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Abstract: Path planning and tracking control is an essential part of autonomous vehicle research. In
terms of path planning, the artificial potential field (APF) algorithm has attracted much attention
due to its completeness. However, it has many limitations, such as local minima, unreachable
targets, and inadequate safety. This study proposes an improved APF algorithm that addresses these
issues. Firstly, a repulsion field action area is designed to consider the velocity of the nearest obstacle.
Secondly, a road repulsion field is introduced to ensure the safety of the vehicle while driving. Thirdly,
the distance factor between the target point and the virtual sub-target point is established to facilitate
smooth driving and parking. Fourthly, a velocity repulsion field is created to avoid collisions. Finally,
these repulsive fields are merged to derive a new formula, which facilitates the planning of a route
that aligns with the structured road. After path planning, a cubic B-spline path optimization method
is proposed to optimize the path obtained using the improved APF algorithm. In terms of path
tracking, an improved sliding mode controller is designed. This controller integrates lateral and
heading errors, improves the sliding mode function, and enhances the accuracy of path tracking. The
MATLAB platform is used to verify the effectiveness of the improved APF algorithm. The results
demonstrate that it effectively plans a path that considers car kinematics, resulting in smaller and
more continuous heading angles and curvatures compared with general APF planning. In a tracking
control experiment conducted on the Carsim–Simulink platform, the lateral error of the vehicle is
controlled within 0.06 m at both high and low speeds, and the yaw angle error is controlled within
0.3 rad. These results validate the traceability of the improved APF method proposed in this study
and the high tracking accuracy of the controller.

Keywords: autonomous vehicle; path planning; path tracking; artificial potential field; sliding
mode control

1. Introduction

The automotive industry has experienced rapid development in recent years, with
continuous transformation and upgrading of cars. The development of automobiles toward
intelligence, electrification, networking, and sharing has greatly improved transportation
and people’s daily lives [1–3]. The autonomous vehicle represents the most advanced tech-
nology in the industry’s development. It encompasses three main components, including
environmental perception [4], path planning [5], and tracking control [6]. The first part
relies on various sensors to detect the external environment and input this information into
the autonomous vehicle system [7–9], thereby establishing the foundation for subsequent
planning and control [10]. The objective of planning is to determine the most optimized
path for intelligent vehicles using appropriate algorithms [11]. The function of control
involves using suitable controllers to guide the vehicle along the planned path [12,13]. This
study primarily focuses on the study of path planning and tracking control [14].

Path planning is one of the important aspects of intelligent vehicles. It includes two
major parts, global path planning and local path planning. Global path planning is carried
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out throughout the entire map range, planning a rough route for vehicles from the starting
point to the endpoint. The classification of common global path planning methods is
as follows, graph search-based algorithms such as A* [15] and Dijkstra [16], intelligent
algorithms such as the genetic algorithm [17] and particle swarm optimization [18], and
machine learning-based methods such as reinforcement learning [19] and deep learning [20].
Local path planning is carried out in the environment surrounding the vehicle’s current
location. It is used to plan a local collision-free path in detail.

Common local path planning algorithms include potential-based methods such as
the APF method and the minimum potential energy method, rule-based methods such as
the discrete method and the continuous method, and sampling-based methods such as
Monte Carlo sampling [21] and inverse sampling. Most of the improved A* algorithms
can effectively plan a collision-free path, as global path planning is already very mature.
However, local path planning algorithms have problems such as local optima, an inability
to adapt to dynamic environments, and poor security. Therefore, this study focuses on
local path planning. Among them, the APF method has the advantages of simplicity, high
real-time performance, and adaptability to complex environments. Therefore, the most
widely used APF method was chosen for improvement.

At present, the APF method has drawbacks such as local minima, unreachable tar-
get points, and poor adaptability to traffic environments. Scholars have made a series
of improvements to the APF method. Li et al. [22] proposed a minimum safe distance
model for overtaking and lane-changing scenarios. The length of overtaking routes was
controlled to a minimum by setting a minimum safety distance. However, only considering
the minimum route ignores the dynamic constraints of the vehicle, which may result in
the turning radius of the vehicle not reaching that large. Yao et al. [23] proposed a fusion
method of the black hole potential field and reinforcement learning to solve the problem
of local minima. Their method found target points in a multi-objective environment. At
the same time, the trained autonomous vehicle quickly adapted to the scene containing
new obstacles in real time. However, setting the threshold is not very easy to grasp. If
the threshold is set too high, multiple gravitational fields will overlap. On the contrary, if
the threshold is too low, it cannot be detected. Xie et al. [24] proposed an improved APF
algorithm, which introduced the concepts of the velocity difference potential field and the
acceleration difference potential field. They also proposed an optimization algorithm based
on the stability of vehicles. Their experimental results demonstrated that the improved
algorithm successfully enabled the safe overtaking of multiple-lane fleets. Although the
generated path can meet the road constraints, dynamic constraints, and kinematic con-
straints in the environment set in the text, it cannot adapt to complex environments such as
multiple obstacles. Duan et al. [25] proposed an improved APF method for local minima in
the safe distance model. They introduced a second virtual target gravitational field. Their
experiments showed that the improved APF method could effectively solve the problem
of local minima. Although the safety and stability of cars were improved, they did not
take into account the issues of unreachable goals and constraints of the traffic environment.
Feng et al. [26] put forward a model for lateral lane changing and a model for longitudinal
braking distance in order to avoid collisions. They also integrated the safety model into
the APF algorithm. This allowed them to plan a collision avoidance path that satisfied
stability requirements. However, their study did not consider the dynamic environment,
which is too simplistic and limited in its adaptability. Yuan et al. [27] proposed lateral and
longitudinal safety distance models to analyze the braking process and limit the sideslip
angle. Building on these models, they improved the APF algorithm. Their simulation
results demonstrated that obstacle avoidance could be achieved within a short period
of time. However, they did not address the issue of unreachable targets and insufficient
adaptability to different environmental conditions. These algorithms have made significant
progress in enhancing planning efficiency, reducing computational costs, and complying
with kinematic constraints. Nevertheless, further research and improvement are required
to achieve a more efficient, accurate, and secure autonomous vehicle path planning system.
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Table 1 lists the methods, merits, and drawbacks of the improved APF methods mentioned
in the above references.

Table 1. Comparison of Improved APF Methods.

Methods Merits Drawbacks

Based on the safe distance model Driving safety Restricted turning radius
Algorithm fusion Real-time performance of path planning Difficulty in setting the threshold

Improvement in the repulsive field Driving safety, vehicle Stability Poor adaptability to complex
environments

Improvement in the gravitational field Feasibility of path planning, vehicle
Stability Constraints of the traffic environment

Multi-condition model Driving safety Poor adaptability to complex
environments

Path tracking control is based on the planned path at the upper level and uses a
specific control algorithm for tracking control [28]. Existing issues in vehicle path track-
ing primarily include inaccuracies in path tracking and control instability [29], as well as
the presence of dynamic and kinematic constraints in the vehicle [30]. To address these
concerns, researchers from both domestic and foreign backgrounds have implemented
various improvement strategies for enhancing path-tracking performance. In response to
the aforementioned concerns, scholars have implemented a range of measures to enhance
path tracking. Chen et al. [31] proposed a hierarchical dynamic drift controller for achieving
smoother tracking of general paths. The controller is divided into three layers. The first
layer determines the state of the system. The second layer combines drift and typical
turning control using a dynamic drift inverse model. The third layer implements a steering
system and controls wheel speed. This controller can successfully achieve high tracking
accuracy in real time. Wang et al. [32] improved the LQR algorithm and designed a discrete
LQR controller with both feedforward and feedback components. They utilize fuzzy control
methods to dynamically adjust the weight coefficients of the LQR controller. The update
mechanism, based on cosine similarity, achieves the objective of reducing computational
complexity. This control algorithm effectively enhances path-tracking accuracy but ex-
hibits relatively weak steering stability. Sliding mode control(SMC), a well-established
nonlinear control strategy, generates discontinuous control signals that compel the system
to follow a predetermined sliding mode trajectory [33]. Nevertheless, traditional fuzzy
control encounters a significant issue when the system reaches the sliding mode surface, as
it leads to chattering. Hence, scholars have used diverse techniques to mitigate chattering
and improve the effectiveness of the controller. Terminal sliding mode control is one such
technique that suppresses chattering and reduces the convergence time in comparison
with traditional SMC [34]. Ao et al. [35] introduced a super twisted sliding mode control
algorithm, and with the application of backstepping techniques and experiments, they
successfully demonstrated the stability and robustness of the system. Similarly, Sabiha
et al. [36] developed an integral terminal SMC approach that not only guarantees finite
time convergence but also enhances the convergence speed. Building upon these advance-
ments, Wang et al. [37] proposed an adaptive integral terminal SMC method, which offers
several advantages over other sliding mode controllers. While the previous enhancements
demonstrated promising results, there is still room for further improvement in terms of
control accuracy and stability. Consequently, this study introduces an improved sliding
mode controller with error fusion based on the aforementioned SMC method to ensure
accurate and stable path tracking. Table 2 shows the methods, merits, and drawbacks of
the improved path-tracking methods mentioned in the above references.
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Table 2. Comparison of Improved Path Tracking Methods.

Methods Merits Drawbacks

Hierarchical dynamic drift
controller High tracking accuracy Poor system stability

Discrete LQR Simple calculations Weak steering stability
Super twisted SMC Good system stability Long calculation time

Integral terminal SMC Fast convergence speed Poor system stability
Adaptive integral terminal SMC Good system stability Poor tracking accuracy

Figure 1 is a block diagram showing the path planning and path tracking system
designed in this study.
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Path planning in the upper layer uses an improved APF method. Initially, the range of
the obstacle repulsion field is determined. Subsequently, improvements are implemented
in four aspects, including the road repulsion field, target point distance factor, virtual
sub-target point, and velocity repulsion field. These enhancements lead to the generation
of an improved path. The optimized path is then smoothed using a cubic Bessel curve
and fed into the lower layer for path tracking. In the lower layer, an improved sliding
mode controller is used for trajectory tracking. This controller incorporates fusion error
and improves the sliding mode function, resulting in high-precision trajectory tracking.
This validates the upper layer’s ability to generate traceable optimized paths. The main
contributions of this study are as follows.

1. This study presents a method for setting the action area of a repulsive force field by
analyzing the change in obstacle velocity. The detection process is divided into two
areas. First, within a 120◦ range in front of the vehicle, a forward detection radius
function is formulated based on the relative velocity between the closest obstacle
and the vehicle. This function determines the detection area for obstacles in front.
Similarly, a rear detection radius function is developed to cover a 240◦ range behind
the vehicle for rear detection purposes. By considering only obstacles within the
detection range, it saves computational time by ignoring irrelevant obstacle repulsion
fields. This approach ensures both the accuracy and real-time performance of the path
planning process.

2. In response to the problem of unreachable targets and local optima in traditional
APF methods, this study introduces the concept of virtual sub-target points and a
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target point distance factor. These sub-target points are randomly generated within a
certain radius around the target point to replace the original target point when the
resultant force becomes zero during obstacle movement. By doing so, the resultant
force is always maintained as non-zero, preventing the vehicle from becoming stuck
in local minima. Additionally, the distance factor for the target point is included in
the formula to ensure that the total force becomes zero when the vehicle reaches the
target point.

3. This study presents an improved sliding mode controller that incorporates error
fusion to ensure vehicle driving stability and tracking accuracy, taking into consider-
ation both lateral and heading errors. By utilizing the improved APF algorithm, an
optimized path is computed, incorporating vehicle kinematics and dynamics, which
is then utilized as input for the lower controller responsible for path tracking. This
aims to verify the feasibility of the planned path and evaluate the effectiveness of the
enhanced tracking controller.

4. To verify the effectiveness of path planning and tracking, this study uses the Carsim–
Simulink joint simulation platform. The experiment encompasses both static and
dynamic scenarios. The static scene involves designing an environment with obstacles
and two lanes ahead and utilizing an improved APF method to devise secure routes
for vehicles. A vehicle with moving obstacles is placed in the dynamic scene, and the
improved APF proposed in this study is used to generate an optimized and safe path
for the autonomous vehicle. The experimental results demonstrate that the planned
driving path is fully compliant with safety and road constraints, allowing for the
vehicle to smoothly reach the endpoint.

2. Path Planning Algorithm
2.1. Traditional APF Algorithm

The APF algorithm was initially proposed by Khatib as an algorithm for robot path
planning [38]. The fundamental principle of traditional APF algorithms involves envi-
sioning the vehicle moving within an artificially defined abstract potential field. This
potential field is composed of two primary components, including a gravitational field and
a repulsive field. Obstacles exert a repulsive force on the autonomous vehicle, while the
target point exerts a gravitational force. Consequently, the combined forces of repulsion
and gravity determine the direction of the vehicle’s movement (Figure 2). The following
schematic diagram illustrates the repulsive and gravitational forces exerted by obstacles
and target points on autonomous vehicles operating in APF.
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Equation (1) shows the calculation for the gravitational field generated by the target
point on the vehicle.

Uatt(q) =
1
2

kattρ
2(q, qg) (1)
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where Uatt(q) is the gravitational field, katt is the gain of the gravitational field, and ρ(q, qg)
represents the Euclidean distance between the car and the target.

The magnitude of gravity is the negative derivative of the gravitational field on the
distance between the vehicle and the target point.

Fatt(q) = −∇Uatt(q) = −kattρ(q, qg) = −katt(q− qg) (2)

The repulsive field function can be calculated using Equation (3).

Urep(q) =

{
0, ρ(q, qg) > ρ0

1
2 krep[

1
ρ(q,q0)

− 1
ρ0
], 0 ≤ ρ(q, qg) < ρ0

(3)

where Urep(q) is the size of the repulsive field, krep is the gain in the repulsive field, ρ(q, qg)
represents the Euclidean distance between the car and the obstacle, and ρ0 is the range of
repulsion influence of the obstacle.

The magnitude of repulsion is the negative derivative of the repulsion field on the
distance between vehicles and obstacles.

Frep(q) = −∇Urep(q) =

{
0, ρ(q, qg) > ρ0

krep[
1

ρ(q,q0)
− 1

ρ0
]× 1

ρ2(q,q0)
, 0 ≤ ρ(q, qg) < ρ0

(4)

Based on the above analysis, in the traditional APF algorithm, the total potential field
and resultant force on the intelligent vehicle are shown in Equations (5) and (6), respectively.

Utotal = Uatt(q) +
n

∑
i=1

Urep(q) (5)

Ftotal = Fatt(q) +
n

∑
i=1

Frep(q) (6)

The sum of the gravitational force Fatt(q) generated by the target point and the repul-
sive force Frep(q) generated by the obstacle is the combined force Ftotal on the smart car.
The composition of forces controls the intelligent vehicle to avoid obstacles while driving.

2.2. Improved APF Method

Traditional APF suffers from the limitations of local optima and unattainable targets
in the process of path planning, as depicted in Figure 3. Local optimization occurs when
a vehicle halts halfway due to a zero resultant force during motion. The target becomes
unreachable because the vehicle is still subjected to the repulsive force of obstacles while
reaching the target point. As a result, the vehicle cannot stop at the endpoint. Additionally,
the conventional APF fails to consider the constraints imposed by guardrails on both sides
of the road scene, potentially leading to collisions with these barriers. Consequently, it is
imperative to incorporate road constraints to ensure the safety of vehicles within a lane.
Furthermore, the repulsive field function and gravitational field function of obstacles need
to be enhanced for more effective performance.
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To address the aforementioned concerns, this study proposes an improved APF
method, and Figure 4 depicts the corresponding flowchart.
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Firstly, the detection area of obstacles needs to be determined, which involves delin-
eating the scope of the repulsion field. Then, in real time, the repulsion field of obstacles
within the scope of the repulsion field is calculated. Next, by considering the road repulsion
field, velocity repulsion field, and gravity field, it can be determined whether the intelligent
vehicle has fallen into a local minimum based on the combined force. If the vehicle has
indeed fallen into a local minimum, a virtual sub-target point is selected. However, if it has
not fallen into a local minimum, the vehicle moves to the next target point and the original
target point is restored. If the smart car successfully reaches the target point, the cycle
comes to an end. However, if the car does not reach the target point, the above operation is
repeated until the target point is reached.

2.2.1. The Region of Repulsive Field Action

Considering a practical driving scenario, drivers have a field of view of 120◦ in front
of them, with a blind spot of 240◦ remaining. In this study, all obstacles around the vehicle
within a 360◦ range are taken into account. Figure 5 illustrates the range of the obstacle
repulsion field.
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As depicted in Figure 5, the repulsive field operates within the shaded areas colored
blue and red. The red area corresponds to the front detection zone, which is centered
around the vehicle body and has a radius of Rr. This area aims to consider obstacles within
a 120◦ arc ahead. The blue area represents the rear detection zone. It is also centered around
the vehicle body, with a radius of rr. It enables the detection of obstacles within 120◦ arcs
on the left and right sides of the rear. While most articles focus solely on front obstacle
detection, disregarding obstacles in the rear, such neglect poses a potential threat to car
safety. Therefore, this study takes into consideration obstacles within the rear 240◦ area as
well. Figure 6 illustrates that only obstacles that intersect with the blue and red shadows are
taken into account. Specifically, obstacles 2, 3, 4, 5, and 7 are included in the consideration
range for generating a repulsive field, while obstacles 1 and 6 are excluded. This exclusion
saves time by eliminating the need to calculate the repulsive force of unrelated obstacles,
ultimately achieving the target point more efficiently.
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Most articles commonly use the empirical value method to select Rr and rr, artificially
assigning a fixed value. However, this method is susceptible to human error. This study
uses a real-time variable radius selection method based on obstacle velocity. The method
dynamically determines Rr and rr for the velocity of the front and rear obstacles, respec-
tively. In this study, we assume that the moving obstacle is traveling in the same direction
as the vehicle.
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This study selects the obstacle closest to the vehicle’s center of mass within a 120◦

range ahead (Obstacle 4) to determine Rr. Next, the relative velocity between this obstacle
and the vehicle is calculated. Rr can be calculated with Equation (7).

Rr =


ρ(q, q f ) + 10ρ(q f ), vr > 10
ρ(q, q f ) + vrρ(q f ), 4 < vr ≤ 10
ρ(q, q f ) + 4ρ(q f ), vr < 4

(7)

where ρ
(

q, q f

)
represents the Euclidean distance between the car and the nearest obstacle

ahead, ρ(q f ) represents the radius of the nearest obstacle ahead, and vr represents the
relative speed between the car and the obstacle.

This study chooses the obstacle (obstacle 5) that is closest to the vehicle’s center of
mass within a 240◦ range behind it. Then, it calculates the relative velocity between the
nearest obstacle and the vehicle. This study uses Equation (8) to define the function rr.

rr =


ρ(q, qr) + 6ρ(qr), vr < −6
ρ(q, qr) + |vr|ρ(qr), −6 < vr ≤ 2
ρ(q, qr) + 2ρ(qr), vr > 2

(8)

where ρ(q, qr) represents the Euclidean distance between the car and the nearest obstacle
behind it and ρ(qr) represents the radius of the nearest obstacle behind it.

In summary, this study determines the front and rear detection radii by considering
the relative speeds of the nearest obstacle and the vehicle within the front (0 to 120◦) and
rear (0 to 240◦) ranges. Subsequently, the obstacle that generates the repulsive field within
the defined area is identified.

2.2.2. Road Repulsion Field

The traditional APF algorithm is typically used to investigate robot path planning in
grid map scenes, neglecting traffic scene rules. Normally, vehicles tend to travel along the
center of the road while driving, resulting in the lowest risk of colliding with guardrails.
Conversely, traveling on either side increases the danger. Figure 6 illustrates a schematic
diagram showing the distribution of the road repulsion field, accounting for the impact of
traffic scenarios on the road within the repulsion field function. The repulsion fields on
both sides of the road are set at maximum and gradually diminish toward the middle of
the road.

Considering the distribution of the repulsive field in the road scenario mentioned
above, it is essential to analyze the boundary repulsive field function in different segments.
If the vehicle is positioned on the centerline between two sets of lanes in a relatively safe
area, the repulsion field gradually weakens as its position changes. Thus, a function with a
gentle trend of change is implemented. Conversely, in areas where the danger coefficient is
relatively high, the repulsion field decreases rapidly as the position changes. Consequently,
a function with a more pronounced trend of change is used. Considering the factors
mentioned above and using two lanes as an example, the road repulsion field function is
established as presented in Equation (9).

Uroad(q) =


kroad1(e|x−xl | − 1), x ≤ L/4
2kroad2

[
cos 2(x−xl)

L

]
, L/4 < x < 3L/4

kroad3(e|x−xr | − 1), x ≥ 3L/4

(9)

where kroad1, kroad2, and kroad3 are the gain coefficients of the road repulsion field, L is the
lateral width of the road, and xl and xr are the horizontal positions of the centerline of the
left and right lanes, respectively.

As depicted in Figure 6, when a vehicle is positioned in the space between the center-
lines of two lanes, it falls within a comparatively safe zone, resulting in a relatively minor
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impact from the repulsion field. Thus, a gently changing function is used for this scenario.
On the contrary, when a vehicle is outside the two centerline lanes, it is in close proximity to
the road boundary, indicating a high danger coefficient. Consequently, a rapidly changing
function is chosen for the repulsion field in these cases. This study uses an exponential
function to generate the external repulsion field. By calculating the negative derivative
of the repulsive field function, the boundary repulsive force exerted by the road can be
obtained, as represented in Equation (10).

Froad(q) =


kroad1e|x−xl |, x ≤ L/4
kroad2

[
sin 2(x−xl)

L

]
, L/4 < x < 3L/4

kroad3e|x−xr |, x ≥ 3L/4

(10)

The vehicle should maintain its position at the center of the right lane when there are
no obstacles present. In the presence of obstacles in the current lane, the vehicle should
temporarily shift to the left lane, bypassing the obstacles, until it leaves the obstacle range
and safely returns to the right lane. To avoid any possibility of reversing direction, it is
essential to consistently drive along the centerline of the right lane.

2.2.3. Target Point Distance Factor

The study introduces the concept of incorporating the distance factor of the target
point to address the issue of unreachable target points. This modification ensures that the
overall resultant force becomes zero when the car reaches the target point. The resulting
repulsion field function is presented as follows.

Urep(q) =

{
1
2 krep[

1
ρ(q,q0)

− 1
ρ0
]
2
(q− qg)

w, 0 ≤ ρ(q, q0) < ρ0

0, ρ(q, q0) ≥ ρ0
(11)

The improved repulsion formula is obtained by performing a negative gradient opera-
tion on Equation (12).

Frep(q) = −∇Urep(q) =
{

Frep1 + Frep2, 0 ≤ ρ(q, q0) < ρ0
0, ρ(q, q0) ≥ ρ0

(12)

In Equation (12), Frep1 and Frep2 can be calculated using Equations (13) and (14).

Frep1 =

{
krep[

1
ρ(q,q0)

− 1
ρ0
]× 1

ρ2(q,q0)
(q− qg)

w, 0 ≤ ρ(q, q0) < ρ0

0, ρ(q, q0) ≥ ρ0
(13)

Frep2 =

{
krep

2 [ 1
ρ(q,q0)

− 1
ρ0
]
2 × h(q− qg)

w−1, 0 ≤ ρ(q, q0) < ρ0

0, ρ(q, q0) ≥ ρ0
(14)

The repulsion correction factor w (w > 0) significantly affects the repulsion. To prevent
an unreachable target phenomenon, the value of w must exceed 1 to ensure that the
combined repulsion at the target point is zero. Consequently, this study chooses w = 2 for
simulation experiments.

2.2.4. Virtual Sub-Target Point

To solve the problem of reaching zero resultant force, signifying a local minimum, the
concept of virtual sub-target points is introduced. A circle is formed by taking the target
point as the center and R0 as the radius, and any point on this circle is considered a virtual
sub-target point. Figure 7 depicts the selection of these virtual sub-target points, where
the red circle represents the actual target point and the blue circle represents the virtual
sub-target point. In the case of a local minimum, the red target point is transformed into a
blue virtual sub-target point. Consequently, the gravitational force exerted by the original
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target point on the car, denoted as Fatt1, ceases to exist and is replaced with the gravitational
force exerted by the virtual sub-target point on the car, designated as Fatt2. Once the car
escapes from the local minimum, the virtual sub-target point is removed, and the original
target point is reinstated to ensure the seamless progression of car path planning.
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where vk  is the velocity gain coefficient, frv  is the relative velocity between the smart car 
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2.2.5. Velocity Repulsive Field

The preceding section solely addresses static obstacles and fails to consider the pres-
ence of moving obstacles, which may potentially lead to collisions between vehicles and
moving obstacles. Therefore, we introduce a velocity repulsion field function. This func-
tion accounts for the correlation between the repulsive and gravitational fields and the
square of the distance. Furthermore, as distance is directly proportional to velocity, the
velocity repulsive field is also positively correlated with the square of the relative velocity.
Equation (15) presents the velocity repulsive field function.

Urev(q) =

{
1
2 kvv2

f r, v f r > 0∩ [α ∈ (−π
3 , π

3 )]
1
2 kvv2

rr, vrr < 0∩ [α ∈ (− 2π
3 , 2π

3 )]
(15)

where kv is the velocity gain coefficient, v f r is the relative velocity between the smart car
and the obstacle ahead, vrr is the relative velocity between the smart car and the obstacle
behind, and α is the repulsive field action area mentioned earlier.

The expression for velocity repulsion can be obtained by computing the negative
derivative of the velocity repulsion field.

Frev(q) = −∇Urev(q) =
{

kvv f r, v f r > 0∩ [α ∈ (−π
3 , π

3 )]

kvvrr, vrr < 0∩ [α ∈ (− 2π
3 , 2π

3 )]
(16)

In summary, the improved resultant potential field and resultant force are calculated
using Equations (17) and (18), respectively.

Utotal(q) = Uatt(q) + Uroad(q) + Urep(q) + Urev(q) (17)

Ftotal(q) = Fatt(q) + Froad(q) + Frep(q) + Frev(q) (18)

2.3. Path Optimization Algorithm for a Planned Path

In some situations, a route’s curvature is not smooth due to the discrete points. Hence,
this study uses a method to simplify the route that relies on the maximum rotation constraint
of the vehicle, which is performed as follows. First, start with the endpoint as the starting
point for simplification, and the first two points after the endpoint as reference points for
simplification. Then, check if the connecting line between the two points intersects with the
obstacle and satisfies the maximum rotation constraint. If there is no intersection and the
maximum rotation constraint is satisfied, then the point before the endpoint can be omitted.
Repeat this process until an essential point is identified, and then use the following crucial
point as the new starting point for sequential evaluation.
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As depicted in Figure 8, the schematic diagram illustrates the process of path sim-
plification. Initially, target qgoal is selected as the initial point for simplification and it is
connected with qgoal and q9. If the connecting line does not intersect with any obstacles and
the rotation angle falls within the specified constraint range, the nodes between qgoal and
q9 are disregarded. Subsequently, the traversal continues with q8, q7, and q6 in a sequential
manner. However, if it is observed that the maximum rotation angle exceeds the constraint
range upon q6, q7 is subsequently used as the next simplified starting point for forward
traversal. Consequently, the nodes between q7 and qgoal are ignored. This procedure is
repeated until qstart becomes the starting point for simplification. The simplified path is
represented by the solid line in Figure 8.
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The simplified path mentioned above still exhibits the issue of curvature discontinuity.
By utilizing a cubic B-spline curve for smoothing, a path with continuous curvature can
be achieved. Assuming there are n + 1 control points, the k-th order B-spline curve can be
defined as follows.

P(t) = [p0, p1, . . . , pn]


B0,K(t)
B1,K(t)

. . .
Bn,K(t)

 =
n

∑
i=0

PiBi,K(t) (19)

where P(t) represents the control point and Bi,K(t) denotes the basis function of a cubic
B-spline. Based on the de Boor–Cox formula, Bi,0(t) and Bi,3(t) can be inferred using
Equation (20).  Bi,0(t)

{
1, ti ≤ t ≤ ti+1
0, Otherwise

K = 1

Bi,3(t) =
(t−ti)Bi,2(t)

ti+3−ti
+

(ti+4−t)Bi+1,2(t)
ti+4−ti+1

, K ≥ 2
(20)

In this study, a cubic uniform B-spline curve is selected to smooth the planned path,
and the repeatability of the nodes is set to 3 at both ends. The basis function can be
expressed using Equation (21).

B0,3(t) = 1
6 (1− t)3

B1,3(t) = 1
6
(
3t3 − 6t2 + 4

)
B2,3(t) = 1

6
(
−3t3 + 3t2 ++3t + 1

)
B3,3(t) = 1

6 t3

(21)

The parameter node’s vector interval is defined as [0, 1]. By incorporating Equation (21)
into Equation (19), we can derive the expression for the cubic quasi-uniform B-spline curve
as shown below.

P(t) =P0B0,3(t) + P1B1,3(t) + P2B2,3(t) + P3B3,3(t), t ∈ [0, 1] (22)
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3. Path Tracking Controller
3.1. Vehicle Model

The objective of this study is to accomplish tracking control of a planned path. The
dynamic model used in this study is a typical two-degree-of-freedom model, as depicted in
Figure 9.
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The parameter node’s vector interval is defined as [0,1]. By incorporating Equation 
(21) into Equation (19), we can derive the expression for the cubic quasi-uniform B-spline 
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Figure 9. Two-degree-of-freedom vehicle model.

The model is used to perform dynamic analysis on the lateral and longitudinal di-
rections of the model to derive the dynamic equation of the vehicle with two degrees
of freedom. 

·
β = (k1+k2)

mvx
β +

(
ak1−bk2

mv2
x
− 1
)

ω− k1
mvx

δ f
·

ω = ak1−bk2
Iz

β + a2k1+b2k2
Izvx

ω− ak1
Iz

δ f

(23)

In Equation (23), β and ω respectively represent the side slip angle and yaw rate of
the vehicle’s center of mass. The symbols k1 and k2 represent the side slip stiffness of the
front and rear wheels, respectively, while represents the mass of the vehicle. The distances
from the center of mass of the vehicle to the front and rear axles are represented by a and b.
The longitudinal and lateral velocities of the vehicle are denoted as vx and vy, respectively.
Additionally, δ f represents the front wheel angle of the car, and Iz represents the car’s
rotational inertia around the z-axis.

The vehicle tracking model serves as the foundation for designing the trajectory-
tracking controller. The trajectory-tracking controller enhances the accuracy of vehicle
trajectory tracking by dynamically adjusting the front wheel angle based on the car’s lateral
and heading errors in real time. Figure 10 illustrates the vehicle tracking error model. In
Figure 10, p represents the centroid of the car, p’ represents the projection point of the
centroid toward the center of the road, indicates the curvature of the road, and ed indicates
the lateral error.

The position of the car in the vehicle coordinate system is denoted as (x, y), while
its position in the geodetic coordinate system is denoted as (X, Y). The origin of the
vehicle coordinate system, representing the vehicle center of mass, is denoted as (X0, Y0).
Additionally, the linear velocity of the vehicle is represented by v, and the heading angle
of the vehicle is denoted as φ. Consequently, the position of the vehicle in the geodetic
coordinate system is expressed as Equation (24).{

X = X0 +
∫ t

0 v cos φdt

Y = Y0 +
∫ t

0 v sin φdt
(24)

The heading error ∆φ is calculated by subtracting the reference value φr from the
heading angle φ, as shown in Equation (25).

∆φ = φ− φr (25)
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The lateral error is calculated in using Equation (26).

·
ed = vx sin ∆φ + vy cos ∆φ (26)

Considering that the lateral error is negligible, Equation (26) can be equivalently
represented as Equation (27).

·
ed = vx∆φ + vy (27)

The reference trajectory yaw rate is calculated using Equation (28).

ωr =
·

φr =
vx

R
= vx · kr (28)

where R is the turning radius.
Equation (29) can be obtained by taking the derivative of the heading error.

·
∆φ = ω−ωr = ω− vx · k (29)

The derivative of the reciprocal of both the lateral error and heading error can be
computed simultaneously. 

··
ed =

·
vx∆φ + vx

·
∆φ +

·
vy

··
∆φ =

·
ω− ·

vxkr − vx
·

kr

(30)

Equations (23) and (30) can be combined to obtain Equation (31).
··
ed = k1+k2

mvx

·
ed − k1+k2

m ∆φ + ak1+bk2
mvx

·
∆φ − ak1

m δ f +
ak1−bk2

m kr − krv2
x +

·
vx∆φ

··
∆φ = ak1−bk2

Izvx
ed − ak1−bk2

Iz
∆φ + a2k1+b2k2

Izvx

·
∆φ − ak1

Iz
δ f +

a2k1+b2k2
Iz

kr −
·

vxkr − vx
·

kr

(31)

The state variables of the system are defined as x1 = ed, x2 =
·

ed, x3 = ∆φ, x4 =
·

∆φ,
and the input variable as u = δ f . δ f represents the front wheel angle of the vehicle.
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The position of the car in the vehicle coordinate system is denoted as (x, y), while its 
position in the geodetic coordinate system is denoted as (X, Y). The origin of the vehicle 
coordinate system, representing the vehicle center of mass, is denoted as (X0, Y0). Addi-
tionally, the linear velocity of the vehicle is represented by v, and the heading angle of the 
vehicle is denoted as φ . Consequently, the position of the vehicle in the geodetic coordi-
nate system is expressed as Equation (24). 
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The heading error φΔ  is calculated by subtracting the reference value rφ  from the 
heading angle φ , as shown in Equation (25). 

rφ φ φΔ = −  (25) 

The lateral error is calculated in using Equation (26). 

sin cosd x ye v vφ φ= Δ + Δ


 (26) 

Figure 10. Vehicle tracking error model.

3.2. Design of an Improved SMC Controller

The path-tracking method for controlling the general path is based on the analysis
of lateral error and heading error. Additionally, a third control method utilizes the fusion
of lateral error and heading error for control. In this study, we use the comprehensive
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approach of considering both lateral and heading errors in trajectory tracking. The designed
fusion error function is presented in Equation (32).

em = xm1ed + xm2∆φ (32)

where xm1 represents the lateral error coefficient and xm2 represents the heading error
coefficient.

From the expression, it is evident that the focus of the error can be adjusted by setting
the two weight values, xm1 and xm2, allowing for more accurate control over either the
heading angle or lateral deviation. Given the simplified working conditions in this study,
with low vehicle and obstacle speeds in the simulation, stability control is straightforward.
After careful calibration, it is determined that the optimal tracking effect is achieved by
setting xm1 and xm2 to 3 and 0.1, respectively. The design of the sliding mode function
for the SMC controller, utilizing the fusion error em mentioned earlier, is expressed in
Equation (33).

s = λ1em + λ2
·

em + λ3

∫ t

0
emdt (33)

where λ1, λ2, and λ3 are sliding mode coefficients.
The derivative of Equation (34) is taken, resulting in the following.

·
s = λ1

·
em + λ2

··
em + λ3em (34)

The drawback of SMC is the generation of chattering. Thus, to enhance the system’s
stability, a convergence rate is used. The commonly used convergence rate, aiming to
improve system stability, is selected.

·
s = −ε1sgn(s)− ε2s (35)

where ε1 and ε2 are the general convergence rate coefficients.
To further reduce system chattering, the hyperbolic tangent function tanh(s) replaces

the sign function sgn(s). Furthermore, Equations (34) and (35) are amalgamated to obtain
the following expression.

·
em = ω1 + ω2 + ω3δ f

ω1 = xm1(
k1+k2
mvx

·
e− k1+k2

m ∆φ + ak1−bk2
mvx

·
∆φ)+

xm2(
ak1−bk2

mvx
e− ak1−bk2

Iz
∆φ + a2k1+b2k2

Izvx
∆φ)

ω2 = xm1(
ak1−bk2

m R− Rv2
x +

·
vx∆φ)+

xm2(
a2k1+b2k2

Iz
R− ·

vxR− vx
·
R)

ω3 = − ak1
m xm1 − ak1

Iz
xm2

(36)

δ f = u = − 1
λ2ω3

(λ2ω1 + λ2ω2 + λ1
·

em + λ3em + ε1tanh(s) + ε2s) (37)

4. Simulation Analysis
4.1. Simulation Analysis of Path Planning

This study investigates simulations in both static and dynamic states, where the static
scenarios are further divided into lane changing and overtaking. It compares parameters
such as length, time, and curvature of the path planned using three methods, including the
general APF (G-APF), improved APF (I-APF), and optimized and improved APF (O-I-APF).
The simulation results confirm the advantages of the improved APF approach, namely,
its fast convergence speed, short planning time, and high safety in path planning. The
simulation environment is a two-dimensional space, with map sizes of 65 m × 8 m and
60 m × 8 m. Each road has a width of 3.5 m.
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(1) Scenario 1: Changing lanes (static)

Scenario 1 presents a static lane change situation on a road measuring 65 m× 8 m. The
obstacle ahead of the car has a constant speed of zero, starting from coordinates (0, −1.75)
and concluding at (60, 1.75). In Figure 11, we can observe three stationary black rectangles
serving as obstacles, each measuring 3.5 m × 1.8 m. The blue solid line represents the path
planned using the G-APF method, while the green solid line represents the path planned
using the I-APF method proposed in this study. Lastly, the red solid line represents the
path planned using the O-I-APF method proposed in this study.
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From Figure 11, it is evident that the initial path, prior to improvement, exhibits poor
safety. During the initial obstacle avoidance process, the distance from the obstacle is
insufficiently large, thus posing a risk of collision. In contrast, the improved path planning
incorporates a sufficient safety distance from the obstacle, thereby enhancing the safety of
the planned path. The path of the G-APF method fails to promptly align with the center of
the road, which is not in accordance with traffic regulations. Conversely, the I-APF method
incorporates road constraints and ensures alignment with the center of the road during
non-obstacle avoidance processes, reflecting the actual driving habits of drivers. Table 3
lists the simulation data for the aforementioned path planning.

Table 3. Path planning results for scenario 1.

Algorithm Length (m) Planning Time (s) Maximum Curvature (1/m)

G-APF 60.145 0.024 0.788
I-APF 60.286 0.011 0.201

O-I-APF 60.009 0.012 0.033

From Table 3, it can be seen that the planning time of I-APF is shortened by 0.013 s
compared with G-APF. The maximum curvature of I-APF is 0.201, which is 74.49% shorter
than that of G-APF. Although the path length of I-APF is not shortened, I-APF is opti-
mized to obtain O-I-APF. Its path length is shortened by 0.14 m compared with G-APF. Its
maximum curvature becomes 0.033, which is 16.42% of I-APF.

Figure 12 displays a comparison between the heading angle and curvature for the
three different methods, including G-APF, I-APF, and O-I-APF. Specifically, the G-APF
method is represented with the blue dashed line, the I-APF method is represented with the
green dashed line, and the O-I-APF is represented with the red solid line.

Figure 12 illustrates that the O-I-APF method demonstrates a smoother transition
in the turning angle of the path and curvature change in the planned route, wherein the
maximum curvature is regulated within 0.04, ultimately leading to enhanced outcomes.
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(2) Scenario 2: Static overtaking

Scenario 2 pertains to a static overtaking situation on a 65 m × 8 m road. The speed of
the obstacle in front of the car is set to zero, moving from position (0, −1.75) to (60, 1.75).
Figure 13 illustrates three black rectangles representing stationary obstacles with dimen-
sions of 3.5 m × 1.8 m. The blue solid line represents the path planned using the G-APF
method, the green solid line represents the path planned using the I-APF method proposed
in this study, and the red solid line represents the path planned using the O-I-APF method
proposed in this study.
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Figure 13 illustrates that the original planned path before improvement had poor
safety. During the path planning process, it was in close proximity to the top left corner
of the first obstacle and the bottom left corner of the second obstacle, posing a collision
risk. Conversely, the I-APF method resulted in a path with a safe distance from all three
obstacles, leading to a higher level of safety for the planned route. Additionally, the G-
APF regulations forced the path to strictly follow the centerline of the road, disregarding
common driving habits and traffic rules. In contrast, the I-APF regulations effectively guide
the path along the middle of the road, aligning with conventional driving requirements.
Table 4 shows the simulation data for the aforementioned path planning.

Table 4. Path planning results for scenario 2.

Algorithm Length (m) Planning Time (s) Maximum Curvature (1/m)

G-APF 60.491 0.019 1.164
I-APF 61.635 0.009 0.797

O-I-APF 60.965 0.011 0.236

From Table 4, it can be seen that the planning time of I-APF is 0.01 s shorter than that
of G-APF. The maximum curvature of I-APF is 0.797, which is 31.53% shorter than that of
G-APF. Although the path length of I-APF is not shortened, I-APF is optimized to obtain
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O-I-APF. Its path length increases by 0.47 m compared with G-APF, but the small increment
can be ignored. Its maximum curvature becomes 0.236, which is 29.61% of I-APF.

Figure 14 displays a comparison between the heading angle and curvature for the
three different methods.
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From Figure 14, it is apparent that the O-I-APF method exhibits a more gradual
variation in the turning angle of the path. The curvature change in the planned route is
also stable, displaying a smaller curvature. Its maximum curvature is constrained to 0.24,
leading to superior outcomes.

(3) Scenario 3: Dynamic overtaking

Scenario 3 involves an overtaking situation on a road measuring 63.5 m × 8 m. The
obstacle in front of the autonomous vehicle has a speed. The starting and ending points of
autonomous vehicle are respectively at (−2.35, −1.75) and (53.1.75). Figure 15 illustrates
a gray rectangle representing an obstacle vehicle with a fixed speed of 5 m/s, while the
yellow rectangle represents an autonomous vehicle traveling at a speed of 8 m/s. Both
vehicles have uniform dimensions of 4.7 m × 1.8 m. In Figure 15, (a) represents the real-
time path planned using the G-APF method; (b) depicts the path planned using the I-APF
method discussed in this study; and lastly, (c) illustrates the composite representation of
the paths planned using all three algorithms on a single graph. The blue line displays the
path planned using the G-APF method, the green line represents the path planned using
the I-APF method, and the red line shows the path planned using the O-I-APF method.

From Figure 15, it is evident that the G-APF method promptly avoids obstacles at
the outset. However, at this juncture, the obstacle in front of the vehicle is shifted from its
original position. This results in premature and rapid obstacle avoidance, which lacks a
required reaction time and compromises the smoothness of the path. The I-APF method
generates a path that overlaps with the obstacle’s previous position upon second arrival,
ensuring there is no collision. Moreover, the obstacle avoidance action exhibits a slight
delay, enabling the driver to seamlessly transition to another lane with sufficient reaction
time. Table 5 lists the simulation data for the aforementioned path planning.

Table 5. Path planning results for scenario 3.

Algorithm Length (m) Planning Time (s) Maximum Curvature (1/m)

G-APF 54.218 0.021 1.371
I-APF 54.114 0.016 0.167

O-I-APF 53.731 0.018 0.014
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From Table 5, it can be seen that the path length of I-APF is shortened by 0.104 m
compared with G-APF. I-APF reduces the planning time by 0.005 s compared with G-APF.
The maximum curvature of I-APF is 0.167, which is 87.82% shorter than that of G-APF.
The path length of O-I-APF is shortened by 0.383 m compared with I-APF. Its maximum
curvature becomes 0.014, which is 8.38% of I-APF.

Figure 16 displays a comparison between the heading angle and curvature for the
three different methods.
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Figure 16 illustrates that the O-I-APF method exhibits a smoother change in the path
turning angle and curvature on the planned route. Additionally, the method effectively
controls the maximum curvature within 0.02, leading to improved outcomes.

4.2. Simulation Analysis of Path Tracking Control

To validate the practicality of the optimized path outlined in the previous section,
we used the trajectory tracking controller proposed in this study to conduct tracking
experiments on the path generated using the O-I-APF method. The experiment was
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performed using the Carsim–Simulink joint simulation platform for the aforementioned
three scenarios. Considering a road’s typical driving conditions, characterized by dry and
well-built asphalt pavement, the road adhesion coefficient was set to 0.8. Table 6 lists the
primary vehicle parameters.

Table 6. Vehicle parameters.

Parameters (Units) Value

Distance from the center of mass to the front axis a (m) 1.015
Distance from the center of mass to the rear axis b (m) 1.895

Height of the center of mass h (m) 0.54
Vehicle mass m (kg) 1270

Moment of inertia Iz (kg·m2) 1536
Effective radius of wheel r (m) 0.325

Front wheel lateral stiffness k1/(N·rad−1) 56,500
Rear wheel lateral stiffness k2/(N·rad−1) 66,500

The red path outlined in the above scenario was fed into the controller for tracking
control. Then, we evaluated the comparative effectiveness of the general sliding SMC for
tracking path against the improved SMC (I-SMC) for tracking path proposed in this study.
The simulation experiments were performed at two vehicle speeds, namely, 10 m/s and
20 m/s.

(1) Scenario 1: Changing lanes (static)

The lateral displacement comparison is presented in Figure 17. The figure includes
various lines representing different scenarios. The solid black line represents the planned
original path. The red dashed line depicts the change in vehicle displacement using the
previously discussed controller at a speed of 10 m/s. Similarly, the blue dashed line
represents the change in vehicle displacement using the same controller but at a speed
of 20 m/s. The green dashed line illustrates the change in vehicle displacement using a
general SMC controller at a speed of 10 m/s. Finally, the black dashed line showcases the
change in vehicle displacement using a general SMC controller at a speed of 20 m/s.
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Figure 17 demonstrates that, at velocities of 10 m/s and 20 m/s, the trajectory followed
by the I-SMC controller closely aligns with the expected path, in contrast with the general
SMC controller. This indicates a superior tracking accuracy of the controller proposed in
this study.

The comparison of lateral and heading errors, acquired with various vehicle speeds
and controllers, is displayed in Figure 18. The red solid line illustrates the error achieved
using the controller proposed in this study at a vehicle speed of 10 m/s. Similarly, the
blue solid line represents the error obtained at a vehicle speed of 20 m/s using the same
controller. The green dashed line exhibits the error attained using a conventional SMC
controller at a vehicle speed of 10 m/s, while the black dashed line demonstrates the error
obtained at a vehicle speed of 20 m/s using the same controller.
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Figure 18. Comparison of errors in scenario 1. (a) Comparison of lateral errors; (b) Comparison of
yaw angle errors.

From Figure 18, it is evident that at a low speed of 10 m/s, the general SMC results in
a maximum absolute lateral error value of 0.0740 m and a maximum absolute heading error
value of 0.0584 rad. In contrast, the I-SMC controller achieves a lower maximum absolute
lateral error value of 0.0466, which represents a 37.03% reduction compared with the results
of the general SMC controller. Similarly, the maximum absolute heading error value for the
I-SMC controller is 0.0400 rad, which is 31.51% lower than the results of the general SMC
controller. At a higher speed of 20 m/s, the I-SMC controller exhibits a maximum absolute
lateral error value of 0.0598 m, which is 32.66% lower than the value obtained using the
general SMC controller. While the absolute maximum heading angle error obtained using
the I-SMC controller is 0.0493 rad, indicating a slight improvement compared with the
general SMC controllers, it does show smoother variation and higher stability. Based on
the experimental results, it can be concluded that the I-SMC controller effectively tracks the
planned path with a smaller tracking error and better tracking accuracy.

(2) Scenario 2: Static overtaking

A comparison of lateral displacement is presented in Figure 19.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 27 
 

 

 
Figure 18. Comparison of errors in scenario 1. (a) Comparison of lateral errors; (b) Comparison of 
yaw angle errors. 

From Figure 18, it is evident that at a low speed of 10 m/s, the general SMC results in 
a maximum absolute lateral error value of 0.0740 m and a maximum absolute heading 
error value of 0.0584 rad. In contrast, the I-SMC controller achieves a lower maximum 
absolute lateral error value of 0.0466, which represents a 37.03% reduction compared with 
the results of the general SMC controller. Similarly, the maximum absolute heading error 
value for the I-SMC controller is 0.0400 rad, which is 31.51% lower than the results of the 
general SMC controller. At a higher speed of 20 m/s, the I-SMC controller exhibits a max-
imum absolute lateral error value of 0.0598 m, which is 32.66% lower than the value ob-
tained using the general SMC controller. While the absolute maximum heading angle er-
ror obtained using the I-SMC controller is 0.0493 rad, indicating a slight improvement 
compared with the general SMC controllers, it does show smoother variation and higher 
stability. Based on the experimental results, it can be concluded that the I-SMC controller 
effectively tracks the planned path with a smaller tracking error and better tracking accu-
racy. 
(2) Scenario 2: Static overtaking 

A comparison of lateral displacement is presented in Figure 19. 

 
Figure 19. Paths tracked using different methods in scenario 2. 

From Figure 19, it is evident that the I-SMC exhibits superior tracking performance 
at low speeds and demonstrates closer alignment with the expected path. In contrast, un-
der high-speed conditions, the general SMC controller deviates significantly from the ex-
pected path, rendering the car unable to faithfully follow the planned route. Conversely, 
both trajectories generated using the I-SMC controller closely approximate the expected 
path. Consequently, the planned route is deemed feasible, and the tracking accuracy of 
the controller proposed in this study is relatively high. 

The comparison between the lateral error and heading error collected in scenario 2 is 
illustrated in Figure 20. 

Figure 19. Paths tracked using different methods in scenario 2.

From Figure 19, it is evident that the I-SMC exhibits superior tracking performance
at low speeds and demonstrates closer alignment with the expected path. In contrast,
under high-speed conditions, the general SMC controller deviates significantly from the
expected path, rendering the car unable to faithfully follow the planned route. Conversely,
both trajectories generated using the I-SMC controller closely approximate the expected
path. Consequently, the planned route is deemed feasible, and the tracking accuracy of the
controller proposed in this study is relatively high.

The comparison between the lateral error and heading error collected in scenario 2 is
illustrated in Figure 20.
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yaw angle errors.

Based on Figure 20, at a low speed of 10 m/s, the maximum absolute lateral error
obtained using the general SMC is 0.2359 m, and the maximum absolute heading error
is 0.3103 rad. However, the maximum absolute lateral error obtained using the I-SMC
is 0.0667 m, which is 71.73% lower than the result obtained using the general SMC. The
absolute value of the maximum heading error is 0.2978 rad, which is 4.03% lower than the
results obtained using general SMC controllers. At a high speed of 20 m/s, the maximum
absolute lateral error obtained using the improved SMC controller is 0.0923 m, which is
80.24% lower than the general SMC controller. The absolute value of the maximum heading
angle error obtained using the I-SMC controller is 0.2940 rad, which is 7.08% lower than the
general SMC controller. Based on the experimental results, it can be inferred that the I-SMC
controller effectively tracks the planned path with reduced tracking error and improved
tracking accuracy.

(3) Scenario 3: Dynamic overtaking

A comparison of lateral displacement is presented in Figure 21.
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Figure 21. Paths tracked using different methods in scenario 2.

Figure 21 demonstrates that the I-SMC controller exhibits a greater degree of alignment
between the planned and expected paths, regardless of the speed, in comparison with
results obtained using general SMC controllers. However, the four lines closely adhere to
the planned path, thereby confirming the feasibility of the path proposed in this study.

A comparison between the lateral error and heading error collected in scenario 2 is
illustrated in Figure 22.

From Figure 22, it is evident that the general SMC attains a maximum absolute lateral
error of 0.0644 m and a maximum absolute heading error of 0.0350 rad when the speed is
reduced to 10 m/s. Conversely, when using the I-SMC controller, the maximum absolute
lateral error is 0.0304 m, exhibiting a reduction of 52.80% compared with the general
SMC controller. Similarly, the absolute value of the maximum heading error is 0.0192 rad,
indicating a decrease of 45.14% when compared with the general SMC controllers. At a
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higher speed of 20 m/s, the I-SMC controller achieves a maximum absolute lateral error of
0.0519 m, which is only 0.76% lower than that of the general SMC controller. Nonetheless,
the absolute value of the maximum heading angle error obtained using the I-SMC controller
is 0.0229 rad, representing a notable decrease of 63.48% in comparison with the general SMC
controller. Based on the experimental results, it can be inferred that the I-SMC controller
demonstrates enhanced capability in tracking the intended path with reduced tracking
error and improved accuracy.
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In scenario 3, the error of I-SMC is significantly lower compared with that of the
SMC. The trend in error variation is similar in both low-speed and high-speed I-SMC. This
study analyzed the error in low-speed I-SMC. Initially, within a longitudinal distance of
0–5 m, as the vehicle begins to turn, the lateral error increases proportionally to the turning
radius. Subsequently, within a longitudinal distance of 5–10 m, the steering wheel returns
to its normal position, causing the turning radius to decrease and consequently reduce the
lateral error. Within a longitudinal distance of 10–22 m, the vehicle maintains a straight
driving trajectory, resulting in a minimal lateral error. Within the longitudinal distance
of 22–28 m, the car initiates a turn in a different direction, causing a subsequent increase
in the lateral error. Between the longitudinal distance of 28 and 36 m, the vehicle enters
the steering wheel alignment stage, resulting in a decrease in both the turning radius and
the lateral error. Beyond a lateral distance of 36 m, the vehicle proceeds straight along the
road, exhibiting no lateral error. Furthermore, the heading error varies correspondingly
with the alternation in turning radius. The improved SMC method proposed in this study
effectively mitigates both lateral and heading errors.

5. Conclusions

This study proposes an improved APF algorithm to solve a series of problems. Firstly,
the range of the repulsive field is determined, allowing the range to change in real time de-
pending on the obstacle’s speed. In addition, a road repulsion field function is incorporated.
Moreover, a target point distance factor and virtual sub-target points are introduced to
resolve the problems associated with unreachable targets and local minima. Furthermore,
the inclusion of a velocity repulsion field enables the vehicle to adapt not only to static
obstacles but also to dynamic ones. To validate the feasibility of the proposed path, an
improved SMC controller is designed, which integrates both lateral and heading errors
effectively. The optimized path from the planning layer is fed into the controller. The con-
troller’s results are then compared to those obtained using the traditional SMC controller’s
tracking results. Conclusively, the controller examined in this study effectively tracks three
different paths in high-speed and low-speed states. Moreover, it exhibits minimal lateral
and heading errors while maintaining high tracking accuracy.
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In this study, we primarily explore the local path planning method for autonomous
vehicles. We utilize an enhanced sliding mode controller, based on the improved artificial
potential field algorithm, for trajectory tracking control. However, it is important to
note that there are certain limitations associated with this approach. Firstly, our path
planning methodology involves a two-degree-of-freedom ideal vehicle model, neglecting
the consideration of multiple degrees of freedom. Secondly, we do not comprehensively
accounted for external factors like road conditions and weather in our analysis of traffic
scenarios. In future research, we aim to investigate various operating conditions and
conduct more extensive studies on unexpected events such as adverse weather and other
vehicle interventions, thereby making our algorithm more robust. Additionally, it should
be noted that the improved artificial potential field method proposed in this study has
certain computational speed drawbacks. Therefore, in the future, we intend to explore
ways to simplify the calculation process. Currently, our experimentation remains limited
to the simulation phase. However, we plan to validate the effectiveness of our proposed
method using real vehicle experiments in subsequent research.
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