
Citation: Tseng, Y.-H.; Wen, C.-Y.

Hybrid Learning Models for

IMU-Based HAR with Feature

Analysis and Data Correction.

Sensors 2023, 23, 7802. https://

doi.org/10.3390/s23187802

Academic Editors: Maysam Abbod,

Bruce Denby and Michael E. Hahn

Received: 30 May 2023

Revised: 26 July 2023

Accepted: 6 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Hybrid Learning Models for IMU-Based HAR with Feature
Analysis and Data Correction
Yu-Hsuan Tseng 1 and Chih-Yu Wen 2,3,4,*

1 Department of Computer Science and Engineering, National Chung Hsing University,
Taichung 40227, Taiwan; g110056067@mail.nchu.edu.tw

2 Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
3 Smart Sustainable New Agriculture Research Center (SMARTer), National Chung Hsing University,

Taichung 40227, Taiwan
4 Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University,

Taichung 40227, Taiwan
* Correspondence: cwen@dragon.nchu.edu.tw; Tel.: +886-04-2285-1549

Abstract: This paper proposes a novel approach to tackle the human activity recognition (HAR)
problem. Four classes of body movement datasets, namely stand-up, sit-down, run, and walk, are
applied to perform HAR. Instead of using vision-based solutions, we address the HAR challenge
by implementing a real-time HAR system architecture with a wearable inertial measurement unit
(IMU) sensor, which aims to achieve networked sensing and data sampling of human activity, data
pre-processing and feature analysis, data generation and correction, and activity classification using
hybrid learning models. Referring to the experimental results, the proposed system selects the pre-
trained eXtreme Gradient Boosting (XGBoost) model and the Convolutional Variational Autoencoder
(CVAE) model as the classifier and generator, respectively, with 96.03% classification accuracy.

Keywords: human activity recognition; variational autoencoder; generative adversarial networks

1. Introduction

In recent years, artificial intelligence and machine learning technologies have grad-
ually matured, and smart environments have flourished. In particular, human attitude
recognition (HAR) based on wireless sensor networks is widely used in the fields of smart
homes, medical applications, national security, driving activity recognition and smart
cars [1], elderly home monitoring and rehabilitation [2,3], and industrial tasks related to
human–robot interaction [4], which have significantly improved people’s quality of life.

HAR can identify and capture human body movements or posture through various
sensors. In early systems, the Microsoft Kinect camera was used to collect RGB, grayscale,
and depth images of the human body, which were fed as input data to perform image
recognition to complete gesture recognition and fall detection [5]. However, under the
fixed camera lens, RGB images can only work in well-lit spaces with a limited field of view
and may lead to privacy violations. Therefore, nowadays, the non-vision-based HAR is an
important research topic. Our concept is to wear various types of sensors on the human
body and analyze the movement and posture changes in the human body by measuring
the dynamic parameters of the limbs. Common devices include accelerometers, gyroscopes,
and infrared and ultrasonic sensors [6]. Among them, the inertial measurement unit
(IMU) sensor is chosen due to its high sampling rate, rapid detection of inertial parameters
(e.g., linear acceleration, angular acceleration, and quaternion of the limb), low power
consumption, and high precision [7]. It is widely used in the field of HAR to form a body
area network (BAN) [8] to identify the whole-body movement.

Since IMU signals are utilized to track body activity and gestures, not too much privacy
will be revealed, and users will not be limited by the activity scope when performing daily

Sensors 2023, 23, 7802. https://doi.org/10.3390/s23187802 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23187802
https://doi.org/10.3390/s23187802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6007-9361
https://doi.org/10.3390/s23187802
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23187802?type=check_update&version=1

Sensors 2023, 23, 7802 2 of 22

activities. However, the sensor measurements with wearable sensors deployed on the
body are subject to signal interference due to the changing positions and noise issues,
leading to severe measurement drift and resulting in poor accuracy. Therefore, Mahony [9]
proposes a non-linear complementary filter based on proportional–integral–derivative error
compensation control, which reduces the error by 99%, making it comparable to the result
of the Euler angles without using the filter. Moreover, Madgwick [10] uses the gradient
descent algorithm to derive the quaternion while minimizing the error. To compensate the
error caused by the complex motion noise, this work uses Madgwick Filter to obtain the
attitude quaternions via the accelerometer and the gyroscope integration, which are then
linearly fused to obtain the optimal attitude.

In general, the recognition of the body movement needs multiple sensor nodes to
track the dynamic parameters of the specific joint points. Considering the inconvenience
and the cost of the wearable devices, in this work, we propose a BAN system based on an
IMU sensor node, which is deployed on the subject’s waist. The IMU node consists of an
accelerometer, a gyroscope, and a magnetometer. Using the Madgwick filter, the noise and
measurement drift are reduced to capture the correct inertial signal. Then, based on the
Wi-Fi wireless technology, the data packet is transmitted to the database, which contains
the inertial signal information. Four classes of body movement datasets, namely stand-up,
sit-down, run, and walk, are applied to perform HAR.

In addition to using the time series of inertial signals as input features, we propose a
new method to convert the time series of inertial signals into images with varying image
sizes, as well as suppress the impact of the noise via feature extraction and feature selection.
Moreover, we generate a fake database using several types of generative models to increase
the amount of data and re-train the model, improving the classifier generalization such that
the purpose of human activities classification with high precision can be achieved.

The main contributions and features of this study are as follows:

• In non-vision situations, one IMU sensor node is applied to distinguish the whole-body
movement between motion transition and a continuous motion.

• We propose a method of generating images from time series data that visually indicate
the characteristics of inertial signals and generate multiple fake images based on AE
and GAN models to improve classification accuracy.

• We evaluate the accuracy and characteristics of classification models. The results show
that XGBoost has the best results in non-uniform actions using a small amount of data.

• We evaluate the classification accuracy using fake images and select the best-accuracy
to perform for data correction.

• We propose a real-time BAN system to correct inertial signal data and classify human
body movements.

The organization of this paper is as follows: Section 2 reviews related works about
inertial-sensor-based HAR approaches. Section 3 presents the proposed system architecture
and discusses the proposed methodology, including data pre-processing, classification algo-
rithms, correction algorithms, algorithm optimization, and evaluation methods. Section 4
evaluates the system performance of the classification and data correction, presents the
performance comparison, and examines the real-time HAR system. Finally, Section 5 draws
conclusions and outlines future research directions.

2. Related Works

With the development of sensor technology, wearable sensors are widely used in most
electronic devices, such as smartphones, watches, and bracelets. These devices are usually
mounted onto a part of the body, such as the wrists [11], arms [12], ankles [13], or waist [14].
They can directly capture data without any area restrictions, as well as analyze the body
movement. In HAR systems, common wearable sensors include electromyography (EMG),
electrocardiography (ECG), accelerometer, and IMU nodes. Among them, IMU sensors
are the most widely used because of their light weight and acquisition of a variety of
inertial signals.

Sensors 2023, 23, 7802 3 of 22

HAR systems are usually based on the BAN concept, allowing users to wear sensors
at multiple joint points [15–17] to facilitate feature extraction and action classification.
However, the need to wear multiple sensors is likely to cause users to feel that sensors are
intrusive [18]. Therefore, HAR systems with a single IMU have become a popular research
topic recently. Although a single IMU can only capture limited information, its accuracy
and cost can be greatly improved when the signals captured via its different modules are
fully utilized [19]. The classification results using a mix of different modules versus a
single module as the feature input are compared. The results show that using all signals
captured via the nine-axis IMU as input features is leads to significantly higher accuracy
than other combinations. Moreover, Kangas [20] evaluates the IMU performances with
various wearing areas of the body. The classification performances at the waist and on the
head are shown to be more accurate than that at the wrist.

Real-time HAR systems for use in low-power wireless communication are proposed [21–23].
The authors [21] deploy an IMU sensor at the waist to transmit its signal to a local personal
computer (PC) via Zigbee wireless communication technology. The signal processing
and classification algorithm are executed on the PC side to perform long-term dynamic
monitoring of the family. The results show that it can distinguish between sitting, lying,
and standing movements with high accuracy, but it has limited ability to detect slow
walking. In [22], 2.4-gigahertz radio frequency communication is applied, which has
the characteristics of low cost and plug and play, but it has the disadvantages of a weak
signal, a short transmission distance, and an inability to immediately upload data to
the cloud database. Accordingly, in order to remove distance constraints and improve
convenience, in this work, Wi-Fi wireless networking technology is applied to upload data
to the mySQL [24] cloud database in a timely manner.

In [25], the authors develop a wrist-worn node, consisting of an IMU sensor and a
Wi-Fi chip, to perform athlete tracking, as the tracking data can be transmitted to the cloud
database and then transmitted to the visual web page or APP through the MQTT protocol,
allowing coaches to monitor the status of athletes and correct their wrong movements in real
time. In contrast to [25], the system proposed in this work only transmits the device status
to the user interface (UI) to provide monitoring information based on Wi-Fi communication
and does not need to transmit inertial signals to the UI to perform calculation. We note that
the user datagram protocol is used to improve the transmission speed.

In order to accurately identify the current human activity, the HAR system integrates
the IMU signals with the concept of artificial intelligence and machine learning techniques
(e.g., support vector machine (SVM) [19,26], K-nearest neighbor (KNN) [26], hidden Markov
model (HMM) [27], decision tree (DT) [19], random forest (RF) [26] and AdaBoost [28].
In [29], a waist-worn HAR system is proposed via the DT classification algorithm, which
classifies various human activities, including walking, falling, and resting. In [30], a
hybrid classification method is developed to detect fall events in older people, which
uses principal component analysis (PCA) to standardize and reduce the dimension of the
data and reduce unimportant features. The processed features are then fed into machine
learning models, such as SVM and KNN, to complete action classification. In [31], time
domain characteristics, such as mean absolute value (MAV), variance (VR), and root mean
square (RMS), are captured to obtain the time series information of IMU sensors. The
correlation-based feature selection (CFS) approach is used to eliminate redundant features.
It is then fed into machine learning models, such as KNN and RF. The results show that
the classification method based on CFS and RF has the best accuracy. Accordingly, feature
extraction and feature selection are important for HAR.

Recent studies [32–34] show that the use of deep learning technology to study human
pose recognition has become an important research trend. Deep learning networks have
powerful non-linear representation learning capabilities and can automatically capture
data features required for the classification of complex actions [35]. The authors [36] feed
the characteristics of the time domain of inertial signals into nine different neural network
models to complete the action classification and prediction of subjects. The model is based

Sensors 2023, 23, 7802 4 of 22

on CNN, RNN, and convolutional recurrent neural network (CRNN) architectures. After
five cross-verifications, the results show that this hybrid deep learning method is superior
to traditional machine learning algorithms, such as KNN and DT. In [37,38], the CNN
method is used to screen the features of time series data and eliminate the features of the
data under a specific topic to improve the generalization of the model.

Compared to traditional machine learning algorithms, although deep learning meth-
ods result in better classification accuracy, the model’s complexity is high, the number of
model parameters is large, and the classification results cannot be reflected in time. In
addition, neural networks often require a large amount of data to ensure the validity of
model accuracy. The authors [39] compare the accuracy of traditional machine learning
algorithms (e.g., SVM, KNN, and RF) to deep learning algorithms (e.g., CNN and LSTM)
at different scales regarding the number of datasets. The results show that datasets with
a small amount of data are suitable for performing traditional machine learning. Con-
versely, datasets with large data volumes are suitable for using deep learning to complete
action classification.

A sufficient amount of training data is one of the key elements required to improve the
HAR accuracy. However, in practical applications, it may be difficult to obtain sufficient
training data. The HAR system developed by the authors [40–42] shows that due to
its limited ability to capture information, a single IMU can only recognize continuous
actions and cannot identify actions containing switching processes, despite the good feature
processing and classification methods used. The authors in [40] classify the body actions
into four categories, considering continuous actions with a classification accuracy 98.88%.
However, the transition process (i.e., from the current action to the new action) is not
considered. The gesture recognition system in [41] completes 14 specified gestures in
a specified time and uses mRMR technology. In [42], the recognition of the movement
between the gesture and the arm is completed within a specified time, and the sequence
sensing information of the IMU is filtered via the EMG Sensor to ensure that the motion
observation is maintained in a continuous motion status. To overcome the above problems,
we propose a data augmentation strategy for actions that include switching action processes
and develop generative models based on an autoencoder (AE) and a generative adversarial
network (GAN). By learning the hidden features of the data derived from the original
distribution, new data are generated under the same distribution [43]. The authors [44–50]
propose a variety of GAN models to generate realistic sensor data, thereby improving the
accuracy and generalization of the model. Table 1 summarizes various data augmentation
strategies based on generative models.

Table 1. The comparison between different sensory methods and generative models.

Works IMU
Signals Characteristics Limitations

SensoryGAN [47] Acc
Apply generative adversarial
network to generate sensor
data

Use corresponding
generative models for
individual actions

X. Zhang [48]
Acc

Gyro
Mag

Use the semi-supervised GAN Control classification results
using custom parameters

A. Mathur [49] Acc
Gyro

Incorporate the heterogeneity
of different sensors to enrich
the training set

The diversity of synthetic
data is limited and not
guaranteed.

E. Soleimani [50] Acc

Realize the Transfer Learning
and use GAN to generate
source domain data from the
target domain

Limited diversity of newly
generated data

Sensors 2023, 23, 7802 5 of 22

Table 1. Cont.

Works IMU
Signals Characteristics Limitations

The Purposed
System

Acc
Gyro
Mag

Enrich the training set via data
synthesis based on generative
models such as AE or GAN

Train the network with
limited data

In existing HAR systems, features are often independently extracted from multiple
time series sensor signals in a hand-crafted manner. Correlations between different sig-
nals are often ignored [14]. Therefore, in this work, we suggest that all inertial signal
sequences from accelerometers, gyroscopes, and magnetometers can be represented by a
new active image, which contains the hidden relationship between the signals. Moreover,
the studies [14,51,52] show that the newly generated image can provide additional con-
textual information regarding the signal compared to the statistics of a single time series
signal and has better classification results in algorithms such as machine learning or deep
learning methods.

3. System Description

Figure 1 shows the proposed real-time HAR system architecture, which aims to achieve
the data sampling of human activity, data pre-processing, real-time activity classification,
data generation, and sensory correction by providing a simple UI for the users. The system
implementation comprises the following four stages:

• Stage 1—Networked sensing and data sampling: The data collection process is per-
formed via a BAN system based on Wi-Fi wireless technology.

• Stage 2—Data pre-processing: A new image generation method is developed to pre-
serve the correlation between each inertial signal and filter features via the PCA
and the minimum redundancy–maximum relevance (mRMR) feature selection algo-
rithm. Moreover, images at various scales are generated to determine the appropriate
image sizes.

• Stage 3—Activity classification: We determine effective models by integrating algo-
rithms (e.g., traditional machine learning, deep neural network, and transfer learning)
and hyperparameter optimization methods (e.g., K-Fold cross-validation, GS, and RS).

• Stage 4—Data generation: Multiple generative models are developed to implement
data augmentation and improve data generalization. Then, we select the pre-trained
generative model with the highest accuracy to execute data correction.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 22

Figure 1. The proposed system architecture based on real-time HAR.

3.1. Stage 1: Networked Sensing and Data Sampling
This section describes the sensor node used in the developed BAN system, which

consists of a nine-axis IMU and a NodeMCU-32S Wi-Fi microcontroller. To determine the
desired nine-axis IMU, we compare the specifications of the two most common nine-axis
IMUs, MPU9150 (from InvenSense-TDK Corporation [53]), and BNO055 (from Bosch Sen-
sortec [54], Kusterdingen, Germany), and we consolidate the results in Table 2. Referring
to the table below and considering the importance of sensor accuracy (such as accelerom-
eter and gyroscope sensors) to this system, the MPU9150 is used as the nine-axis IMU for
the target output in this work.

Table 2. The comparison of the specifications of the two most common nine-axis IMUs.

Product Spec ADC Notes

BNO055 [54]

±125°/s to ±2000°/s 16 bits gyros
±2 g, ±4 g, ±8 g, ±16 g 14 bits accel

±1300 µT (x-, y-axis); ±2500 µT (z-
axis)

0.3 µT mag

MPU9150 [55]
(the IMU used
in this work)

±250, ±500, ±1000, ±2000°/s 16 bits gyros
±2 g, ±4 g, ±8 g, ±16 g 16 bits accel

±1200 µT 13 bits (0.3 µT per LSB) mag

Moreover, we choose the NodeMCU-32S microcontroller as the central processing
unit, which is responsible for controlling the peripheral sensors (e.g., controlling the RGB
LED light signal to display the node status and transmitting the acquisition command to
control the nine-axis IMU). We note that the sensors are calibrated each time when meas-
uring a new action. The MPU9150′s Register Map document [55] is applied to correct the
gyroscope sensor and an accelerometer sensor. The magnetometer data are corrected with
reference to MPU9150′s datasheet [56].

Figures 2 and 3 show the system structure and hardware components of the sensor
node, respectively. The nine-axis IMU is composed of a three-axis gyroscope, three-axis
accelerometer, and three-axis magnetometer, which capture three-axis angular velocity,
three-axis acceleration, and three-axis magnetic field signals, respectively. The inertial sig-
nals are further analyzed to obtain movement information (e.g., Euler angle, quaternion,
and three-axis linear–angular velocity). Subsequently, the Madgwick gradient descent at-
titude algorithm is applied to minimize the quaternion error and gyroscope drift, thereby
providing accurate attitude estimation. In the process of algorithm implementation, the
gyroscope data are used to update the quaternion initially. Then, the acceleration data and

Figure 1. The proposed system architecture based on real-time HAR.

Sensors 2023, 23, 7802 6 of 22

3.1. Stage 1: Networked Sensing and Data Sampling

This section describes the sensor node used in the developed BAN system, which
consists of a nine-axis IMU and a NodeMCU-32S Wi-Fi microcontroller. To determine
the desired nine-axis IMU, we compare the specifications of the two most common nine-
axis IMUs, MPU9150 (from InvenSense-TDK Corporation [53]), and BNO055 (from Bosch
Sensortec [54], Kusterdingen, Germany), and we consolidate the results in Table 2. Referring
to the table below and considering the importance of sensor accuracy (such as accelerometer
and gyroscope sensors) to this system, the MPU9150 is used as the nine-axis IMU for the
target output in this work.

Table 2. The comparison of the specifications of the two most common nine-axis IMUs.

Product Spec ADC Notes

BNO055 [54]

±125◦/s to ±2000◦/s 16 bits gyros

±2 g, ±4 g, ±8 g, ±16 g 14 bits accel

±1300 µT (x-, y-axis);
±2500 µT (z-axis) 0.3 µT mag

MPU9150 [55]
(the IMU used
in this work)

±250, ±500, ±1000,
±2000◦/s 16 bits gyros

±2 g, ±4 g, ±8 g, ±16 g 16 bits accel

±1200 µT 13 bits (0.3 µT per LSB) mag

Moreover, we choose the NodeMCU-32S microcontroller as the central processing unit,
which is responsible for controlling the peripheral sensors (e.g., controlling the RGB LED
light signal to display the node status and transmitting the acquisition command to control
the nine-axis IMU). We note that the sensors are calibrated each time when measuring a
new action. The MPU9150′s Register Map document [55] is applied to correct the gyroscope
sensor and an accelerometer sensor. The magnetometer data are corrected with reference to
MPU9150′s datasheet [56].

Figures 2 and 3 show the system structure and hardware components of the sensor
node, respectively. The nine-axis IMU is composed of a three-axis gyroscope, three-axis
accelerometer, and three-axis magnetometer, which capture three-axis angular velocity,
three-axis acceleration, and three-axis magnetic field signals, respectively. The inertial
signals are further analyzed to obtain movement information (e.g., Euler angle, quaternion,
and three-axis linear–angular velocity). Subsequently, the Madgwick gradient descent
attitude algorithm is applied to minimize the quaternion error and gyroscope drift, thereby
providing accurate attitude estimation. In the process of algorithm implementation, the
gyroscope data are used to update the quaternion initially. Then, the acceleration data and
magnetometer data are calculated and processed based on the gradient descent method
to find the quaternion components with the minimum error. Finally, the two approaches
are fused together to obtain the final pose quaternion. The equation for attitude estimation
with gradient descent is

qt = qt−1 +
(
∆gyr − β·S

)
·dt, (1)

where qt−1 is the previous orientation, ∆gyr is the quaternion change rate calculated from
the gyroscope, β is the optimal steepness of the gradient descent, and S is the corrective
step quaternion calculated based on its current direction and accelerometer data when
using the gradient descent method.

Sensors 2023, 23, 7802 7 of 22

Sensors 2023, 23, x FOR PEER REVIEW 7 of 22

magnetometer data are calculated and processed based on the gradient descent method
to find the quaternion components with the minimum error. Finally, the two approaches
are fused together to obtain the final pose quaternion. The equation for attitude estimation
with gradient descent is 𝑞 𝑞 ∆ 𝛽 ∙ 𝑆 ∙ 𝑑𝑡, (1)

where 𝑞 is the previous orientation, ∆ is the quaternion change rate calculated from
the gyroscope, 𝛽 is the optimal steepness of the gradient descent, and 𝑆 is the corrective
step quaternion calculated based on its current direction and accelerometer data when
using the gradient descent method.

Figure 2. System structure of the proposed wearable sensor node.

Figure 3. (a) The size of the proposed wearable sensor node; (b) the top view of the sensor node.

With regard to data collection, the waist-worn sensor node collects the sensing meas-
urements of each action at a sampling rate of 10 Hz and during windows of 10 s, including
standing, sitting, walking, and running activities, as shown in Figure 4. Boerema et al. [57]
discuss the results of the full-body movement of IMU devices worn on various parts of
the waist and investigate the optimal sensor placement used to measure physical activity.
The results show that the most preferred transverse locations on the belt are the following
two locations: the right hip anterior position (position 1) and the right hip most lateral
position (position 2). Moreover, the exploration of how closely the sensors fit with the
body suggests that to achieve the best results, the sensors should be mounted as closely
as possible on the body. This tight fit can be promoted by providing mounting materials
that ensure this tight fit, such as an elastic belt or a clip that has a strong connection with
the belt. Therefore, with reference to [57], in this work, the sensors are located between
positions 1 and 2 to facilitate wearing and ensure that the user can move freely. Moreover,
we design a simple visual UI (Figure 5) using the C sharp programming language. This
system allows the system to monitor the node status in a user-friendly manner and
quickly access the data in the mySQL cloud database.

Figure 2. System structure of the proposed wearable sensor node.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 22

magnetometer data are calculated and processed based on the gradient descent method
to find the quaternion components with the minimum error. Finally, the two approaches
are fused together to obtain the final pose quaternion. The equation for attitude estimation
with gradient descent is 𝑞 𝑞 ∆ 𝛽 ∙ 𝑆 ∙ 𝑑𝑡, (1)

where 𝑞 is the previous orientation, ∆ is the quaternion change rate calculated from
the gyroscope, 𝛽 is the optimal steepness of the gradient descent, and 𝑆 is the corrective
step quaternion calculated based on its current direction and accelerometer data when
using the gradient descent method.

Figure 2. System structure of the proposed wearable sensor node.

Figure 3. (a) The size of the proposed wearable sensor node; (b) the top view of the sensor node.

With regard to data collection, the waist-worn sensor node collects the sensing meas-
urements of each action at a sampling rate of 10 Hz and during windows of 10 s, including
standing, sitting, walking, and running activities, as shown in Figure 4. Boerema et al. [57]
discuss the results of the full-body movement of IMU devices worn on various parts of
the waist and investigate the optimal sensor placement used to measure physical activity.
The results show that the most preferred transverse locations on the belt are the following
two locations: the right hip anterior position (position 1) and the right hip most lateral
position (position 2). Moreover, the exploration of how closely the sensors fit with the
body suggests that to achieve the best results, the sensors should be mounted as closely
as possible on the body. This tight fit can be promoted by providing mounting materials
that ensure this tight fit, such as an elastic belt or a clip that has a strong connection with
the belt. Therefore, with reference to [57], in this work, the sensors are located between
positions 1 and 2 to facilitate wearing and ensure that the user can move freely. Moreover,
we design a simple visual UI (Figure 5) using the C sharp programming language. This
system allows the system to monitor the node status in a user-friendly manner and
quickly access the data in the mySQL cloud database.

Figure 3. (a) The size of the proposed wearable sensor node; (b) the top view of the sensor node.

With regard to data collection, the waist-worn sensor node collects the sensing mea-
surements of each action at a sampling rate of 10 Hz and during windows of 10 s, including
standing, sitting, walking, and running activities, as shown in Figure 4. Boerema et al. [57]
discuss the results of the full-body movement of IMU devices worn on various parts of the
waist and investigate the optimal sensor placement used to measure physical activity. The
results show that the most preferred transverse locations on the belt are the following two
locations: the right hip anterior position (position 1) and the right hip most lateral position
(position 2). Moreover, the exploration of how closely the sensors fit with the body suggests
that to achieve the best results, the sensors should be mounted as closely as possible on the
body. This tight fit can be promoted by providing mounting materials that ensure this tight
fit, such as an elastic belt or a clip that has a strong connection with the belt. Therefore, with
reference to [57], in this work, the sensors are located between positions 1 and 2 to facilitate
wearing and ensure that the user can move freely. Moreover, we design a simple visual
UI (Figure 5) using the C sharp programming language. This system allows the system
to monitor the node status in a user-friendly manner and quickly access the data in the
mySQL cloud database.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22

Figure 4. The activities involved in this study, with each red square representing the corresponding
location of the wearable sensor node used to track each activity.

Figure 5. User interface of the proposed wearable sensor node.

3.2. Stage 2: Data Pre-Processing
Instead of directly applying multiple inertial signal sequences as a feature, this work

proposes a novel method that converts the signal sequences into new images, which can
effectively express the correlation between signals [28–30]. Firstly, we perform the pro-
gressive L1 norm normalization of the captured action sequence data using a 19 × 100
matrix and reduce the value range of each column to [0, 1], with the sensing data being
collected from the 19 parameters (i.e., three-axis angular velocity, three-axis acceleration,
three-axis magnetic field, Euler angles (a set of three angles), and quaternions (containing
four components), and three-axis linear angular velocities), and the action sequence of
each individual parameter is represented by a 1 × 100 raw vector. We note that 100 repre-
sents the number of sampling points captured by each action at a sampling rate of 10 Hz
during observation windows of 10 s. Next, we enlarge the normalized value to fit the range
[0, 255] and convert it into a single-channel grayscale image with an image size of 19 × 100.
Finally, we generate images of different sizes (e.g., 60 × 100, 60 × 60, and 100 × 100) based
on nearest neighbor interpolation to improve the resolution, allowing us to find the most
appropriate image generation method. Figure 6 describes a flowchart used to convert se-
quences into images.

Figure 4. The activities involved in this study, with each red square representing the corresponding
location of the wearable sensor node used to track each activity.

Sensors 2023, 23, 7802 8 of 22

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22

Figure 4. The activities involved in this study, with each red square representing the corresponding
location of the wearable sensor node used to track each activity.

Figure 5. User interface of the proposed wearable sensor node.

3.2. Stage 2: Data Pre-Processing
Instead of directly applying multiple inertial signal sequences as a feature, this work

proposes a novel method that converts the signal sequences into new images, which can
effectively express the correlation between signals [28–30]. Firstly, we perform the pro-
gressive L1 norm normalization of the captured action sequence data using a 19 × 100
matrix and reduce the value range of each column to [0, 1], with the sensing data being
collected from the 19 parameters (i.e., three-axis angular velocity, three-axis acceleration,
three-axis magnetic field, Euler angles (a set of three angles), and quaternions (containing
four components), and three-axis linear angular velocities), and the action sequence of
each individual parameter is represented by a 1 × 100 raw vector. We note that 100 repre-
sents the number of sampling points captured by each action at a sampling rate of 10 Hz
during observation windows of 10 s. Next, we enlarge the normalized value to fit the range
[0, 255] and convert it into a single-channel grayscale image with an image size of 19 × 100.
Finally, we generate images of different sizes (e.g., 60 × 100, 60 × 60, and 100 × 100) based
on nearest neighbor interpolation to improve the resolution, allowing us to find the most
appropriate image generation method. Figure 6 describes a flowchart used to convert se-
quences into images.

Figure 5. User interface of the proposed wearable sensor node.

3.2. Stage 2: Data Pre-Processing

Instead of directly applying multiple inertial signal sequences as a feature, this
work proposes a novel method that converts the signal sequences into new images,
which can effectively express the correlation between signals [28–30]. Firstly, we per-
form the progressive L1 norm normalization of the captured action sequence data using a
19 × 100 matrix and reduce the value range of each column to [0, 1], with the sensing
data being collected from the 19 parameters (i.e., three-axis angular velocity, three-axis
acceleration, three-axis magnetic field, Euler angles (a set of three angles), and quaternions
(containing four components), and three-axis linear angular velocities), and the action
sequence of each individual parameter is represented by a 1 × 100 raw vector. We note that
100 represents the number of sampling points captured by each action at a sampling rate
of 10 Hz during observation windows of 10 s. Next, we enlarge the normalized value to
fit the range [0, 255] and convert it into a single-channel grayscale image with an image
size of 19 × 100. Finally, we generate images of different sizes (e.g., 60 × 100, 60 × 60, and
100 × 100) based on nearest neighbor interpolation to improve the resolution, allowing us
to find the most appropriate image generation method. Figure 6 describes a flowchart used
to convert sequences into images.

The increased number of data features leads to an increase in the dimensionality of the
data, which may lead to model overfitting and take a long training time to occur due to a
large amount of calculation. The most common approaches of feature engineering include
feature extraction (FE) and feature selection (FS). FE converts the original features through
equations, thereby reducing the input feature dimension. FS is used to find the optimal
feature subset by screening the existing features and removing irrelevant or redundant
features. Therefore, this study proposes using the PCA and mRMR analyses to complete
feature engineering.

In the original feature set, mRMR uses F-statistic to calculate the correlation between
the feature and the category, as well as calculate the feature’s correlation with Pearson’s
correlation coefficient. Hence, the maximum correlation and minimum redundancy features
are used to establish the optimal feature subset. And the feature’s objective function
regarding the correlation and redundancy is traversed in the subset based on the greedy
algorithm. Lastly, the features sorted in the subset are determined based on their priority.

Sensors 2023, 23, 7802 9 of 22Sensors 2023, 23, x FOR PEER REVIEW 9 of 22

Figure 6. Flowchart of the conversion of a sequence into an image.

The increased number of data features leads to an increase in the dimensionality of
the data, which may lead to model overfitting and take a long training time to occur due
to a large amount of calculation. The most common approaches of feature engineering
include feature extraction (FE) and feature selection (FS). FE converts the original features
through equations, thereby reducing the input feature dimension. FS is used to find the
optimal feature subset by screening the existing features and removing irrelevant or re-
dundant features. Therefore, this study proposes using the PCA and mRMR analyses to
complete feature engineering.

In the original feature set, mRMR uses F-statistic to calculate the correlation between
the feature and the category, as well as calculate the feature’s correlation with Pearson’s
correlation coefficient. Hence, the maximum correlation and minimum redundancy fea-
tures are used to establish the optimal feature subset. And the feature’s objective function
regarding the correlation and redundancy is traversed in the subset based on the greedy
algorithm. Lastly, the features sorted in the subset are determined based on their priority.

Given a sample feature set 𝑆 𝑥 , 𝑥 ,⋯ , 𝑥 and a sample class c, the mRMR method
seeks the optimal features of the samples with maximal relevance D(S,c) and minimal re-
dundancy R(S). Therefore, the features’ subset objective function is max𝐷 𝑆, 𝑐 𝑅 𝑆 (2)

with 𝐷 𝑆, 𝑐 1|𝑆| 𝐼 𝑥 ; 𝑐∈ , (3)

𝑅 𝑆 1|𝑆| 𝐼 𝑥 , 𝑥, ∈ , (4)

where 𝐷 represents the relevance between the sample feature set S and the sample class c,
which is the mean of all mutual information between each feature 𝑥 and class c, and 𝑅
represents the redundancy of all features in S, which is the mean of all mutual information
between feature 𝑥 and feature 𝑥 . We refer readers to [58] for more details about mRMR.

3.3. Stage 3: Activity Classification
This study tests several types of classification algorithms, including three major cat-

egories: traditional machine learning, deep learning, and transfer learning. Each model
completes hyperparameter optimization based on the GS and RS methods, as well as

Figure 6. Flowchart of the conversion of a sequence into an image.

Given a sample feature set S = {x1, x2, · · · , xn} and a sample class c, the mRMR
method seeks the optimal features of the samples with maximal relevance D(S,c) and
minimal redundancy R(S). Therefore, the features’ subset objective function is

max
S

D(S, c)− R(S) (2)

with
D(S, c) =

1
|S| ∑

xi∈S
I(xi; c), (3)

R(S) =
1

|S|2 ∑
xi ,xj∈S

I
(
xi, xj

)
, (4)

where D represents the relevance between the sample feature set S and the sample class
c, which is the mean of all mutual information between each feature xi and class c, and R
represents the redundancy of all features in S, which is the mean of all mutual information
between feature xi and feature xj. We refer readers to [58] for more details about mRMR.

3.3. Stage 3: Activity Classification

This study tests several types of classification algorithms, including three major cat-
egories: traditional machine learning, deep learning, and transfer learning. Each model
completes hyperparameter optimization based on the GS and RS methods, as well as
performing 10 cycles of k-fold cross validation to find the result with the highest accuracy
and effectiveness, which ensures that we can find the best human activity classifier.

In total, 11 types of classifiers based on traditional machine learning methods are
explored, namely linear SVM, poly SVM, KNN, LDA, HMM, DT, RF, AdaBoost, XGboost,
LightGBM, and Catboost. Table 3 describes the hyperparameters and optimization methods
used in traditional machine learning algorithms. Moreover, five neural networks of DNN,
BPNN, CNN, and CapsNET based on the concept of deep learning are developed to
complete action classification. Table 4 depicts the proposed model architecture and related
hyperparameter optimization methods used to create deep learning algorithms. Since
it may be difficult to collect enough training data, we try to change the input data type
to represent an input feature that fits the input of the powerful model. Accordingly, the
grayscale image is converted into an RGB image, and its size is larger than 71 × 71 based
on Keras documentation. The models all stand out in the ImageNet large-scale visual
recognition challenge (ILSVRC) large-scale comparison, such as VGG16, InceptionV3,

Sensors 2023, 23, 7802 10 of 22

ResNet50, and Xception. Data migration is performed, extending from the well-trained
source domain to the target training domain, based on the fine-tuning training method
used to realize transfer learning and improve the model’s accuracy. Figure 7 presents the
model’s architecture based on transfer learning performed in this study.

Table 3. Hyperparameters and the optimization of traditional machine learning methods.

Machine Learning Hyperparameters Definition Search Range Method

Linear SVM Cost (c) the penalty parameter 1 × 10−5~1 × 104 GS

Poly SVM

Cost (c) the penalty parameter 1 × 10−5~1 × 104

GS
Degree the polynomial degree used to find the

hyperplane required to split the data 2~6

Gamma the extent to which the influence of a
single training example reaches 0.1~100

KNN K the K-Neighbors closest to the new
data after calculating the distance [3, 5, 7, 9, 11] GS

LDA - - - -

HMM - - - -

DT

max_depth the maximum depth of the tree 1~100 GS

min_samples_split the minimum number of samples
required to split an internal node 1~40

RS

min_samples_leaf the minimum number of samples
required at a leaf node 1~20

RF

n_estimators the number of trees present in the
forest 100~1000

RS
max_depth the maximum depth of the tree 10~100

min_samples_leaf the minimum number of samples
required to split an internal node 1~20

min_samples_split the minimum number of samples
required at a leaf node 1~10

AdaBoost

n_estimators the number of base estimators or weak
learners 50~100 GS

learning_rate shrinking the contribution
of each classifier 1 × 10−3~5 × 10−1 RS

XGBoost

max_depth the maximum depth of the tree 3~10
GS

min_child_weight the minimum sum of the instance
weight needed in a child 5~8

eta (learning_rate) The step size shrinkage used in the
update step to prevent overfitting 1 × 10−2~3 × 10−1 RS

LightGBM

max_depth limit the tree’s depth 3~12 GS

num_leaves control the complexity of
the tree model 20~100

RS

min_data_in_leaf prevent overfitting
in a leaf-wise tree 200~1000

CatBoost
iterations the maximum number of trees that

can be built [10, 100, 150, 200, 250]
GS

depth the depth of the tree [2, 4, 6, 8]

Sensors 2023, 23, 7802 11 of 22

Table 3. Cont.

Machine Learning Hyperparameters Definition Search Range Method

CatBoost
learning_rate

the rate at which the model weights
are updated after working through

each batch of training examples
0.03~0.1

RS

l2_leaf_reg the coefficient for the L2 regularization
term of the cost function 0.2~3.0

Table 4. Neural network architecture of deep learning models.

Deep Learning Hyperparameters Optimization Layer Type Layer Information

DNN

learning_rate (LR):
1 × 10−6

batch_size: 2
epochs: 300

LR tuning from RS in
the range of

[1 × 10−7~5 × 10−5]

Fully Connected and
Dropout [input]

input size: img_size × img_size,
hidden units: 256, activation:
relu, dropout: 0.4

Fully Connected
[hidden]

the number of layers: 4, hidden
units: [16, 32, 64, 128], activation:
relu

Fully Connected
[output]

hidden units: output_size,
activation: relu

BPNN

learning_rate (LR):
1 × 10−5

batch_size: 2
epochs: 500

LR tuning from RS in
the range of

[5 × 10−5~3 × 10−4]

Dropout and Fully
Connected [input]

input size: img_size × img_size,
hidden units: 512, activation:
relu, dropout: 0.5

Dropout and Fully
Connected [hidden]

hidden units: 128, activation:
relu, dropout: 0.5

Dropout and Fully
Connected [output]

hidden units: output_size,
activation: softmax, dropout: 0.5

CNN

learning_rate (LR):
2 × 10−6

batch_size: 2
epochs: 300

LR tuning from RS in
the range of

[1 × 10−7~5 × 10−5]

Conv2D and
maxPool2D [input]

input size: [img_size, img_size,
1], kernels: [5 × 5], filters: 32,
pool_size: [2 × 2], activation:
relu

Conv2D and
maxPool2D

kernels: [5 × 5], filters: 64,
pool_size: [2 × 2], activation:
relu

Dropout and Flatten hidden units: 128, activation:
relu, dropout: 0.5

Fully Connected
[output]

hidden units: output_size,
activation: softmax

CapsNET

learning_rate (LR):
1 × 10−4

decay_rate: 1 ×
10−6

batch_size: 4
epochs: 25

LR tuning from RS in
the range of

[2 × 10−4~1 × 10−3]

Conv2D, BN, and
MaxPool2D [input]

input size: [img_size, img_size,
1], kernels: [2 × 2], filters: 32,
pool_size: [2 × 2], activation:
relu

Conv2D, BN, and
MaxPool2D

kernels: [2 × 2], filters: 64,
pool_size: [2 × 2], activation:
relu

Conv2D, BN, and
MaxPool2D

kernels: [2 × 2], filters: 128,
pool_size: [2 × 2], activation:
relu

PrimaryCap kernels: [2 × 2], dim_capsule: 4,
n_channels: 16, strides: 1

Sensors 2023, 23, 7802 12 of 22

Table 4. Cont.

Deep Learning Hyperparameters Optimization Layer Type Layer Information

CapsNET

learning_rate (LR):
1 × 10−4

decay_rate:
1 × 10−6

batch_size: 4
epochs: 25

LR tuning from RS in
the range of

[2 × 10−4~1 × 10−3]

CapsuleLayer num_capsule: output_size,
dim_capsule: 4, num_routing: 3

Dropout and Flatten dropout: 0.8

Fully Connected
[output]

hidden units: output_size,
activation: softmax

Sensors 2023, 23, x FOR PEER REVIEW 12 of 22

CapsuleLayer num_capsule: output_size,
dim_capsule: 4, num_routing: 3

Dropout and Flatten dropout: 0.8

Fully Connected [output] hidden units: output_size, activation:
softmax

Figure 7. Neural network architecture of transfer learning.

3.4. Stage 4: Data Generation
To alleviate the impact of having insufficient amount of existing training data, effi-

cient data augmentation can be applied to improve accuracy and generalization perfor-
mance. However, standard data augmentation can only produce surrogate data with lim-
ited confidence. In order to increase the breadth of the data, this study designs and trains
several types of generative models used to complete data augmentation. Furthermore, we
load the newly generated data onto the highest accuracy classifier to find the generator
with the highest reliability, which can be used as the input model of the wrong sensor for
the purpose of data correction. Table 5 summarizes the proposed generative model’s ar-
chitecture. The following paragraphs include descriptions of the various types of genera-
tive models:
(1). Autoencoder (AE)

The autoencoder is often used to reduce noise and improve the quality of signal or
image processing. With its powerful and flexible methods, it is suitable for use in both
linear and non-linear datasets. AE is divided into the encoder and decoder. Firstly, the
encoder extracts important features from the input data to reduce the data dimension and
complete data compression. Then, the decoder reconstructs the data and generates new
output data to ensure that the newly output data can express the same meaning as the
input data.
(2). Convolutional Variational Autoencoder (CVAE)

Based on the CNN and variational autoencoder (VAE), CVAE creates a variety of
continuous–discrete combinations by adding conditions to the encoding process to make
the output follow a Gaussian distribution. CVAE extracts important features from the in-
put data through the convolutional layer and filters unimportant features via the pooling
layer to improve the model’s recognition capability in terms of capturing local features
and effectively preventing the distortion of the generated data.
(3). Generative Adversarial Network (GAN)

GAN is a sample generative technique, the output of which resembles the input data
distribution. It consists of two neural network models, namely a generator, which is re-
sponsible for generating data, and a discriminator, which distinguishes between the input
and original data. A generator generates new samples by adding random noise to the

Figure 7. Neural network architecture of transfer learning.

3.4. Stage 4: Data Generation

To alleviate the impact of having insufficient amount of existing training data, efficient
data augmentation can be applied to improve accuracy and generalization performance.
However, standard data augmentation can only produce surrogate data with limited
confidence. In order to increase the breadth of the data, this study designs and trains several
types of generative models used to complete data augmentation. Furthermore, we load the
newly generated data onto the highest accuracy classifier to find the generator with the
highest reliability, which can be used as the input model of the wrong sensor for the purpose
of data correction. Table 5 summarizes the proposed generative model’s architecture. The
following paragraphs include descriptions of the various types of generative models:

(1). Autoencoder (AE)

The autoencoder is often used to reduce noise and improve the quality of signal or
image processing. With its powerful and flexible methods, it is suitable for use in both
linear and non-linear datasets. AE is divided into the encoder and decoder. Firstly, the
encoder extracts important features from the input data to reduce the data dimension and
complete data compression. Then, the decoder reconstructs the data and generates new
output data to ensure that the newly output data can express the same meaning as the
input data.

(2). Convolutional Variational Autoencoder (CVAE)

Based on the CNN and variational autoencoder (VAE), CVAE creates a variety of
continuous–discrete combinations by adding conditions to the encoding process to make
the output follow a Gaussian distribution. CVAE extracts important features from the
input data through the convolutional layer and filters unimportant features via the pooling
layer to improve the model’s recognition capability in terms of capturing local features and
effectively preventing the distortion of the generated data.

Sensors 2023, 23, 7802 13 of 22

Table 5. Neural network architecture of generative model.

Generative
Model Neural Network Layer Type Layer Information

AE

Encoder
Fully Connected [input] input size: img_size × img_size, hidden units: 128,

activation: sigmoid

Fully Connected [output] hidden units: 64, activation: sigmoid

Decoder
Fully Connected [input] input size: 64, hidden units: 128, activation: sigmoid

Fully Connected [output] hidden units: img_size × img_size, activation:
sigmoid

CVAE

Encoder

Conv2D and maxPool2D
[input]

input size: [img_size, img_size, 1], kernels: [3 × 3],
filters: 64, pool_size: [2 × 2], activation: relu

Conv2D and maxPool2D kernels: [3 × 3], filters: 128, pool_size: [2 × 2],
activation: relu

Flatten and Fully Connected
[output] hidden units: latent_dim

Decoder

Fully Connected [input]
input size: [latent_dim], hidden units:(

img_size
4

)2
× 0.2564, activation: relu

Deconv2D and UnmaxPool2D kernels: [3 × 3], filters: 128, pool_size: [2 × 2],
activation: relu

Deconv2D and UnmaxPool2D kernels: [3 × 3], filters: 64, pool_size: [2 × 2],
activation: relu

Deconv2D and UnmaxPool2D
[output] kernels: [3 × 3], filters: 1, pool_size: [1 × 1]

GAN

Generator

Fully Connected and Dropout
[input]

input size: img_size × img_size, hidden units: 128,
activation: leakyrelu, dropout: 0.2

Fully Connected [output] hidden units: img_size × img_size, activation: tanh

Discriminator
Fully Connected [input] input size: img_size × img_size, hidden units: 128,

activation: leakyrelu

Fully Connected [output] hidden units: 1, activation: [relu, sigmoid]

AAE

Gene-rator

Encoder

Flatten [input] input size: [img_size, img_size, 1]

Fully Connected [hidden] the number of layers: 2, hidden units: [512, 512],
activation: leakyrelu

Fully Connected [output] the number of layers: 2, hidden units: [latent_dim,
latent_dim]

Decoder

Fully Connected [input] input size: [latent_dim], activation: leakyrelu

Fully Connected [hidden] hidden units: 512, activation: leakyrelu

Fully Connected [output] hidden units: img_size × img_size, activation: tanh

Discriminator

Fully Connected [input] input size: [latent_dim], hidden units: 512, activation:
leakyrelu

Fully Connected [hidden] hidden units: 256, activation: leakyrelu

Fully Connected [output] hidden units: 1, activation: sigmoid

DCGAN Generator

Fully Connected [input] input size: [g_dim]

Deconv2D and BN kernels: [5 × 5], filters: 32, activation: leakyrelu

Deconv2D and BN kernels: [5 × 5], filters: 16, activation: relu

Deconv2D and BN [output] kernels: [5 × 5], filters: 1, activation: tanh

Sensors 2023, 23, 7802 14 of 22

Table 5. Cont.

Generative
Model Neural Network Layer Type Layer Information

DCGAN Discriminator

Conv2D and BN [input] input size: [img_size, img_size, 1], kernels: [5 × 5],
filters: 32, activation: relu

Conv2D and BN kernels: [5 × 5], filters: 64, activation: relu

Fully Connected [output] hidden units: 1, activation: sigmoid

CGAN

Generator

Fully Connected and BN
[input]

input size: [latent_dim], hidden units: 64, activation:
leakyrelu

Fully Connected and BN
[hidden]

the number of layers: 2, hidden units: [128, 256],
activation: leakyrelu

Fully Connected [output] hidden units: img_size × img_size, activation: tanh

Discriminator

Fully Connected [input] input size: img_size × img_size, hidden units: 64,
activation: leakyrelu

Fully Connected [hidden] the number of layers: 2, hidden units: [128, 256],
activation: leakyrelu

Fully Connected [output] hidden units: 1, activation: sigmoid

(3). Generative Adversarial Network (GAN)

GAN is a sample generative technique, the output of which resembles the input
data distribution. It consists of two neural network models, namely a generator, which
is responsible for generating data, and a discriminator, which distinguishes between the
input and original data. A generator generates new samples by adding random noise
to the original data and feeding it into a discriminator along with the original sample.
A discriminator then finds the difference between the two samples by estimating the
probability distribution of the new and original sample to further determine the fake new
data. We note that the generator and the discriminator optimize each other’s performance
in competition.

(4). Adversarial Autoencoders (AAE)

Integrating AE and GAN, the AAE generator consists of an encoder and decoder,
which are different from those of GAN. After the encoder compresses the input data, a
latent variable will be generated. Decoder will then try to decompress it and generate new
fake data. Meanwhile, the discriminator will use latent variable as the input data through
continuous learning to identify the credibility of its source data.

(5). Deep Convolutional Generative Adversarial Network (DCGAN)

Traditional GAN is mostly composed of fully connected layers, which cause its inability
to express local features and poor resolution. DCGAN, which consists of CNN and GAN,
effectively solves this problem. Using the powerful feature extraction ability of CNN, the
learning effect of a generator can be improved. In addition, each neural layer has been
standardized via batch normalization (BN) to reduce the variability between samples,
which further stabilizes the model’s training process and reduces training problems caused
by poor initialization.

(6). Conditional GAN (CGAN)

To solve the problem of GAN being unable to generate the specified category of
data, CGAN passes the data containing the actual label to the network to improve the
generator’s control over the output data and ensure that the generator and discriminator
are only trained using the corresponding label to ensure that the convergence speed and
performance of the model are effectively improved.

Sensors 2023, 23, 7802 15 of 22

4. System Evaluation

In order to evaluate the proposed system, 100 pieces of activity data are captured
from each activity performed in four activity categories (i.e., standing, sitting, walking, and
running) via the developed sensor nodes. The activities are conducted by an average-sized
young woman (average medium frame and an average height of 5′5′′ feet). The data
sampling of each category considers the period of sustaining the current action and the
transition period from the current action to the new action. Thus, we capture a total of
400 pieces of data, with 80% of the data being the training data and 20% being the testing
data. Then, the activity classification is executed based on the above classification model.
We denote 10% of the training data as the verification data to ensure the model’s effective-
ness. We notice that the k-fold cross validation is performed ten times and the average accu-
racy is used as the evaluation standard for each classifier. The computer hardware environ-
ment is equipped with a 3.7-gigahertz Intel Core i7 processor, 64 GB RAM, and an NVIDIA
2080 graphics card. The software environment is Tensorflow for Python, C, and C Sharp.

4.1. Singal Processing

As the sampling rate decreases, the number of data features is reduced, which cuts
down the model’s size and complexity, but may degrade the model’s effectiveness and
classification accuracy. Thus, we perform down-sampling processing on the sequence of
the original 10-hertz sampling rate (e.g., 5 Hz, 1 Hz, and 0.5 Hz) to find an appropriate
sampling rate. Figure 8 shows the accuracy of directly feeding the sequence into various
classifiers by varying the sampling frequency. The results show that a sampling rate of
10 Hz is generally a sensible setting among all classifiers.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22

sampling rate. Figure 8 shows the accuracy of directly feeding the sequence into various
classifiers by varying the sampling frequency. The results show that a sampling rate of 10
Hz is generally a sensible setting among all classifiers.

Figure 8. Accuracy results of each classifier at different sampling rates.

4.2. Feature Engineering
To reduce the training time and prevent overfitting due to the influence of unim-

portant features, the mRMR method is applied to screen the features of the sequential
input. Accordingly, the k features with the highest correlation and the least redundancy
in the category are selected, while the selected features are fed into the classification model
to perform training. Figure 9 shows the classification results without feature engineering
and those determined via the mRMR method.

Figure 9. Accuracy results of each classifier when the input is the sequence.

Instead of using the sequential input, we implement the classification method of with
input images at sizes of 19 × 100, 60 × 100, 60 × 60, and 100 × 100 via nearest neighbor
interpolation (as described in Section 3.2) and reduce the number of excessive features in
the image via the PCA and mRMR methods. Figure 10 shows the results of feeding the
input images into the classification model after performing feature engineering.

Figure 8. Accuracy results of each classifier at different sampling rates.

4.2. Feature Engineering

To reduce the training time and prevent overfitting due to the influence of unimportant
features, the mRMR method is applied to screen the features of the sequential input.
Accordingly, the k features with the highest correlation and the least redundancy in the
category are selected, while the selected features are fed into the classification model to
perform training. Figure 9 shows the classification results without feature engineering and
those determined via the mRMR method.

Instead of using the sequential input, we implement the classification method of with
input images at sizes of 19 × 100, 60 × 100, 60 × 60, and 100 × 100 via nearest neighbor
interpolation (as described in Section 3.2) and reduce the number of excessive features in
the image via the PCA and mRMR methods. Figure 10 shows the results of feeding the
input images into the classification model after performing feature engineering.

Sensors 2023, 23, 7802 16 of 22

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22

sampling rate. Figure 8 shows the accuracy of directly feeding the sequence into various
classifiers by varying the sampling frequency. The results show that a sampling rate of 10
Hz is generally a sensible setting among all classifiers.

Figure 8. Accuracy results of each classifier at different sampling rates.

4.2. Feature Engineering
To reduce the training time and prevent overfitting due to the influence of unim-

portant features, the mRMR method is applied to screen the features of the sequential
input. Accordingly, the k features with the highest correlation and the least redundancy
in the category are selected, while the selected features are fed into the classification model
to perform training. Figure 9 shows the classification results without feature engineering
and those determined via the mRMR method.

Figure 9. Accuracy results of each classifier when the input is the sequence.

Instead of using the sequential input, we implement the classification method of with
input images at sizes of 19 × 100, 60 × 100, 60 × 60, and 100 × 100 via nearest neighbor
interpolation (as described in Section 3.2) and reduce the number of excessive features in
the image via the PCA and mRMR methods. Figure 10 shows the results of feeding the
input images into the classification model after performing feature engineering.

Figure 9. Accuracy results of each classifier when the input is the sequence.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 22

Figure 10. Accuracy results for each classifier when the inputs are images of various sizes.

Considering the traditional machine learning classifiers, Figures 9 and 10 show that
regardless of the feature processing method applied, the classification results of RF and
XGBoost are generally the best options. Table 6 lists the accuracy results of RF and
XGBoost with the original features and those determined via the feature engineering
methods. The results show that when the image size is 100 × 100 and we select the best
features with 5% of the original feature quantity based on using mRMR as the feature
input, we can find the best classification results. The accuracies of RF and XGBoost via
feature engineering are 95.06% and 93.83%, respectively, increasing the accuracies by
1.31% and 2.70%, respectively. We notice that although the accuracy of RF is higher than
that of XGBoost, RF has the characteristics of being better at classifying known data but
performing poorly on unknown data. Therefore, to ensure that the developed classifier
has a wider availability in the real-time field, a large amount of user training data may be
required. However, this approach may not only cause inconvenience to the subjects, but
also lead to the possibility of overfitting the model by collecting too many similar data.
Therefore, we propose a variety of generators to generate training data and load the newly
generated data into the previously pre-trained RF and XGBoost classifiers to determine
the desired classifier with the highest generalization capability.

Table 6. Best accuracy results in RF and XGBoost determined via various feature engineering
methods.

 Size

Original Feature FE

RF XGBoost
RF XGBoost

Acc The Best
Method Acc The Best

Method
Sequence 19 × 100 93.83% 90.12% 95.06% mRMR_10% 92.59% mRMR_30%

Image

19 × 100 92.59% 92.59% 95.06% mRMR_10% 91.36% mRMR_10%
60 × 100 91.36% 90.12% 95.06% mRMR_5% 86.42% mRMR_10%
60 × 60 91.36% 92.59% 88.89% mRMR_10% 88.89% mRMR_10%

100 × 100 93.83% 91.36% 95.06% mRMR_5% 93.83% mRMR_5%

4.3. Data Augmentation

Figure 10. Accuracy results for each classifier when the inputs are images of various sizes.

Considering the traditional machine learning classifiers, Figures 9 and 10 show that
regardless of the feature processing method applied, the classification results of RF and
XGBoost are generally the best options. Table 6 lists the accuracy results of RF and XGBoost
with the original features and those determined via the feature engineering methods. The
results show that when the image size is 100 × 100 and we select the best features with 5%
of the original feature quantity based on using mRMR as the feature input, we can find the
best classification results. The accuracies of RF and XGBoost via feature engineering are
95.06% and 93.83%, respectively, increasing the accuracies by 1.31% and 2.70%, respectively.
We notice that although the accuracy of RF is higher than that of XGBoost, RF has the
characteristics of being better at classifying known data but performing poorly on unknown
data. Therefore, to ensure that the developed classifier has a wider availability in the
real-time field, a large amount of user training data may be required. However, this
approach may not only cause inconvenience to the subjects, but also lead to the possibility
of overfitting the model by collecting too many similar data. Therefore, we propose a

Sensors 2023, 23, 7802 17 of 22

variety of generators to generate training data and load the newly generated data into the
previously pre-trained RF and XGBoost classifiers to determine the desired classifier with
the highest generalization capability.

Table 6. Best accuracy results in RF and XGBoost determined via various feature engineering methods.

Size

Original Feature FE

RF XGBoost
RF XGBoost

Acc The Best
Method Acc The Best

Method

Sequence 19 × 100 93.83% 90.12% 95.06% mRMR_10% 92.59% mRMR_30%

Image

19 × 100 92.59% 92.59% 95.06% mRMR_10% 91.36% mRMR_10%

60 × 100 91.36% 90.12% 95.06% mRMR_5% 86.42% mRMR_10%

60 × 60 91.36% 92.59% 88.89% mRMR_10% 88.89% mRMR_10%

100 × 100 93.83% 91.36% 95.06% mRMR_5% 93.83% mRMR_5%

4.3. Data Augmentation

As mentioned in Section 4.2, feature engineering based on an image size of
100 × 100 and an important feature set based on mRMR by selecting 5% of the origi-
nal feature numbers leads to the best classification performance. Therefore, new images
with a size of 100 × 100 are generated to perform data augmentation. Meanwhile, a low-
random noise is appropriately added to improve the noise resistance and generalization
of the classification model. The action data containing the transition period extending
from the current action to the new action are fed into the generative model according to
each activity category. Each generator will generate 100 pieces of data for each category,
equaling 400 new pieces of data in total. Figure 11 shows a typical run of generating new
data. All six generators will generate a total of 2400 pieces of new data.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 22

As mentioned in Section 4.2, feature engineering based on an image size of 100 × 100
and an important feature set based on mRMR by selecting 5% of the original feature num-
bers leads to the best classification performance. Therefore, new images with a size of 100
× 100 are generated to perform data augmentation. Meanwhile, a low-random noise is
appropriately added to improve the noise resistance and generalization of the classifica-
tion model. The action data containing the transition period extending from the current
action to the new action are fed into the generative model according to each activity cate-
gory. Each generator will generate 100 pieces of data for each category, equaling 400 new
pieces of data in total. Figure 11 shows a typical run of generating new data. All six gen-
erators will generate a total of 2400 pieces of new data.

Figure 11. Generating new data for each category based on a generative model.

Subsequently, we combine all newly generated data with the training data in the
original dataset to create a new training dataset with a total of 2720 pieces of data. As a
result of the inputting of the training data into the previously pre-trained RF and XGBoost
classifiers and their further re-training, Table 7 describes the accuracy results of the clas-
sifiers after data augmentation. The results show that RF may cause unsatisfactory model
classification results due to the newly added fake data. This result occurs because of the
fact that RF uses bagging and randomly extracts k features of a classification subset as
decision-making factors. Thus, when we load an image with input features of 100 × 100,
the accuracy of the model is less susceptible to the newly generated data due to the high
resolution of the newly generated data and the preservation of the correlation between
the signals.

Table 7. Accuracy results of RF and XGBoost after data augmentation.

Original Feature FE—mRMR_5%

RF XGBoost RF XGBoost
Original 93.83% 91.36% 95.06% 93.83%

Re-training 93.83% 95.06% 91.36% 96.03%

4.4. Classifier and Generator
To find the most believable generator for newly generated data, we load the fake data

into the un-retrained RF and XGBoost classification models. Table 8 lists the accuracy re-
sults derived by loading the data generated via each generative model into the pre-trained
model. Referring to the results, in the both the RF and XGBoost models, the data generated
via CVAE have the highest correct classification accuracy. We observe that XGBoost can
even classify 80.75% of the new data, which results in the highest classification accuracy,
implying that XGBoost may have a better performance than RF in terms of classifying
unknown data.

Figure 11. Generating new data for each category based on a generative model.

Subsequently, we combine all newly generated data with the training data in the origi-
nal dataset to create a new training dataset with a total of 2720 pieces of data. As a result of
the inputting of the training data into the previously pre-trained RF and XGBoost classifiers
and their further re-training, Table 7 describes the accuracy results of the classifiers after
data augmentation. The results show that RF may cause unsatisfactory model classification
results due to the newly added fake data. This result occurs because of the fact that RF
uses bagging and randomly extracts k features of a classification subset as decision-making
factors. Thus, when we load an image with input features of 100 × 100, the accuracy of
the model is less susceptible to the newly generated data due to the high resolution of the
newly generated data and the preservation of the correlation between the signals.

Sensors 2023, 23, 7802 18 of 22

Table 7. Accuracy results of RF and XGBoost after data augmentation.

Original Feature FE—mRMR_5%

RF XGBoost RF XGBoost

Original 93.83% 91.36% 95.06% 93.83%

Re-training 93.83% 95.06% 91.36% 96.03%

4.4. Classifier and Generator

To find the most believable generator for newly generated data, we load the fake
data into the un-retrained RF and XGBoost classification models. Table 8 lists the accuracy
results derived by loading the data generated via each generative model into the pre-trained
model. Referring to the results, in the both the RF and XGBoost models, the data generated
via CVAE have the highest correct classification accuracy. We observe that XGBoost can
even classify 80.75% of the new data, which results in the highest classification accuracy,
implying that XGBoost may have a better performance than RF in terms of classifying
unknown data.

Table 8. The new data of each generator are loaded into the pre-trained RF and XGBoost models at a
accuracy level.

Generator
Classifier RF

(Pre-Trained)
XGBoost

(Pre-Trained)

AE 46.25% 25.00%

CVAE 59.00% 80.75%

GAN 51.50% 51.50%

AAE 50.25% 63.00%

DCGAN 44.25% 47.75%

CGAN 35.00% 41.25%

4.5. Discussion

Comparing the existing HAR systems to an IMU node, the proposed system simulates
the real-world environment as much as possible, which does not need to regulate the
subject to complete the specified action within the specified time and limit of its action tra-
jectory. Compared to existing AI-based HAR studies (e.g., SVM [19,26], DT [19], KNN [26],
RF [26], HMM [27], AdaBoost [28], LSTM [36,39], and CNN [37–39]), we implement up to
19 classifiers and 6 generators and combine the two hyperparameter optimization meth-
ods of GS and RS to find the most suitable model. At the same time, we use feature
engineering with two different concepts (i.e., selecting a subset of features with the most
correlation with the output and the least correlation among these corresponding features)
to reduce the feature dimension, find the ideal input features, further reduce the size of
the classifier, and improve the time and accuracy of classification operations, providing a
comprehensive study.

Based on the proposed system architecture and design, the open neural network ex-
change [59] format is applied to represent the classifier and generator models, being written
in Python programming language during pre-training. Afterwards, the proposed system
integrates the model into the UI written via C Sharp programming through the ML.NET
framework [60] and combines the experimental results with development environments in
programming to further realize the real-time HAR system.

For data pre-processing, the proposed system improves the generalization of the
classification models and noise resistance through the proposed data augmentation strategy.
Consequently, the resolution of the generative model required to perform detail generation
is utilized through converting the inertial serial numbers into an image method to generate
the most similar pieces of data and correct the inappropriate part of the data.

Sensors 2023, 23, 7802 19 of 22

For feature engineering, the data generated via the proposed method have a relatively
ideal classification accuracy as the input feature. We try various image sizes and combine
PCA and mRMR with two feature engineering methods used to perform feature screening.
The results show that when the image size is 100 × 100 and 5% of the original feature
number is selected using the mRMR method to be the input feature of the classifier, the
classification accuracy is the highest. Although we only have training data for one subject,
we have placed the IMU node in the most suitable position, which allows us to capture the
most accurate inertial signal. At the same time, we use the Madgwick filter to eliminate
drift and errors caused by fast movements. If the node is worn by a user who is different
in height and weight to the subject, the vibration will be similar, despite the different size
of the inertial signal. Therefore, combined with the feature engineering method described
earlier, the input features of the user will be similar to those of the subject, which means
that the proposed system have good versatility.

For data generation, since we apply mRMR to select the features of the newly generated
data, the number of features in the input classifier becomes 500 (i.e., 5%). Although we find
the optimal subset of features based on the original dataset, we cannot guarantee that the
selected features, according to the subset found in the newly generated dataset, maintain
maximum correlation and minimum redundancy. At the same time, due to the reduction
in a large number of features, the correlation between features may be reduced, which
leads to performance degradation after using the mRMR algorithm. In contrast, XGBoost is
effectively improved, regardless of whether it performs feature engineering.

In summary, based on the experimental results of the classification performance,
the re-trained XGBoost and CVAE models are used as the final classifier and the final
generator, respectively, with classification accuracy of 96.03%. While the accuracy of the
classified actions is as expected, the proposed system can only classify the actions with
large variations, which may limit its use in the field. Therefore, to be more in line with
the real-world environment, we are planning to define actions with high classification
complexity as future goals.

5. Conclusions

In this work, we propose a novel real-time human activity recognition system. The
proposed system consists of four parts: data sampling, data pre-processing, a classifier,
and a generator. To screen features and improve the model’s generalization, we preserve
the correlation between multiple inertial signals by converting the sequence into images
and integrating the mRMR method and the data augmentation strategy such that the
IMU activity can still be identified, even with limited training data, inertial signal drift,
and noise.

Based on models such as the traditional machine learning, deep learning, and transfer
learning models, experimental results show that the accuracy levels of the RF and XGBoost
models are generally greater under various feature engineering methods, especially when
the image size is 100 × 100 pixels and the important features of 5% of the original features
are selected via the mRMR method. However, after adding the unknown data, XGBoost
has a better accuracy of 96.03%, while the accuracy of RF drops to 91.36%. Moreover, the
newly generated data are fed into the classifier and combined with the aforementioned
feature engineering to evaluate the best generator. Based on the experimental results,
the data generated via CVAE are classified with the highest accuracy (80.75%), even in
XGBoost without re-training, which implies that this CVAE generator has the highest
effectiveness, while the generalization ability of XGBoost is better than that of RF. Therefore,
the proposed system selects the pre-trained XGBoost and CVAE as the classifier and
generator, respectively, which can be further integrated into the visual interface to complete
the real-time HAR system. In a future work, we plan to collect action data related to diverse
human activities, accomplish more complex HAR with lower system resources, improve
the operational performance and efficiency, and improve the classification accuracy.

Sensors 2023, 23, 7802 20 of 22

Author Contributions: Conceptualization, Y.-H.T. and C.-Y.W.; Formal analysis, Y.-H.T.; Funding
acquisition, C.-Y.W.; Methodology, Y.-H.T. and C.-Y.W.; Supervision, C.-Y.W.; Visualization, Y.-H.T.;
Writing—original draft, Y.-H.T.; Writing—review and editing, C.-Y.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Smart Sustainable New Agriculture Research Center
(SMARTer) at the NSTC of Taiwan under grant number 111-2634-F-005-001, as well as the “Innovation
and Development Center of Sustainable Agriculture” scheme of the Featured Areas Research Center
Program within the framework of the Higher Education Sprout Project funded by the Ministry of
Education (MOE) of Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The author working at the Department of Computer Science and
Engineering, National Chung Hsing University, Taiwan, was the subject of the experiments. The
author agreed to participate in this research study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; the collection, analyses, or interpretation of data; the writing of the manuscript; or the
decision to publish the results.

References
1. Qi, W.; Wang, N.; Su, H.; Aliverti, A. DCNN based human activity recognition framework with depth vision guiding. Neurocom-

puting 2022, 486, 261–271. [CrossRef]
2. Bianchi, V.; Bassoli, M.; Lombardo, G.; Fornacciari, P.; Mordonini, M.; Munari, I.D. IoT Wearable Sensor and Deep Learning: An

Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment. IEEE Internet Things J. 2019, 6,
8553–8562. [CrossRef]

3. Kim, Y.W.; Joa, K.L.; Jeong, H.Y.; Lee, S. Wearable IMU-based human activity recognition algorithm for clinical balance assessment
using 1D-CNN and GRU ensemble model. Sensors 2021, 21, 7628. [CrossRef] [PubMed]

4. Antonelli, M.; Digo, E.; Pastorelli, S.; Gastaldi, L. Wearable MIMUs for the identification of upper limbs motion in an industrial
context of human-robot interaction. In Proceedings of the 18th International Conference on Informatics in Control, Automation
and Robotics (ICINCO 2021), Online, 6–8 July 2021; pp. 403–409.

5. Ann, O.C.; Theng, L.B. Human activity recognition: A review. In Proceedings of the 2014 IEEE International Conference on
Control System, Computing and Engineering (ICCSCE 2014), Penang, Malaysia, 28–30 November 2014.

6. Zhou, H.; Hu, H. Human motion tracking for rehabilitation—A survey. Biomed. Signal Process. Control 2008, 3, 1–18. [CrossRef]
7. Ayman, A.; Attalah, O.; Shaban, H. Smart System for Recognizing Daily Human Activities Based on Wrist IMU Sensors. In

Proceedings of the 2019 International Conference on Advances in the Emerging Computing Technologies (AECT), Al Madinah Al
Munawwarah, Saudi Arabia, 10 February 2020.

8. Ambroziak, S.J.; Correia, L.M.; Katulski, R.J.; Mackowiak, M.; Oliveira, C.; Sadowski, J.; Turbic, K. An Off-Body Channel Model
for Body Area Networks in Indoor Environments. IEEE Trans. Antennas Propag. 2016, 64, 4022–4035. [CrossRef]

9. Euston, M.; Coote, P.; Mahony, R.; Kim, J.; Hamel, T. A complementary filter for attitude estimation of a fixed-wing UAV. In
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008.

10. Madgwick, S.; Vaidyanathan, R.; Harrison, A. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. In
Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011.

11. Huynh, T.; Fritz, M.; Schiele, B. Discovery of activity patterns using topic models. In Proceedings of the 10th International
Conference on Ubiquitous Computing—UbiComp, Seoul, Republic of Korea, 21–24 September 2008; p. 10.

12. Zappi, P.; Lombriser, C.; Stiefmeier, T.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity Recognition from On-Body Sensors:
Accuracy-Power Trade-Off by Dynamic Sensor Selection. In Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany,
2008; pp. 17–33.

13. Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable Assistant for Parkinson’s Disease
Patients with the Freezing of Gait Symptom. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 436–446. [CrossRef]

14. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity recognition using
smartphones. In Proceedings of the ESANN 2013 Proceedings, 21th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013; pp. 437–442.

15. Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Pervasive computing; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 1–17.

16. Maurer, U.; Smailagic, A.; Siewiorek, D.P.; Deisher, M. Activity Recognition and Monitoring Using Multiple Sensors on Different
Body Positions. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06),
Cambridge, MA, USA, 3–5 April 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 113–116. [CrossRef]

https://doi.org/10.1016/j.neucom.2021.11.044
https://doi.org/10.1109/JIOT.2019.2920283
https://doi.org/10.3390/s21227628
https://www.ncbi.nlm.nih.gov/pubmed/34833704
https://doi.org/10.1016/j.bspc.2007.09.001
https://doi.org/10.1109/TAP.2016.2586510
https://doi.org/10.1109/TITB.2009.2036165
https://doi.org/10.1109/BSN.2006.6

Sensors 2023, 23, 7802 21 of 22

17. Ermes, M.; Parkka, J.; Mantyjarvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors in controlled and
uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26. [CrossRef]

18. Lu, J.; Zheng, X.; Sheng, M.; Jin, J.; Yu, S. Efficient human activity recognition using a single wearable sensor. IEEE Internet Things
J. 2020, 7, 11137–11146. [CrossRef]

19. Ayman, A.; Attalah, O.; Shaban, H. An Efficient Human Activity Recognition Framework Based on Wearable IMU Wrist Sensors.
In Proceedings of the 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab
Emirates, 9–10 December 2019.

20. Kangas, M.; Konttila, A.; Winblad, I.; Jamsa, T. Determination of simple thresholds for accelerometry-based parameters for fall
detection. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Lyon, France, 22–26 August 2007.

21. Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement
classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–157. [CrossRef]

22. Mascret, Q.; Bielmann, M.; Fall, C.; Bouyer, L.J.; Gosselin, B. Real-Time Human Physical Activity Recognition with Low Latency
Prediction Feedback Using Raw IMU Data. In Proceedings of the 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018.

23. Han, J.; Song, W.; Gozho, A.; Sung, Y.; Ji, S.; Song, L.; Wen, L.; Zhang, Q. LoRa-Based Smart IoT Application for Smart City: An
Example of Human Posture Detection. Wirel. Netw. Technol. Smart Cities 2020, 2020, 8822555. [CrossRef]

24. mySQL Documentation: MySQL 8.0 Reference Manual. Available online: https://dev.mysql.com/doc/refman/8.0/en/ (accessed
on 15 June 2023).

25. Abdallah, N.H.; Brahim, R.; Bouslimani, Y.; Ghribi, M.; Kaddouri, A. IoT device for Athlete’s movements recognition using
inertial measurement unit (IMU). In Proceedings of the 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence,
and Communications Technology (IAICT), Bandung, Indonesia, 27–28 July 2021.

26. Siwadamrongpong, W.; Chinrungrueng, J.; Hasegawa, S.; Nantajeewqrqwat, E. Fall Detection and Prediction Based on IMU
and EMG Sensors for Elders. In Proceedings of the 2022 19th International Joint Conference on Computer Science and Software
Engineering (JCSSE), Bangkok, Thailand, 22–25 June 2022.

27. Guerra, J.; Uddin, J.; Nilsen, D.; Mclnerney, J.; Fadoo, A.; Omofuma, I.B.; Hughes, S.; Agrawal, S.; Allen, P.; Schambra, H.M.
Capture, learning, and classification of upper extremity movement primitives in healthy controls and stroke patients. In
Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017.

28. Kuni, R.; Prathivadi, Y.; Wu, J.; Bennett, T.R.; Jafari, R. Exploration of interactions detectable by wearable IMU sensors. In
Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN),
Cambridge, MA, USA, 9–12 June 2015.

29. Mathie, M.J.; Celler, B.G.; Lovell, N.H.; Coster, A.C.F. Classification of basic daily movements using a triaxial accelerometer. Med.
Biol. Eng. Comput. 2004, 42, 679–687. [CrossRef] [PubMed]

30. Oliver, A.S.; Anuradha, M.; Justus, J.J.; Maheshwari, N. Optimized low computational algorithm for elderly fall detection based
on machine learning techniques. Biomed. Res. 2018, 29, 3715–3722. [CrossRef]

31. Arif, M.; Kattan, A. Physical activities monitoring using wearable acceleration sensors attached to the body. PLoS ONE 2015,
10, e0130851. [CrossRef] [PubMed]

32. Qin, Z.; Huang, G.; Xiong, H.; Choo, K.-K.R. A fuzzy authentication system based on neural network learning and extreme value
statistics. IEEE Trans. Fuzzy Syst. 2019, 29, 549–559. [CrossRef]

33. Eyobu, O.S.; Han, D.S. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable
IMU Sensor Data Using a Deep LSTM Neural Network. Sensors 2018, 18, 2892. [CrossRef]

34. Tao, W.; Lai, Z.H.; Leu, M.C.; Yin, Z. Worker Activity Recognition in Smart Manufacturing Using IMU and sEMG Signals with
Convolutional Neural Networks. Procedia Manuf. 2018, 26, 1159–1166. [CrossRef]

35. Aghdam, H.H.; Heravi, E.J. Guide to Convolutional Neural Networks; Springer: New York, NY, USA, 2017; Volume 10.
36. Bruinsma, J.; Carloni, R. IMU-Based Deep Neural Networks: Prediction of Locomotor and Transition Intentions of an Osseointe-

grated Transfemoral Amputee. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1079–1088. [CrossRef]
37. Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for

human activity recognition. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos
Aires, Argentina, 25–31 July 2015.

38. Zhang, X.; Zhang, J. Subject Independent Human Activity Recognition with Foot IMU Data. In Proceedings of the 2019 15th
International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenzhen, China, 11–13 December 2019.

39. Hou, C. A study on IMU-Based Human Activity Recognition Using Deep Learning and Traditional Machine Learning. In
Proceedings of the 2020 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China,
15–18 May 2020.

40. Ajani, O.S.; Hussieny, H.E. An ANFIS-based Human Activity Recognition using IMU sensor Fusion. In Proceedings of the 2019
Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 28–30 October 2019.

41. Siddiqui, N.; Chan, R.H.M. Multimodal hand gesture recognition using single IMU and acoustic measurements at wrist. PLoS
ONE 2020, 15, e0227039. [CrossRef]

https://doi.org/10.1109/TITB.2007.899496
https://doi.org/10.1109/JIOT.2020.2995940
https://doi.org/10.1109/TITB.2005.856864
https://doi.org/10.1155/2020/8822555
https://dev.mysql.com/doc/refman/8.0/en/
https://doi.org/10.1007/BF02347551
https://www.ncbi.nlm.nih.gov/pubmed/15503970
https://doi.org/10.4066/biomedicalresearch.29-18-1137
https://doi.org/10.1371/journal.pone.0130851
https://www.ncbi.nlm.nih.gov/pubmed/26203909
https://doi.org/10.1109/TFUZZ.2019.2956896
https://doi.org/10.3390/s18092892
https://doi.org/10.1016/j.promfg.2018.07.152
https://doi.org/10.1109/TNSRE.2021.3086843
https://doi.org/10.1371/journal.pone.0227039

Sensors 2023, 23, 7802 22 of 22

42. Lopes, J.; Simão, M.; Mendes, N.; Safeea, M.; Afonso, J.; Neto, P. Hand/arm Gesture Segmentation by Motion Using IMU and
EMG Sensing. Procedia Manuf. 2017, 11, 107–113. [CrossRef]

43. Tran, N.T.; Tran, V.H.; Nguyen, N.B.; Nguyen, T.K.; Cheung, N.M. On Data Augmentation for GAN Training. IEEE Trans. Image
Process. 2021, 30, 1882–1897. [CrossRef]

44. Alzantot, M.; Chakraborty, S.; Srivastava, M. SenseGen: A deep learning architecture for synthetic sensor data generation. In
Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kona, HI, USA, 13–17 March 2017.

45. Norgaard, S.; Saeedi, R.; Sasani, K.; Gebremedhin, A.H. Synthetic Sensor Data Generation for Health Applications: A Supervised
Deep Learning Approach. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018.

46. Si, C.; Wang, W.; Wang, L.; Tan, T. Multistage Adversarial Losses for Pose-Based Human Image Synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 118–126.

47. Wang, J.; Chen, Y.; Gu, Y.; Xiao, Y.; Pan, H. SensoryGANs: An Effective Generative Adversarial Framework for Sensor-based
Human Activity Recognition. In Proceedings of the International Joint Conference on Neural Networks, Rio de Janeiro, Brazil,
8–13 July 2018.

48. Zhang, X.; Yao, L.; Yuan, F. Adversarial variational embedding for robust semi-supervised learning. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 139–147.

49. Mathur, A.; Zhang, T.; Bhattacharya, S.; Velickovic, P.; Joffe, L.; Lane, N.D.; Kawsar, F.; Lio, P. Using Deep Data Augmentation
Training to Address Software and Hardware Heterogeneities in Wearable and Smartphone Sensing Devices. In Proceedings of the
2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto, Portugal, 11–13
April 2018; IEEE: Manhattan, NY, USA, 2018; pp. 200–211.

50. Soleimani, E.; Nazerfard, E. Cross-subject transfer learning in human activity recognition systems using generative adversarial
networks. Neurocomputing 2020, 426, 26–34. [CrossRef]

51. Si, C.; Wang, W.; Wang, L.; Tan, T. Multistage Adversarial Losses for Pose-Based Human Image Synthesis. In Proceedings of the
2022 7th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 22–24 June 2022.

52. Jiang, W.; Yin, Z. Human Activity Recognition Using Wearable Sensors by Deep Convolutional Neural Networks. In Proceedings
of the 23rd ACM international conference on Multimedia, New York, NY, USA, 26–30 October 2015; pp. 1307–1310.

53. MPU-9150 Nine-Axis (Gyro + Accelerometer + Compass) MEMS MotionTracking™ Device. Available online: https://invensense.
tdk.com/products/motion-tracking/9-axis/mpu-9150-2/ (accessed on 15 June 2023).

54. BNO055′s Datasheet. Available online: https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf (accessed on 25
July 2023).

55. The Register Map Document of the MPU9150. Available online: https://inertialelements.com/documents/resources_page/
MPU9150-register-manual.pdf (accessed on 15 June 2023).

56. MPU9150′s Datasheet. Available online: https://www.digikey.com/htmldatasheets/production/1474913/0/0/1/ak8963.html
(accessed on 15 June 2023).

57. Boerema, S.T.; Velsen, L.V.; Schaake, L.; Tönis, T.M.; Hermens, H.J. Optimal Sensor Placement for Measuring Physical Activity
with a 3D Accelerometer. Sensors 2014, 14, 3188–3206. [CrossRef] [PubMed]

58. Xie, S.; Zhang, Y.; Lv, D.; Chen, X.; Lu, J.; Liu, J. A new improved maximal relevance and minimal redundancy method based on
feature subset. J. Supercomput. 2023, 79, 3157–3180. [CrossRef] [PubMed]

59. ONNX 1.15.0 Documentation: API Reference. Available online: https://onnx.ai/onnx/api/index.html (accessed on 20 June 2023).
60. ML.NET Documentation: ML.NET API Reference. Available online: https://learn.microsoft.com/en-us/dotnet/api/?view=ml-

dotnet (accessed on 20 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.promfg.2017.07.158
https://doi.org/10.1109/TIP.2021.3049346
https://doi.org/10.1016/j.neucom.2020.10.056
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9150-2/
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9150-2/
https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
https://inertialelements.com/documents/resources_page/MPU9150-register-manual.pdf
https://inertialelements.com/documents/resources_page/MPU9150-register-manual.pdf
https://www.digikey.com/htmldatasheets/production/1474913/0/0/1/ak8963.html
https://doi.org/10.3390/s140203188
https://www.ncbi.nlm.nih.gov/pubmed/24553085
https://doi.org/10.1007/s11227-022-04763-2
https://www.ncbi.nlm.nih.gov/pubmed/36060093
https://onnx.ai/onnx/api/index.html
https://learn.microsoft.com/en-us/dotnet/api/?view=ml-dotnet
https://learn.microsoft.com/en-us/dotnet/api/?view=ml-dotnet

	Introduction
	Related Works
	System Description
	Stage 1: Networked Sensing and Data Sampling
	Stage 2: Data Pre-Processing
	Stage 3: Activity Classification
	Stage 4: Data Generation

	System Evaluation
	Singal Processing
	Feature Engineering
	Data Augmentation
	Classifier and Generator
	Discussion

	Conclusions
	References

