the n value, while ai is denoted as the p-adic number.

2. Coefficient extraction operation. Taking the example of 3-adic, the p-adic integer
representation is obtained. Let an integer e = 11 be given, and the 3-adic expanded
form of the number e is calculated using Equation (2), where n = 0. The process
involves three steps:

step 1 α≡a0(mod 30)→ a0 = 2;
step 2 α≡a1(mod 31)→ a1 = 0;
and step 3 α≡a2(mod 32)→ a2 = 1.
After completing these steps, the result is 11 = 2×30 + 0×31 + 1×32, yielding the 3-adic

number α as 0.201.

3. Calculation of the probability of false positives. The PSBF involves determining the
depth d and prime number p of the p-adic expansion. The number of slices from layer
1 to layer d is represented by p, p2, p3, . . ., pd. The probability of a false positive for a
single number Pf is calculated using Equation (4).

Pf =
d

∏
i=1

1
pi (4)

while the probability that the number does not have a false positive Pt is denoted by
Equation (5).

Pt = 1−
d

∏
i=1

1
pi (5)

Furthermore, the probability that n numbers do not have false positives Pn
t is denoted

by Equation (6).

Pn
t =

(
1−

d

∏
i=1

1
pi

)n

(6)

The calculation process for determining the probability P of false positives for n
numbers is illustrated in Equation (7).

P = 1−
(

1−
d

∏
i=1

1
pi

)n

(7)

Hence, the likelihood of encountering false positives in a bloom filter is inversely
related to the magnitude of the expanded prime number p and depth d while being directly
proportional to the number n of stored elements.

4. PSBF operation. During the initialization stage, the algorithm “InitBloom” is executed
to generate a bt bloom filter. As depicted in Algorithm 1, a “tree” array is initialized.
Each data element comprises two attributes, namely “Id” and “Index”, where “Id”
represents the index and “Index” denotes the array of its own structure.

Algorithm 1 InitBloom

Input: none
Output: bt
1.function InitBloom
2. bt⇐create an empty array tree;
3. return bt
4.end function

In the stage of inserting data elements, an element must first undergo mapping using a
string hash function. The hash function employed in this study is BKDRHash [29], which is

Sensors 2023, 23, 7775 6 of 14

capable of transforming any string into an integer. The algorithm used for this conversion
is Algorithm 2.

Algorithm 2 BKDRHash

Input: str
Output: hashCode
1.function BKDRHash (str)
2. seed⇐131;
3. hash⇐0;
4. for i⇐0 to len(str) - 1 do
5. hash⇐(hash×seed) + unit64(str[i]);
6. end for
7. return hashCode&0x7FFFFFFF
8.end function

Algorithm 3 delineates the sequential procedures entailed in the conversion of integers
to p-adic integers. The process commences with the establishment of an empty string
“new_num_str”, designated for the storage of the converted outcome. Furthermore, the
variables “reminder” and “reminder_string” are introduced to accommodate the retention
of the residual value of the present bit and its corresponding string representation, cor-
respondingly. Subsequently, the loop should be executed until the input integer “num”
reaches 0, signifying the termination of the loop. Within each iteration, the remainder of
the expanded prime number p divided by “num” should be obtained to determine the
current bit’s remainder. It is imperative to ascertain whether the remainder falls within the
range of 10 to 75. If it does, the corresponding character representation in the predefined
mapping table “tenToAny” should be identified. Conversely, if the remainder does not fall
within this range, it should be converted into a string representation. The resulting current
bit string, “remainder_string”, should then be appended to the end of “new_num_str”. The
prime number n is used to divide “num”, resulting in an updated value of “num”. Upon
completion of the loop, the converted string representation of a p-adic integer is stored in
“new_num_str” and returned.

Algorithm 3 DecimalToAny

Input: num, p
Output: new_num_str
1.function DecimalToAny(num,p)
2. initialize variables new_num_str, remainder, remainder_string;
3. while num 6=0 do
4. remainder⇐ num mod p;
5. if remainder > 9 and remainder < 76 then
6. remainder_string⇐tenToAny[remainder];
7. else
8. remainder_string⇐str(remainder);
9. end if
10. new_num_str⇐ tetany + remainder_string;
11. num⇐num/p;
12. end while
13. return new_num_str
14. end function

PSBF element inserted. Let elements e1 = 27, e2 = 28, e3 = 29, and e4 = 30, then Algorithm
3 is executed to obtain their respective 3-adic integers: 0.0001; 0.1001; 0.2001; and 0.0101. The
specific steps for inserting these elements into the bloom filter are illustrated in Figure 3.

Sensors 2023, 23, 7775 7 of 14

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

3. while num ≠ 0 do

4. remainder ⇐ num mod p;
5. if remainder > 9 and remainder < 76 then
6. remainder_string ⇐ tenToAny[remainder];
7. else
8. remainder_string ⇐ str(remainder);
9. end if
10. new_num_str ⇐ tetany + remainder_string;

11. num ⇐ num/p;
12. end while
13. return new_num_str
14. end function

PSBF element inserted. Let elements 1e = 27, 2e = 28, 3e = 29, and 4e = 30, then
Algorithm 3 is executed to obtain their respective 3-adic integers: 0.0001; 0.1001; 0.2001;
and 0.0101. The specific steps for inserting these elements into the bloom filter are
illustrated in Figure 3.

0

1

0

0

0

1

0

0

0

1

0

1

0

1

0

0

0 0

1 1

0 0

1 2

1e 2e 3e 4e

0

1

0

0

0 0

1 1

0 0

1 2

1

0

1

Insert Insert Insert Insert
Figure 3. Storage status of the PSBF.

The initial digit of the p-adic integer of the element 1e is determined to be 0. In the
event that no slice with an index of 0 is present in the first layer, a new slice will be
appended and assigned an index of 0. Similarly, the second digit is also determined to be
0. If no slice with an index of 0 is found in the second layer, a new slice will be added, and
the corresponding index will be assigned as 0. The third digit is likewise determined to
be 0. In the event that no slice with an index of 0 is found in the third layer, a new slice
will be appended and assigned an index of 0. Finally, the fourth digit is determined to be
1. If a slice with an index of 1 is not located in the fourth layer, a new slice will be
appended, and the corresponding index will be assigned a value of 1. The verification
process confirms the input of all bits, thereby completing the storage of the element.
Similarly, the storage of elements 2e and 3e can be accomplished. For the p-adic integer
of the element 4e , the initial position is 0. In the first layer, a slice with an index of 0 is
identified, prompting a transition to the subsequent layer of the slice. In the second
position, where the index is 1, no slice is present in the second layer of the slice.
Consequently, a new slice will be appended, and the corresponding index will be
assigned as 1. Similarly, in the third position, where the index is 0, no slice is detected in
the third layer. As a result, a new slice will be appended, and the corresponding index
will be assigned as 0. In the fourth position, where the index is 1, no slice is found in the
fourth layer. Therefore, a new slice will be appended, and the corresponding index will

Figure 3. Storage status of the PSBF.

The initial digit of the p-adic integer of the element e1 is determined to be 0. In the event
that no slice with an index of 0 is present in the first layer, a new slice will be appended
and assigned an index of 0. Similarly, the second digit is also determined to be 0. If no
slice with an index of 0 is found in the second layer, a new slice will be added, and the
corresponding index will be assigned as 0. The third digit is likewise determined to be 0.
In the event that no slice with an index of 0 is found in the third layer, a new slice will be
appended and assigned an index of 0. Finally, the fourth digit is determined to be 1. If a
slice with an index of 1 is not located in the fourth layer, a new slice will be appended, and
the corresponding index will be assigned a value of 1. The verification process confirms the
input of all bits, thereby completing the storage of the element. Similarly, the storage of
elements e2 and e3 can be accomplished. For the p-adic integer of the elemente4, the initial
position is 0. In the first layer, a slice with an index of 0 is identified, prompting a transition
to the subsequent layer of the slice. In the second position, where the index is 1, no slice is
present in the second layer of the slice. Consequently, a new slice will be appended, and
the corresponding index will be assigned as 1. Similarly, in the third position, where the
index is 0, no slice is detected in the third layer. As a result, a new slice will be appended,
and the corresponding index will be assigned as 0. In the fourth position, where the index
is 1, no slice is found in the fourth layer. Therefore, a new slice will be appended, and
the corresponding index will be assigned as 1. Verify and ensure that all bits have been
inputted, and finalize the p-adic integer storage of the elemente4. The precise methodology
is illustrated in Algorithm 4.

Algorithm 4 InsertElement

Input: e, bt
Output: newBt
1.function InsterElement(e, bt)
2. initialize variables path, flag, num, newBt;
3. for i⇐0 to len(e)—1 do
4. for h⇐0 to len(bt))—1 do
5. if string(e[i]) == bt[h].Id then
6. flag⇐true;
7. if i =- 0 then
8. path⇐strconv.Itoa(h) + “.Index”
9. else
10. path⇐path + “.”+ strconv.Itoa(h) + “.Index”;
11. end if
12. bt⇐bt[h].Index;
13. break
14. else
15. flag⇐false;
16. end if

Sensors 2023, 23, 7775 8 of 14

Algorithm 4 Cont.

17. end for
18. if !flag then
19. if i == 0 then
20. create a new node a of the tree, add a to the end of newBt, record path, and
bt⇐newBt [len(newBt)-1].Index;
21. else
22. create a new node a of the tree, add a to the end of bt, update newBt, and bt⇐bt
[len(bt)-1].Index;
23. if num == 0 then
24. path⇐path + “.”+ strconv.Itoa(v) + “.Index”;
25. num++;
26. else
27. path⇐ path + “.0.Index”;
28. end if
29. end if
30. end if
31. end for
32. return s
33.end function

The “SearchElement” algorithm, which is a component of the element query algorithm,
bears a resemblance to the “InsertElement” algorithm. It employs the same hash function
utilized in the stored procedure to convert the queried element into an integer. The selection
of the expanded prime number p remains consistent with the one used during the element
storage process, and the integer resulting from the element mapping is expanded to derive
the p-adic integer of the element. The detailed implementation of this process is presented
in Algorithm 5.

Algorithm 5 SearchElement

Input: e, bt
Output: true or false
1.function SearchElement(e, bt)
2. for i⇐0 to len(e)—1 do
3. if len(bt) < 1 then
4. return false
5. end if
6. found⇐ false;
7. for h⇐0 to len(bt)—1 do
8. if string(e[i]) = bt[h].Id then
9. found⇐true;
10. bt⇐ bt[h].Index;
11. break
12. end if
13. end for
14. if !found then
15. return false
16. end if
17. end for
18. return true
19.end function

4. Results

All experiments conducted in this study were performed within a consistent environ-
ment, utilizing the following main hardware configuration: Intel(R) Core(TM) i5-8250 U
CPU @ 1.60 GHz, 1.80 GHz, and 12 GB RAM. The operating system employed wazs Win-

Sensors 2023, 23, 7775 9 of 14

dows 11 64-bit, and the programming language utilized was Golang 1.18.4. In order to
achieve optimal performance of the PSBF, various prime numbers p and hash functions
were chosen for experimentation in this study.

4.1. Selection of the Optimal Prime Number p

For this study, the hash function’s output result length was set at 32, thus limiting
the prime number p within the range of 2 to 31. The experiment employed a comparative
analysis of insertion and query operations to determine the minimum prime number p
that yields the optimal performance in a PSBF. Figure 4a,b demonstrates the impact of
selecting prime number p on the insertion and query capabilities of the bloom filter when
inserting 1000 to 20,000 data elements. As the number of elements increases, both insertion
and query times gradually rise, albeit with slight variations in the performance observed
across different prime numbers p. In the context of insertion and query operations, the
prime number p with a value of 31 demonstrated optimal performance and exhibited a
brief execution time. Conversely, prime numbers such as 2, 3, 5, 7, etc., tended to exhibit
a prolonged execution time, particularly when the number of elements was substantial,
thereby resulting in a more pronounced degradation in performance. Consequently, this
study advocates for the utilization of the expanded prime number p = 31 within the bloom
filter as it yields superior performance and efficiency.

Sensors 2023, 23, 7775 10 of 15

utilization of the expanded prime number p = 31 within the bloom filter as it yields
superior performance and efficiency.

Figure 4. Time comparison of selecting different expansion prime numbers p from 2 to 31 intervals.
(a) Insertion operation; (b) query operation.

4.2. Selection of a Suitable Hash Function
The determination of the most suitable number of hash functions for conventional

bloom filters is contingent upon the quantity of inserted elements and the dimensions of
the bit array employed by said filters [30]. In contrast, the hash function employed by the
PSBF diverges from that of traditional bloom filters. Specifically, the hash function in the
PSBF transforms the elements to be manipulated into integers of fixed length. As a result
of the incorporation of p-adic numbers in the PSBF, it becomes solely necessary to
decompose the fixed-length integers into p-adic numbers based on the optimal prime
number p. The PSBF does not internally utilize a hash function. In essence, the utilization
of the PSBF does not necessitate the consideration of the number of elements or the
dimensions of the bit array within the bloom filter. The selection of a suitable hash
function for the PSBF pertains to the efficiency of operations performed on elements that
are mapped to fixed-length sequences of integers.

The experiment involved the insertion and query of 1000–20,000 identical data
elements using eight string hash functions, namely BKDRHash [29], APHash [31],
DJBHash [32], JSHash [33], RSHash [34], SDBMHash [35], PJWHash [36], and ELFHash
[37]. The results of these experiments are illustrated in Figure 5a,b, respectively.
BKDRHash, APHash, JSHash, SDBMHash, and PJWHash exhibited favorable
performance in terms of insertion and query time, displaying relatively consistent
performance. However, DJBHash was characterized by a prolonged insertion and query
time, rendering it unsuitable for large-scale data insertion and query operations in the
PSBF. RSHash demonstrated an even higher query time, with a significant decline in
performance when dealing with substantial data volumes. Although ELFHash exhibited
relatively high insertion and query times, its growth rate was comparatively gradual.

Figure 4. Time comparison of selecting different expansion prime numbers p from 2 to 31 intervals.
(a) Insertion operation; (b) query operation.

4.2. Selection of a Suitable Hash Function

The determination of the most suitable number of hash functions for conventional
bloom filters is contingent upon the quantity of inserted elements and the dimensions of the
bit array employed by said filters [30]. In contrast, the hash function employed by the PSBF
diverges from that of traditional bloom filters. Specifically, the hash function in the PSBF
transforms the elements to be manipulated into integers of fixed length. As a result of the
incorporation of p-adic numbers in the PSBF, it becomes solely necessary to decompose the
fixed-length integers into p-adic numbers based on the optimal prime number p. The PSBF
does not internally utilize a hash function. In essence, the utilization of the PSBF does not
necessitate the consideration of the number of elements or the dimensions of the bit array
within the bloom filter. The selection of a suitable hash function for the PSBF pertains to the

Sensors 2023, 23, 7775 10 of 14

efficiency of operations performed on elements that are mapped to fixed-length sequences
of integers.

The experiment involved the insertion and query of 1000–20,000 identical data el-
ements using eight string hash functions, namely BKDRHash [29], APHash [31], DJB-
Hash [32], JSHash [33], RSHash [34], SDBMHash [35], PJWHash [36], and ELFHash [37].
The results of these experiments are illustrated in Figure 5a and 5b, respectively. BKDRHash,
APHash, JSHash, SDBMHash, and PJWHash exhibited favorable performance in terms of
insertion and query time, displaying relatively consistent performance. However, DJBHash
was characterized by a prolonged insertion and query time, rendering it unsuitable for
large-scale data insertion and query operations in the PSBF. RSHash demonstrated an even
higher query time, with a significant decline in performance when dealing with substantial
data volumes. Although ELFHash exhibited relatively high insertion and query times, its
growth rate was comparatively gradual.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15

Figure 5. Time comparison of eight various hash functions. (a) Insertion operation; (b) query
operation.

5. Discussion
It is worth noting that the conventional bloom filter exhibits a false positive

probability during member queries, wherein an element that is not present in the set is
erroneously identified as being part of the set. Furthermore, the size of the bloom filter
necessitates pre-definition based on the desired probability of false positives and the
number of elements to be stored. Estimating the accurate size of the stored elements in a
system poses a challenge. When the number of elements stored in a bloom filter exceeds a
specific threshold, the occurrence of false positives will escalate. The utilization of
fixed-size bloom filters will inevitably result in significant storage wastage or a high rate
of false positives. To ascertain the superiority of the PSBF, this study undertakes a
comparative analysis of insertion time, query time, space utilization rate, and
misjudgment count in relation to standard bloom filters, scalable bloom filters [17], and
dynamic bloom filters [18].

5.1. Analysis of Insertion and Query Performance
Regarding the insertion operation, as depicted in Figure 6a, the insertion time of the

four distinct filters exhibited a gradual increase as the number of elements grew.
Nonetheless, this increase remained relatively low, with the time being consistently
below 0.14 ms. As the data elements increased, both the PSBF and expandable bloom
filters demonstrated more consistent performance, while standard bloom filters and
dynamic bloom filters exhibited comparatively higher insertion times. Furthermore, the
insertion performance of the system exhibited significant fluctuations with an increase in
the number of inserted elements. Regarding query operations, as depicted in Figure 6b,
the query time for the four bloom filters gradually increased as the number of elements
grew. Dynamic bloom filters demonstrated relatively high query times, while the PSBF
and scalable bloom filters exhibited relatively stable query performance. However, the
PSBF outperformed the other three bloom filters in terms of both query performance and
time.

Figure 5. Time comparison of eight various hash functions. (a) Insertion operation; (b) query operation.

5. Discussion

It is worth noting that the conventional bloom filter exhibits a false positive probability
during member queries, wherein an element that is not present in the set is erroneously
identified as being part of the set. Furthermore, the size of the bloom filter necessitates pre-
definition based on the desired probability of false positives and the number of elements to
be stored. Estimating the accurate size of the stored elements in a system poses a challenge.
When the number of elements stored in a bloom filter exceeds a specific threshold, the
occurrence of false positives will escalate. The utilization of fixed-size bloom filters will
inevitably result in significant storage wastage or a high rate of false positives. To ascertain
the superiority of the PSBF, this study undertakes a comparative analysis of insertion time,
query time, space utilization rate, and misjudgment count in relation to standard bloom
filters, scalable bloom filters [17], and dynamic bloom filters [18].

5.1. Analysis of Insertion and Query Performance

Regarding the insertion operation, as depicted in Figure 6a, the insertion time of
the four distinct filters exhibited a gradual increase as the number of elements grew.
Nonetheless, this increase remained relatively low, with the time being consistently below
0.14 ms. As the data elements increased, both the PSBF and expandable bloom filters
demonstrated more consistent performance, while standard bloom filters and dynamic

Sensors 2023, 23, 7775 11 of 14

bloom filters exhibited comparatively higher insertion times. Furthermore, the insertion
performance of the system exhibited significant fluctuations with an increase in the number
of inserted elements. Regarding query operations, as depicted in Figure 6b, the query time
for the four bloom filters gradually increased as the number of elements grew. Dynamic
bloom filters demonstrated relatively high query times, while the PSBF and scalable bloom
filters exhibited relatively stable query performance. However, the PSBF outperformed the
other three bloom filters in terms of both query performance and time.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 15

Figure 6. Time comparison of the different bloom filters. (a) Insertion operation; (b) query
operation.

5.2. Analysis of Space Utilization and Misjudgment Number
In relation to space utilization, as depicted in Figure 7, the space utilization of both

the standard bloom filter and the dynamic bloom filter progressively rose with the
augmentation of inserted elements. Nevertheless, upon reaching the predetermined
value of inserted elements, the dynamic bloom filter, in order to maintain a false positive
probability lower than the anticipated threshold, generated a bloom filter with greater
space and allocated a substantial amount of free space, consequently leading to a sudden
decrease in space utilization. The space utilization rate of the expandable bloom filter will
exhibit a gradual decline as the number of inserted elements increases. Once the space
utilization rate surpasses a specific threshold, a larger bloom filter will be generated and
stored at the forefront of the bloom filter set, serving as an active bloom filter [4].
Consequently, this leads to increased available space for expandable bloom filters and a
reduction in space utilization.

Figure 7. Storage space usage rate of four various bloom filters.

St
or

ag
e

sp
ac

e
us

ag
e

ra
te

 (%
)

Figure 6. Time comparison of the different bloom filters. (a) Insertion operation; (b) query operation.

5.2. Analysis of Space Utilization and Misjudgment Number

In relation to space utilization, as depicted in Figure 7, the space utilization of both
the standard bloom filter and the dynamic bloom filter progressively rose with the aug-
mentation of inserted elements. Nevertheless, upon reaching the predetermined value of
inserted elements, the dynamic bloom filter, in order to maintain a false positive probability
lower than the anticipated threshold, generated a bloom filter with greater space and
allocated a substantial amount of free space, consequently leading to a sudden decrease in
space utilization. The space utilization rate of the expandable bloom filter will exhibit a
gradual decline as the number of inserted elements increases. Once the space utilization
rate surpasses a specific threshold, a larger bloom filter will be generated and stored at
the forefront of the bloom filter set, serving as an active bloom filter [4]. Consequently,
this leads to increased available space for expandable bloom filters and a reduction in
space utilization.

This study employed the PSBF method to initially convert the target element into an
integer, followed by the selection of an expanded prime number p to convert the integer
into a p-adic integer further. The depth d of the resulting bloom filter was determined
based on the number of bits in the converted p-adic integer. The storage structure of the
PSBF was transformed into a tree, deviating from the linear storage structure employed in
current technologies. This modification enhances the efficiency of element insertion and
query operations. Furthermore, the PSBF employs a selection process to determine the
expanded prime number p based on the given integer, which is then utilized to convert
the integer into a p-adic integer. Subsequently, the depth d of the bloom filter is determined
based on the number of bits in the converted p-adic integer. This approach allows the PSBF
to circumvent the need to consider the size of the bloom filter and the stored data, enabling
automatic expansion of capacity and storage of any number of elements based on the
storage elements. Consequently, the PSBF effectively utilizes the available storage space.

Sensors 2023, 23, 7775 12 of 14

Sensors 2023, 23, 7775 12 of 15

Figure 6. Time comparison of the different bloom filters. (a) Insertion operation; (b) query

operation.

5.2. Analysis of Space Utilization and Misjudgment Number

In relation to space utilization, as depicted in Figure 7, the space utilization of both

the standard bloom filter and the dynamic bloom filter progressively rose with the

augmentation of inserted elements. Nevertheless, upon reaching the predetermined

value of inserted elements, the dynamic bloom filter, in order to maintain a false positive

probability lower than the anticipated threshold, generated a bloom filter with greater

space and allocated a substantial amount of free space, consequently leading to a sudden

decrease in space utilization. The space utilization rate of the expandable bloom filter will

exhibit a gradual decline as the number of inserted elements increases. Once the space

utilization rate surpasses a specific threshold, a larger bloom filter will be generated and

stored at the forefront of the bloom filter set, serving as an active bloom filter [4].

Consequently, this leads to increased available space for expandable bloom filters and a

reduction in space utilization.

Figure 7. Storage space usage rate of four various bloom filters. Figure 7. Storage space usage rate of four various bloom filters.

Based on the findings presented in Figure 8, it is evident that the standard bloom
filter lacks the capability of automatic expansion. Consequently, when the space utilization
rate is high, the likelihood of false positives in the bloom filter increases significantly.
Therefore, in order to maintain a lower-than-anticipated probability of false positives, the
standard bloom filter must compromise its space utilization. The dynamic bloom filter
consistently recorded zero misjudgments, whereas the expandable bloom filter exhibited
a gradual linear increase in misjudgments. The PSBF algorithm selected an appropriate
expanded prime number p by considering the integer obtained from the hash function,
thereby minimizing false positives. When the p-adic integer depth of all data conversions
was equal, it became possible to attain a probability of zero false positives.

Sensors 2023, 23, 7775 13 of 15

This study employed the PSBF method to initially convert the target element into an

integer, followed by the selection of an expanded prime number p to convert the integer

into a p-adic integer further. The depth d of the resulting bloom filter was determined

based on the number of bits in the converted p-adic integer. The storage structure of the

PSBF was transformed into a tree, deviating from the linear storage structure employed

in current technologies. This modification enhances the efficiency of element insertion

and query operations. Furthermore, the PSBF employs a selection process to determine

the expanded prime number p based on the given integer, which is then utilized to

convert the integer into a p-adic integer. Subsequently, the depth d of the bloom filter is

determined based on the number of bits in the converted p-adic integer. This approach

allows the PSBF to circumvent the need to consider the size of the bloom filter and the

stored data, enabling automatic expansion of capacity and storage of any number of

elements based on the storage elements. Consequently, the PSBF effectively utilizes the

available storage space.

Based on the findings presented in Figure 8, it is evident that the standard bloom

filter lacks the capability of automatic expansion. Consequently, when the space

utilization rate is high, the likelihood of false positives in the bloom filter increases

significantly. Therefore, in order to maintain a lower-than-anticipated probability of false

positives, the standard bloom filter must compromise its space utilization. The dynamic

bloom filter consistently recorded zero misjudgments, whereas the expandable bloom

filter exhibited a gradual linear increase in misjudgments. The PSBF algorithm selected

an appropriate expanded prime number p by considering the integer obtained from the

hash function, thereby minimizing false positives. When the p-adic integer depth of all

data conversions was equal, it became possible to attain a probability of zero false

positives.

Figure 8. Number of misjudgments of four different bloom filters.

As previously stated, the PSBF demonstrates clear advantages in terms of query

time, space utilization, and number of misjudgments. It consistently exhibited shorter

query times, better space utilization, and fewer misjudgments when compared to the

scalable bloom filter, regardless of the size of the element set or the number of elements.

Although the insertion operation time of the PSBF was slightly higher than that of the

scalable bloom filter, in practical application scenarios, the insertion operation time of the

bloom filter was typically significantly smaller than the query operation time.

Consequently, the overall performance of the PSBF surpasses that of the scalable bloom

filter.

Figure 8. Number of misjudgments of four different bloom filters.

As previously stated, the PSBF demonstrates clear advantages in terms of query time,
space utilization, and number of misjudgments. It consistently exhibited shorter query
times, better space utilization, and fewer misjudgments when compared to the scalable
bloom filter, regardless of the size of the element set or the number of elements. Although
the insertion operation time of the PSBF was slightly higher than that of the scalable bloom
filter, in practical application scenarios, the insertion operation time of the bloom filter was
typically significantly smaller than the query operation time. Consequently, the overall
performance of the PSBF surpasses that of the scalable bloom filter.

Sensors 2023, 23, 7775 13 of 14

6. Conclusions

To address the limitations of capacity in the existing bloom filter, it becomes unfeasible
to reprocess extensive data for filtration. Moreover, when the data to be filtered approaches
the upper limit of capacity during the reprocessing process, the false positive rate signifi-
cantly rises, leading to a substantial decline in the efficacy of data filtration. Consequently,
this gives rise to technical challenges that diminish the accuracy of the filtering process.
This study introduced a bloom filter with an automatic expansion tree structure, utilizing
the algebraic and topological properties of p-adic integers. The proposed approach offers
improved efficiency in terms of element insertion and query operations. Moreover, it
eliminates the need for parameter setting to accommodate capacity expansion, thereby
mitigating space wastage and reducing the likelihood of false positives.

Author Contributions: Conceptualization, W.Y.; methodology, W.Y. and J.J.; software, C.W., Q.X.
and J.J.; validation, Y.Z.; formal analysis, W.Y. and J.J.; investigation, W.Y.; resources, W.Y.; data
curation, C.W.; writing—original draft preparation, W.Y. and C.W.; writing—review and editing,
W.Y.; visualization, Y.Z. and J.J.; supervision, W.Y.; project administration, W.Y.; funding acquisition,
W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: The study was financially supported by the National Key Research and Development
Program of China (Grant No. 2022YFD1600601); the Natural Science Foundation of Jiangxi Province
(Grant No. 20212BAB202015); Jiangxi Provincial Special Program 03 and 5G Projects (Grant No.
20232ABC03A18); and the 2023 Jiangxi Provincial Special Fund Projects for Graduate Student Innova-
tion (Grant No. YC2023-S413).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data from this study can be obtained upon request from the first
or corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, A.; Garg, S.; Kaur, K.; Batra, S.; Kumar, N.; Choo, K.-K.R. Fuzzy-folded bloom filter-as-a-service for big data storage in the

cloud. IEEE Trans. Ind. Inform. 2018, 15, 2338–2348. [CrossRef]
2. Singh, A.; Garg, S.; Batra, S.; Kumar, N.; Rodrigues, J.J. Bloom filter based optimization scheme for massive data handling in IoT

environment. Future Gener. Comput. Syst. 2018, 82, 440–449. [CrossRef]
3. Yang, C.; Tao, X.; Zhao, F.; Wang, Y. Secure data transfer and deletion from counting bloom filter in cloud computing. Chin. J.

Electron. 2020, 29, 273–280. [CrossRef]
4. Luo, L.; Guo, D.; Ma, R.T.; Rottenstreich, O.; Luo, X. Optimizing bloom filter: Challenges, solutions, and comparisons. IEEE

Commun. Surv. Tutor. 2018, 21, 1912–1949. [CrossRef]
5. Hou, R.; Zhang, L.; Wu, T.; Mao, T.; Luo, J. Bloom-filter-based request node collaboration caching for named data networking.

Clust. Comput. 2019, 22, 6681–6692. [CrossRef]
6. Ni, J.; Zhang, K.; Vasilakos, A.V. Security and privacy for mobile edge caching: Challenges and solutions. IEEE Wirel. Commun.

2020, 28, 77–83. [CrossRef]
7. He, P.; Xue, K.; Yang, J.; Xia, Q.; Liu, J.; Wei, D.S. FASE: Fine-grained accountable and space-efficient access control for multimedia

content with in-network caching. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4462–4475. [CrossRef]
8. Cohen, I.; Einziger, G.; Scalosub, G. False negative awareness in indicator-based caching systems. IEEE/ACM Trans. Netw. 2022,

30, 2674–2687. [CrossRef]
9. Zhang, L.; Bai, Z.; Cui, B.; Wu, Z. Search mechanism for data contents based on bloom filter and tree hybrid structure in system

wide information management. IET Commun. 2023, 17, 1262–1273. [CrossRef]
10. Zeng, Z.; Xiao, R.; Lin, X.; Luo, T.; Lin, J. Double locality sensitive hashing Bloom filter for high-dimensional streaming anomaly

detection. Inf. Process. Manag. 2023, 60, 103306. [CrossRef]
11. Liu, Y.; Zhang, L.Y.; Li, J. Fast detection of maximal exact matches via fixed sampling of query K-mers and Bloom filtering of

index K-mers. Bioinformatics 2019, 35, 4560–4567. [CrossRef]
12. Patgiri, R.; Nayak, S.; Borgohain, S.K. Passdb: A password database with strict privacy protocol using 3d bloom filter. Inf. Sci.

2020, 539, 157–176. [CrossRef]
13. Byun, H.; Lim, H. Learned FBF: Learning-Based Functional Bloom Filter for Key–Value Storage. IEEE Trans. Comput. 2021, 71,

1928–1938. [CrossRef]

https://doi.org/10.1109/TII.2018.2850053
https://doi.org/10.1016/j.future.2017.12.016
https://doi.org/10.1049/cje.2020.02.015
https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1007/s10586-018-2403-9
https://doi.org/10.1109/MWC.001.2000329
https://doi.org/10.1109/TNSM.2021.3096428
https://doi.org/10.1109/TNET.2022.3177282
https://doi.org/10.1049/cmu2.12621
https://doi.org/10.1016/j.ipm.2023.103306
https://doi.org/10.1093/bioinformatics/btz273
https://doi.org/10.1016/j.ins.2020.05.135
https://doi.org/10.1109/TC.2021.3112079

Sensors 2023, 23, 7775 14 of 14

14. Lemane, T.; Medvedev, P.; Chikhi, R.; Peterlongo, P. Kmtricks: Efficient and flexible construction of bloom filters for large
sequencing data collections. Bioinform. Adv. 2022, 2, vbac029. [CrossRef]

15. Liang, Y.; Ma, J.; Miao, Y.; Kuang, D.; Meng, X.; Deng, R.H. Privacy-Preserving Bloom Filter-Based Keyword Search over Large
Encrypted Cloud Data. IEEE Trans. Comput. 2023. [CrossRef]

16. Yi, W.; Gerasimov, I.; Kuzmin, S.; He, H. A stream processing approach to distance measurement of integers in p-adic metric space.
In Proceedings of the 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), Saint Petersburg,
Russia, 24–26 May 2017; pp. 617–620.

17. Almeida, P.S.; Baquero, C.; Preguiça, N.; Hutchison, D. Scalable bloom filters. Inf. Process. Lett. 2007, 101, 255–261. [CrossRef]
18. Guo, D.; Wu, J.; Chen, H.; Yuan, Y.; Luo, X. The dynamic bloom filters. IEEE Trans. Knowl. Data Eng. 2009, 22, 120–133. [CrossRef]
19. Patgiri, R.; Borgohain, S.K.; Bhattacharjee, A. rFilter: A scalable and space-efficient membership filter. In Proceedings of the

2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 22–23 February 2018;
pp. 478–485.

20. Kleyko, D.; Rahimi, A.; Gayler, R.W.; Osipov, E. Autoscaling bloom filter: Controlling trade-off between true and false positives.
Neural Comput. Appl. 2020, 32, 3675–3684. [CrossRef]

21. Kim, M.-K.; Kim, S.-R. Modifications using Circular Shift for a Better Bloom Filter. In Proceedings of the International Conference
on Research in Adaptive and Convergent Systems, Gwangju, Korea, 13–16 October 2020; pp. 149–154.

22. Rottenstreich, O.; Reviriego, P.; Porat, E.; Muthukrishnan, S. Constructions and applications for accurate counting of the bloom
filter false positive free zone. In Proceedings of the Symposium on SDN Research, San Jose, CA, USA, 3 March 2020; pp. 135–145.

23. Nayak, S.; Patgiri, R. robustBF: A high accuracy and memory efficient 2d bloom filter. arXiv 2021, arXiv:2106.04365.
24. Patgiri, R.; Nayak, S.; Borgohain, S.K. rDBF: A r-dimensional bloom filter for massive scale membership query. J. Netw. Comput.

Appl. 2019, 136, 100–113. [CrossRef]
25. Dayan, N.; Bercea, I.; Reviriego, P.; Pagh, R. InfiniFilter: Expanding Filters to Infinity and Beyond. Proc. ACM Manag. Data 2023,

1, 1–27. [CrossRef]
26. Bender, M.A.; Farach-Colton, M.; Johnson, R.; Kuszmaul, B.C.; Medjedovic, D.; Montes, P.; Shetty, P.; Spillane, R.P.; Zadok, E.

Don’t thrash: How to cache your hash on flash. In Proceedings of the 3rd Workshop on Hot Topics in Storage and File Systems
(HotStorage 11), Portland, OR, USA, 14 June 2011.

27. Cohen, S.; Matias, Y. Spectral Bloom Filters. In Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, San Diego, CA, USA, 10–12 June 2003; pp. 241–252.

28. Kiss, S.Z.; Hosszu, É.; Tapolcai, J.; Rónyai, L.; Rottenstreich, O. Bloom filter with a false positive free zone. IEEE Trans. Netw. Serv.
Manag. 2021, 2, 2334–2349. [CrossRef]

29. Zhu, X.; Zhang, Q.; Cheng, T.; Liu, L.; Zhou, W.; He, J. DLB: Deep Learning Based Load Balancing. In Proceedings of the 2021
IEEE 14th International Conference on Cloud Computing (CLOUD), Chicago, IL, USA, 5–10 September 2021; pp. 648–653.

30. Kim, K.; Jeong, Y.; Lee, Y.; Lee, S. Analysis of counting bloom filters used for count thresholding. Electronics 2019, 8, 779. [CrossRef]
31. Saxena, M.; Saurabh, P.; Verma, B. A new hashing scheme to overcome the problem of overloading of articles in Usenet. In

Proceedings of the Advances in Computer Science, Engineering & Applications: Proceedings of the Second International
Conference on Computer Science, Engineering and Applications (ICCSEA 2012), New Delhi, India, 25–27 May 2012; Volume 1,
pp. 967–975.

32. Bernstein, D.J. DJB Hash. Available online: http://www.partow.net/programming/hashfunctions/#DJBHashFunction (accessed
on 7 August 2023).

33. Wu, W.-Q.; Xue, M.-T.; Xing, Q.-J.; Yu, F. High-Parallelism Hash-Merge Architecture for Accelerating Join Operation on FPGA.
IEEE Trans. Circuits Syst. II: Express Briefs 2021, 68, 2650–2654. [CrossRef]

34. Shi, Y.; Huang, S.; Lou, J. A characteristic standardization method for circuit input vectors based on Hash algorithm. J. Ambient.
Intell. Humaniz. Comput. 2022, 13, 1505–1513. [CrossRef]

35. Jain, S.; Pandey, M. Hash table based word searching algorithm. Int. J. Comput. Sci. Inf. Technol. 2012, 3, 4385–4388.
36. Lin, Y.; Huang, Z.; Li, Y. Learning hash index based on a shallow autoencoder. Appl. Intell. 2023, 53, 14999–15010. [CrossRef]
37. Trimoska, M.; Ionica, S.; Dequen, G. Time-memory analysis of parallel collision search algorithms. IACR Trans. Cryptogr. Hardw.

Embed. Syst. 2021, 254–274. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/bioadv/vbac029
https://doi.org/10.1109/TC.2023.3285103
https://doi.org/10.1016/j.ipl.2006.10.007
https://doi.org/10.1109/TKDE.2009.57
https://doi.org/10.1007/s00521-019-04397-1
https://doi.org/10.1016/j.jnca.2019.03.004
https://doi.org/10.1145/3589285
https://doi.org/10.1109/TNSM.2021.3059075
https://doi.org/10.3390/electronics8070779
http://www.partow.net/programming/hashfunctions/#DJBHashFunction
https://doi.org/10.1109/TCSII.2021.3059406
https://doi.org/10.1007/s12652-020-02873-4
https://doi.org/10.1007/s10489-022-04274-w
https://doi.org/10.46586/tches.v2021.i2.254-274

	Introduction
	Related Works
	Methods
	Results
	Selection of the Optimal Prime Number p
	Selection of a Suitable Hash Function

	Discussion
	Analysis of Insertion and Query Performance
	Analysis of Space Utilization and Misjudgment Number

	Conclusions
	References

