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Abstract: With the development of deep fusion intelligent control technology and the application
of low-carbon energy, the number of renewable energy sources connected to the distribution grid
has been increasing year by year, gradually replacing traditional distribution grids with active
distribution grids. In addition, as an important component of the distribution grid, substations
have a complex internal environment and numerous devices. The problems of untimely defect
detection and slow response during intelligent inspections are particularly prominent, posing risks
and challenges to the safe and stable operation of active distribution grids. To address these issues,
this paper proposes a high-performance and lightweight substation defect detection model called
YOLO-Substation-large (YOLO-SS-large) based on YOLOv5m. The model improves lightweight
performance based upon the FasterNet network structure and obtains the F-YOLOv5m model.
Furthermore, in order to enhance the detection performance of the model for small object defects
in substations, the normalized Wasserstein distance (NWD) and complete intersection over union
(CIoU) loss functions are weighted and fused to design a novel loss function called NWD-CIoU.
Lastly, based on the improved model mentioned above, the dynamic head module is introduced
to unify the scale-aware, spatial-aware, and task-aware attention of the object detection heads of
the model. Compared to the YOLOv5m model, the YOLO-SS-Large model achieves an average
precision improvement of 0.3%, FPS enhancement of 43.5%, and parameter reduction of 41.0%. This
improved model demonstrates significantly enhanced comprehensive performance, better meeting
the requirements of the speed and precision for substation defect detection, and plays an important
role in promoting the informatization and intelligent construction of active distribution grids.

Keywords: substation defect detection; YOLOv5; FasterNet; NWD-CIoU; dynamic head

1. Introduction

With the expansion of the power grid, the number of devices in substations has been
increasing, making the detection of internal defects in substations increasingly important.
The intelligent identification of substation defects is essentially an object detection problem,
which aims to determine the position and type of specific objects in images. This topic has a
long research history in the academic community [1] (Wang X, 2017). Traditional two-stage
detection methods are based on the RCNNs (region-based convolutional neural network)
framework, which divides the object detection task into two stages: region proposal
extraction and object classification with localization. In the region proposal extraction stage,
these methods use algorithms to generate a series of candidate regions that may contain
objects [2]. Common methods for generating candidate regions include Selective Search
and EdgeBoxes. These algorithms generate candidate regions based on low-level image
features such as color, texture, edges, and contextual information. In the object classification
and localization stage, each candidate region is fed into a deep learning model for object
classification and position regression. The most well-known two-stage detection methods
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are based on the RCNN framework, including RCNN, Fast RCNN, Faster RCNN, etc. In
the RCNN method, each candidate region is first adjusted to a fixed size and then features
are extracted using convolutional neural networks. These features are then input to a
fully connected layer for object classification and position regression. During training, the
loss function is calculated and the model parameters are optimized using positive and
negative samples.

Traditional RCNN adopts a two-stage network structure, which achieves high preci-
sion and good stability in object detection [1]. However, it is difficult to avoid the drawback
of slow detection speed. To address this issue, scholars have proposed SPPNet [2] and
Fast-RCNN [3], which can effectively reduce the workload of feature extraction and im-
prove detection speed [4–6]. In 2016, Joseph Redmon et al. proposed a single-stage network
structure for object detection called “You Only Look Once (YOLO)” [7]. With the updates
of YOLO versions, both its precision and computational speed have been continuously
improved, making it a widely recognized object detection algorithm.

On the one hand, the rich redundant features in the YOLO-series algorithms ensure
a comprehensive interpretation of the input by the model. These redundant features ob-
tained through convolutional calculations not only guarantee the generalization ability
of the model but also increase the model’s complexity. Therefore, many researchers have
conducted research on lightweight methods in recent years. Zhang W et al. combined
depth-separable convolution with point convolution and added batch normalization lay-
ers [8], which accelerated model convergence. H Xu et al. weighted each channel using
the coordinate attention (CA) mechanism [9] to remove redundant features and effectively
reduce the number of parameters. Zhou X et al. proposed a DWSC-YOLO model that
added heterogeneous convolutions and improved activation functions [10]. This model
had the same mAP value as YOLOv5 but reduced its volume by 79.8%. W Ji et al. used the
lightweight network Shufflenetv2 with the convolutional block attention module (CBAM)
as the backbone and added the adaptive spatial feature fusion (ASFF) module in the PANet
network to improve precision [11]. There are numerous novel neural network architectures
for lightweight YOLO algorithms, such as MobileNetV3 with the SE (squeeze excitation)
attention mechanism and hand switch function, PP-LCNet with a similar structure, Ghost-
Net, etc. [12–17]. B Ma et al. proposed a Gaussian distance intersection over union (GDIoU)
loss function and applied it to the YOLOV4 network [18], which increased the average
precision by 7.37%. Liu D et al. designed a new bounding box regression loss function
that incorporates distance penalty for union and angle penalty for intersection [19]. They
improved the YOLOV4-CSP network by combining this loss function with an adaptive
angle setting method based on the K-means clustering algorithm, significantly improving
mAP and FPS compared to traditional networks. These improvements, to some extent,
solve the problem of the degradation of the loss function to the intersection over union
metric under certain specific position relationships between predicted bounding boxes
and ground truth bounding boxes. However, they overlook the uneven contribution of
training samples to the loss, poor regression effects, and slow convergence speed of the
loss function.

On the other hand, at the current stage, almost all advanced object detectors adopt
the same pattern: a backbone network for feature extraction and detection heads for local-
ization and classification tasks [20–22]. Song L et al. proposed a delicate dynamic head
that selects features from different scales using a feature pyramid network and extracts
pixel-level combinations [23], further enhancing the representation ability of multi-scale
features. Goindani A et al. improved the importance of each detection head by adding
additional attention layers and utilizing the input and output of multi-head attention [24].
This method outperforms traditional approaches, especially when training data are lim-
ited. These methods to some extent enhance the representation ability of the detection
heads, but how to effectively integrate the awareness ability of multiple scales remains an
unresolved issue.
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In summary, to address the issues of the uneven contribution of training samples and
the poor integration effect of awareness ability in detection heads, this paper proposes
a novel fusion loss function called NWD-CIoU. It combines the lightweight structure
of FasterNet and the dynamic head module to build a high-performance lightweight
improved model, YOLO-Substation-large (YOLO-SS-Large), based on YOLOv5m. This
model achieves an average precision of 67.6%, which is 0.3% higher than that of YOLOv5m.
It achieves an FPS of 196.86, which is 43.5% higher than that of YOLOv5m. The parameter
number is reduced to 12.36M, which is 41.0% lower than that of YOLOv5m.

2. Materials and Methods

In this chapter, a dataset of substation images is constructed, and the distribution of
classes in the dataset is described in detail. Additionally, this paper introduces the network
structure and loss function of the basic YOLOv5 model. It analyzes the drawbacks of the
model in terms of parameter number, loss function, and detection heads and explains the
motivation for improvements.

2.1. Database for This Paper

The equipment defects in substations mainly include damaged meters, transformer
oil leakage, damaged breathers, cracked insulators, floating suspended objects, and the
abnormal closure of cabinet doors. During the regular inspection of the equipment in-
side substations, any abnormal operating conditions that are not promptly detected or
equipment defects that are not timely discovered can potentially lead to equipment failures
and even different levels of power accidents. For example, the main function of breathers
is to filter moisture from the air, ensuring that the air inside the transformer oil pillow
remains dry and clean. If the breathers fail due to saturated moisture adsorption and
are not replaced in a timely manner, this can easily cause the transformer oil to become
damp and oxidized, resulting in a decrease in insulation strength and internal transformer
failures. The failure of insulators can cause protective actions to trip, severely affecting the
safe operation of the system. Additionally, there are hidden dangers such as blurry dials,
damaged casings leading to abnormal readings, foreign objects floating and hanging on
electrical wires causing three-phase short circuits, and ground discharges. To ensure the
high-quality development of a new power system, no abnormal equipment defects within
the substations that may affect the safe operation of the system can be ignored.

To achieve the intelligent identification of substation defects, a large number of rele-
vant images need to be collected. Considering the various types of equipment defects in
actual substations and the numerous unsafe behaviors of inspection personnel, this study
focuses on a specific 220 kV substation. We further consider the serious hazards caused by
numerous pieces of equipment in actual substations and the unsafe behavior of inspection
personnel. We collected image data of unsafe behavior and safety hazards influenced by
external factors in substations. With methods such as on-site photography (5634 images),
capturing surveillance footage (2049 images), and collecting historical data (2894 images), a
total of 10,577 images were collected. Most of these images contains a single-defect object,
while a small portion contain multiple-detection objects in the same situation. There are
17 categories of defect detection. Table 1 shows the corresponding label IDs and numbers
for each defect category.

In this paper, the LabelImg tool was used to create XML format labels, and these
XML label files were then converted into the TXT format that can be recognized by the
YOLO algorithm. Finally, the dataset was divided into training, testing, and validation
sets in a ratio of 7:2:1. Figure 1 shows some examples of substation image data. Most of
the images in the dataset contain multiple smaller-sized detection categories, which not
only provide rich category features but also present a more realistic representation of the
complex equipment environment in substations.
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Table 1. Dataset of substation images.

Numbering Defect Category Label ID Number of Images

1 Hanging suspensions yw_gkxfw 729
2 Discoloration of respirator silicone hxq_gjbs 1174
3 Blurred dials bj_bpmh 877
4 Broken dials bj_bpps 723
5 Oil on the ground sly_dmyw 833
6 Broken insulators jyz_pl 410
7 Abnormal meter readings bjdsyc 789
8 Shell damage bj_wkps 523
9 Abnormal closure of box door xmbhyc 383
10 Bird’s nest yw_nc 883
11 Cover damage gbps 654
12 Pressure plate condition kgg_ybh 376
13 Abnormal oil level status ywzt_yfyc 233
14 Damage to respirator silicone hxq_gjtps 173
15 Not wearing work clothes wcgz 787
16 No safety helmet wcaqm 546
17 Smoking xy 584
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Figure 1. Part of substation image data.

The distribution of classes in the training set of the substation image data is shown
in Figure 2a; Figure 2b displays the proportions of training, testing, and validation sets
for each category in the dataset. This visualization allows us to observe that the dataset
division process satisfies the criteria of independent and identically distributed (i.i.d.) data.
In other words, the distribution of data for each category across the three sets is uniform
and independent. This finding further validates the reliability and authenticity of the
training, testing, and validation processes of the model in this substation image dataset.
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As shown in Figure 3a,b, the YOLOv5 model’s object detection head outputs the
predicted offset of bounding box positions. In this context, x and y represent the coordinates
of the predicted bounding box’s center, while width and height correspond to the predicted
bounding box’s width and height, respectively. The darker the color in Figure 3, the more
data is distributed in that area. The majority of the predicted boxes are distributed near the
center of the image, with a prevalence of medium- and small-sized objects being detected.
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2.2. YOLOv5 (3 Methods) and Disadvantage Analysis

On the one hand, the dataset of substation defects collected in this study contains
a higher number of smaller-sized targets. Due to the complex environment of actual
substations, it is difficult to avoid the problem of indistinguishable backgrounds in the
images. YOLO series algorithms, benefiting from the pattern of generating candidate
regions, greatly reduce the mistakes made by mistaking a background as an object tar-
get compared to R-CNN series algorithms. On the other hand, actual substations have
limited computing resources and a high requirement for detection speed. The traditional
R-CNN algorithm uses selective search to generate candidate regions, while the YOLO
series algorithm replaces this part with a grid-based approach, directly mapping from
the grid to regions. This reduces redundant computations and saves a significant amount
of search time, resulting in faster detection speed. Therefore, the YOLO series algorithm
demonstrates better engineering significance when applied to substation defect detection.

YOLOv5 is a deep learning-based object detection model that is an improvement over
YOLOv4. The overall structure of the YOLOv5 network model consists of three parts: the
backbone network for extracting multi-level feature maps, the neck network for collecting
and merging different layer feature maps, and the object detection head for predicting
object categories and positions.

Compared to YOLOv4, YOLOv5 has a faster detection speed under the same condi-
tions, enabling higher real-time performance. YOLOv5 achieves significant improvements
in precision, performs well on the COCO public dataset, and also demonstrates better
robustness. YOLOv5 can be freely configured for different application situations, including
different network structures, data augmentation methods, and training strategies.

The YOLOv5 network’s structure is shown in Figure 4. It utilizes the CSPDarknet53
structure as the backbone network, which includes convolutional modules CBS (Conv-BN-
SiLU) and C3 modules, and the spatial pyramid pooling fast (SPPF) module. The C3 module
consists of three standard convolutional layers and multiple bottleneck modules that reduce
the number of channels in feature maps. The SPPF module performs dimensionality
reduction through three different sized max pooling operations and then concatenates the
channel numbers. The neck network adopts the structure design of the path aggregation
network (PAN), including standard convolution modules, upsampling modules, and C3
modules without shortcut connections (shortcut = false).
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Object detection algorithms rely on the backbone network to extract feature infor-
mation, and YOLOv5 adopts the CSPDarknet structure as its backbone network. The
rich redundant features ensure that the model fully interprets the input and improves the
model’s precision. However, this network structure is complex and has a large number of
parameters, which requires high hardware storage and computational power. Additionally,
the redundant features obtained through convolutional computations consume a signif-
icant amount of computing resources while ensuring the model’s generalization ability.
Therefore, lightweighting the backbone network is a necessary problem to address.

The total loss function of the YOLOv5 network consists of three components: localiza-
tion loss Lbox; confidence loss Lobj; and classification lossLcls. The mathematical expressions
for these losses are shown in Equations (1)–(4).

Ltotal = Lbox + Lobj + Lds (1)

Lbox = λIoU

S2
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∑
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lobj
ij LCIoU (2)

Lobj = λcls

S2

∑
i=0

B

∑
j=0

lobj
ij λc

(
Ci − Ĉi

)2
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∑
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(
Ci − Ĉi
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(3)

Lcls= −
S2

∑
i=0

B

∑
j=0

l obj
ij ∑

cεclasses
λc (4)

where λ represents the overall loss balance coefficient, l represents the weight of the loss
for each class of samples, and Ci represents the confidence score.

The computation of Lbox involves three implementations: generalized intersection
over union (GIoU), Distance-IoU (DIoU), and Complete-IoU (CIoU). In Figure 5, the region
bounded by the yellow line represents the ground truth bounding box B, while the region
enclosed by the black line represents the predicted bounding box Bgt by the model, The
region enclosed in red represents the bounding box for calculating Euclidean geometric
distance. The black dashed line in Figure 5 represents the Euclidean distance between
the center points of the ground truth bounding box B and the predicted bounding box
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Bgt, while the black solid line represents the diagonal distance between the ground truth
bounding box B and the predicted bounding box Bgt. The expression for the complete
intersection over union (CIoU) loss function is shown in Equations (5) and (6).

LCIoU= 1 − IoU+
ρ2(B,Bgt

)
c2 + αV (5)

V =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (6)

where ρ represents the Euclidean distance between the predicted bounding box Bgt and the
ground truth bounding box B, while c represents the diagonal distance of the minimum
enclosing area. Additionally, α is the weight function that determines the importance
of each component in the loss function. Meanwhile, V represents the aspect ratio of the
detection box, which reflects the scale of its width and height.
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The complete intersection over union (CIoU) loss function improves upon the distance
intersection over union by introducing an additional penalty term that accounts for the
aspect ratio of the predicted bounding box. This penalty term encourages the predicted
bounding box to align more closely with the ground truth bounding box.

However, the CIoU loss function overlooks two important aspects. First, the aspect
ratio describes a relative value and can be somewhat ambiguous. Second, it does not
consider the issue of imbalanced contributions of low-quality samples and high-quality
samples to the loss. Therefore, it is particularly important to improve the loss function. It is
crucial to address these limitations and improve the loss function.

In the YOLOv5 model, the object detection head module is primarily responsible for
performing multi-scale object detection on the feature maps extracted by the backbone
network. This module consists of three main parts: (1) anchors: anchors are used to
define bounding boxes of different sizes and aspect ratios. They are typically obtained by
clustering the ground truth bounding boxes in the training set using K-means clustering.
The anchor values can be pre-computed and stored in the model for generating detection
bounding boxes during inference. (2) Classification: this part is responsible for classifying
each detection bounding box to determine whether it contains an object. It often uses a
combination of fully connected layers and the Softmax activation function to classify the
features. (3) Regression: the regression component is used to predict the position and size
of each detection bounding box. It typically employs fully connected layers to perform
regression on the features. However, this detection head often only achieves one type of
awareness ability, such as scale awareness, spatial awareness, or task awareness. Therefore,
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further improvements are needed to simultaneously integrate all awareness abilities into
the detection head.

3. Improved Model: YOLO-SS-Large

This chapter addresses three main limitations of the YOLOv5 basic model. Firstly,
the C3 module in the original model is improved by adopting the lightweight design
ideas from FasterNet to create a new network structure. This aims to reduce the model
parameter number and computational complexity while enhancing its operation efficiency.
Secondly, a new loss function called NWD-CIoU (Normalized Wasserstein Distance-CIoU)
is introduced based on the lightweight model. This loss function considers the distance
relationships and size information among bounding boxes, resulting in improved precision
for object detection and better performance in terms of object localization and bounding box
regression. Lastly, the Dyhead module is introduced to unify the scale-aware, spatial-aware,
and task-aware attention of the object detection head. This enhances the model's ability to
detect objects of different scales and improves its generalization ability in complex situa-
tions. With these improvements, the YOLO-SS-Large model is proposed to further enhance
the comprehensive performance of object detection algorithms in terms of precision, speed,
and effectiveness, addressing the limitations of the YOLOv5 basic model.

The complex C3 module in the YOLOv5 basic model increases the parameter number
and computational complexity. By applying the lightweight design principles of FasterNet
to improve the C3 module, the parameter number and computational complexity can be
reduced, leading to faster computation and real-time performance. This is crucial for tasks
that require fast object detection and deployment on resource-constrained devices.

The loss function used in the YOLOv5 basic model may not adequately consider
the distance relationships and size information among bounding boxes, which can affect
the precision of object localization and bounding box regression. The introduction of the
NWD-CIoU loss function allows for better measurement of the precision of object detection
results, thereby improving precision and localization ability. This is particularly important
for applications that demand high-precision object detection, such as autonomous driving
and surveillance systems. The object detection head in the YOLOv5 basic model may
lack scale-awareness, spatial-awareness, and task-awareness attention, resulting in limited
detection ability for objects of different scales and poor generalization in complex situations.
The Dyhead module is introduced to unify the awareness ability of the object detection
head, thereby enhancing the detection ability for objects of different scales and improving
the model's adaptability and robustness in complex situations. This is crucial for improving
the model’s adaptivity and robustness.

In conclusion, the reasons for addressing the three main limitations of the YOLOv5
basic model are to improve computational speed and real-time performance, enhance
precision and localization ability, and strengthen adaptability and robustness. These
improvements have great significance, allowing object detection algorithms to perform
better in a wider range of applications and meet the diverse demands for object detection
in various situations.

3.1. Light Weight Based on FasterNet

The number of the model’s parameters directly affects the computational resources
required during the inference process. A practical model that aims to be applied should
not only consider its outstanding performance in accuracy but also take into account its
dependency on computational resources. However, the computational resources in actual
substations are often limited, making it challenging to avoid the negative impact of large
model sizes on real-time detection and embedded applications. To address these issues, this
section draws inspiration from the lightweight design principles of FasterNet and attempts
to use the C3-Faster module to construct a new YOLOv5m network architecture, aiming to
achieve an effective reduction in model parameters.
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FasterNet combines partial convolution (PConv) and point-by-point convolution,
while reducing redundancy calculation, which refers to the redundant information added
during data transmission or storage in order to improve data reliability. This redundancy
information can be used to detect and repair errors in the data to improve the fault tolerance
of the system and memory access, thus constructing lightweight networks with stronger and
more effective spatial feature extraction. The working principles of PConv are illustrated in
Figure 6: a conventional Conv is applied to a portion of the input channel for spatial feature
extraction and leaves the rest of the channel unchanged. For continuous or distributed
more conventional memory access, the first or last continuous channel is extracted as
representative of the entire feature map for computation. The input and output feature
maps are considered to have the same number of channels without loss of generality. As a
result, the memory access for PConv is smaller. Figure 6 illustrates the overall FasterNet
architecture. It contains four hierarchical levels with an embedding layer (4 × 4 convolution
with a step size of 4) or a merging layer (regular 2 × 2 convolution with a step size of 2),
whose function is to perform spatial downsampling and channel number expansion, and
each stage of the network architecture has a FasterNet block. The last two stages of the
FasterNet block have smaller memory access, and for this reason, more FasterNet blocks
are placed. That is why the last two stages require more computation compared to the
other stages. Each FasterNet block has 2 point-by-point convolutions (1 × 1 convolutions)
after the Pconv layer. Together these blocks behave as inverted residual blocks, where the
middle layer has an extended number of channels and prevents straightforward paths
(shortcut) to reuse certain input features.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 6. Overall FasterNet architecture. 

To cater to diverse computational resources and application situations, FasterNet of-
fers four variant models: tiny, small, medium, and big. These variants are denoted as Fast-
erNetT0/1/2, FasterNet-S, FasterNet-M, and FasterNet-L, respectively. While they share 
similar architectural principles, there are differences in terms of depth and width. The 
smaller variant models tend to utilize the GeLU activation function, while the larger ones 
employ the ReLU activation function. This choice is made based on the model size and 
complexity. Table 2 presents a comparison of the performance results for each version of 
the FasterNet models. It provides insight into the varying ability and efficiency of different 
model sizes. 

Table 2. Comparison of different versions of FasterNet models. 

Network Model Parameter Number/M Precision/% 
FasterNet-T0 3.9 71.9 
FasterNet-T1 7.6 76.2 
FasterNet-T2 15.0 78.9 
FasterNet-S 31.1 81.3 
FasterNet-M 53.5 83.0 
FasterNet-L 93.5 83.5 

The C3 module in the YOLOv5 backbone network consists of three standard convo-
lutional layers and multiple bottleneck modules. After considering the trade-off between 
parameter number and precision, this paper adopts the lightweight concept of the Faster-
Net-T0 model. It replaces the Conv layers in the three CBS (Conv-BatchNorm-Activation) 
blocks of the C3 module with PConv (partial convolution) and PWConv (pointwise con-
volution) layers. This leads to the creation of the C3-Faster structure specifically designed 
for YOLOv5m, as shown in Figure 7. 

Input

Em
be

dd
in

g

FasterNet
Block

M
er

gi
ng FasterNet

Block

M
er

gi
ng FasterNet

Block

M
er

gi
ng FasterNet

Block

G
lo

ba
l P

oo
l

C
on

v 
1×

1 

FC

PC
on

v 
3×

3 BN
 R

eL
U

PW
on

v 
1×

1

PW
on

v 
1×

1

w

h

cp

Input

w

h
cp

Output

k
k

cp

cp  Filters

Partial Convolution(PConv) FasterNet Block

Figure 6. Overall FasterNet architecture.

To cater to diverse computational resources and application situations, FasterNet
offers four variant models: tiny, small, medium, and big. These variants are denoted as
FasterNetT0/1/2, FasterNet-S, FasterNet-M, and FasterNet-L, respectively. While they
share similar architectural principles, there are differences in terms of depth and width. The
smaller variant models tend to utilize the GeLU activation function, while the larger ones
employ the ReLU activation function. This choice is made based on the model size and
complexity. Table 2 presents a comparison of the performance results for each version of
the FasterNet models. It provides insight into the varying ability and efficiency of different
model sizes.



Sensors 2023, 23, 8080 10 of 21

Table 2. Comparison of different versions of FasterNet models.

Network Model Parameter Number/M Precision/%

FasterNet-T0 3.9 71.9
FasterNet-T1 7.6 76.2
FasterNet-T2 15.0 78.9
FasterNet-S 31.1 81.3
FasterNet-M 53.5 83.0
FasterNet-L 93.5 83.5

The C3 module in the YOLOv5 backbone network consists of three standard convo-
lutional layers and multiple bottleneck modules. After considering the trade-off between
parameter number and precision, this paper adopts the lightweight concept of the FasterNet-
T0 model. It replaces the Conv layers in the three CBS (Conv-BatchNorm-Activation) blocks
of the C3 module with PConv (partial convolution) and PWConv (pointwise convolu-
tion) layers. This leads to the creation of the C3-Faster structure specifically designed for
YOLOv5m, as shown in Figure 7.
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Based on the C3-Faster model, this paper further proposes the FasterNet-YOLOv5m
(F-YOLOv5m) model. The modified network structure of the F-YOLOv5m model is shown
in Figure 8.

This structure combines the C3 module from the YOLO algorithm with PConv and
PWConv operations. This structure applies conventional Conv for spatial feature extraction
on the feature maps of some channels. Simultaneously, the PWConv operation is performed
while keeping the remaining channels unchanged. This approach allows for the efficient
utilization of information from all channels while significantly reducing memory access
during training.

3.2. Improved Loss Function

Small object detection is common in real-world situations. However, traditional
object detectors are primarily developed and researched for objects of regular sizes. The
sensitivity of the intersection over union (IoU) metric varies greatly for objects of different
scales. Fluctuations in IoU caused by minor positional changes can differ significantly for
objects of various sizes. The discrete nature of IoU measurements lacks scale invariance,
particularly for small objects. This phenomenon indicates two challenges. Firstly, the
sensitivity of IoU on small objects leads to similar features between positive and negative
samples, making it difficult for the network to converge. Secondly, since the IoU between
predicted bounding boxes and arbitrary anchor boxes is below the threshold, each predicted
bounding box is allocated less than one positive sample on average during training. This
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scarcity of supervision information makes it difficult to find an appropriate threshold for
obtaining high-quality positive and negative samples.
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To address these issues, this section improves the localization loss function based on
F-YOLOV5m and proposes a novel fusion loss function called NWD-CIoU. This new loss
function aims to alleviate the difficulties in training due to the sensitivity of IoU on small
objects and the imbalance between positive and negative samples.

Normalized Wasserstein distance (NWD) is used to measure the similarity between
predicted bounding boxes and ground truth bounding boxes. The calculation steps of NWD
are as follows: first, the predicted bounding boxes and ground truth bounding boxes are
modeled as two-dimensional Gaussian distributions. Then, NWD is employed to measure
the similarity between these two distributions.

Compared to the traditional IoU loss function, NWD has several advantages. Firstly,
NWD enables efficient and accurate similarity measurement between predicted bounding
boxes and ground truth bounding boxes, regardless of whether there is stacking between
small objects. Secondly, NWD is insensitive to objects of different scales, making it more
suitable for measuring the similarity between small objects.

In summary, NWD offers an effective and precise way to measure the similarity between
predicted and ground truth bounding boxes by modeling them as Gaussian distributions.
It overcomes the limitations of traditional IoU loss function, allowing for efficient similarity
measurement even when small objects do not exhibit a stack. Additionally, the scale invariance
of NWD makes it better suited for measuring the similarity between small objects.

Real objects are unlikely to have perfect rectangular shapes. Therefore, for small
objects, the bounding boxes may inevitably include some background pixels. Within a
bounding box, foreground pixels typically concentrate in the center, while background
pixels tend to concentrate on the edges. To better weight each pixel within the bounding
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box, the bounding box R =
(
cx, cy, w, h

)
can be fitted into a two-dimensional Gaussian

distribution N(µ,∑) , as shown in Equation (7):

µ =

[
cx
cy

]
, ∑=

[
w2

4 0
0 h2

4

]
(7)

where
(
cx, cy

)
represents the center coordinates of the bounding box and w and h represent

the width and height of the bounding box, respectively.
By employing the Wasserstein distance from optimal transport theory, the distance

between two distributions can be calculated. For two-dimensional Gaussian distribution,
the expression for the second-order Wasserstein distance is shown in Equation (8):

W2
2(µ1, µ1) =m1− m22

2 + Tr
[
∑1 +∑2 −2

(
∑1/2

2 ∑1 ∑1/2
2

)1/2
]

(8)

By simplifying the Gaussian distributions Ng and Nt, where Ng represents the pre-
dicted bounding box Bg= (cxg, cyg, wg, hg

)
and Nt represents the ground truth bounding

box Bt= (cxt, cyt, wt, ht
)
, the second-order Wasserstein distance between the two bounding

boxes can be simplified as Equation (9):

W2
2(Ng, Nt) =

([
cxg, cyg,

wg

2
,

hg

2

]T

,
[

cxt, cyt,
wt

2
,

ht

2

]T
)2

2

(9)

where W2
2(Ng, Nt

)
is a distance unit, while the threshold that represents the similarity

among bounding boxes should be a proportion in the range of (0, 1). It is necessary to
normalize W2

2(Ng, Nt
)

to obtain the NWD. The expression for NWD is shown in Equation
(10). Furthermore, the calculation expression for the loss function based on NWD is
presented in Equation (11):

NWD(Ng, Nt) =e
W2

2(Ng,Nt)
C (10)

LNWD= 1 − NWD
(

Ng, Nt
)

(11)

In the YOLOv5m model, the default choice for calculating the localization loss Lbox
is CIoU, which exhibits minimal regression errors in the majority of situations. However,
considering that the dataset constructed in this paper does not exclusively consist of small
objects, Lnwd was not directly used to replace LCIoU. Instead, by assigning an appropriate
fusion weight r to Lnwd and LCIoU, NWD-CIoU loss function is proposed as a measurement
criterion. The calculation expression for NWD-CIoU is shown in Equation (12):

LNWD−CIoU = r·LCIoU+(1 − r)·LNWD (12)

3.3. Improvement of Detection Head

A high-performance object detection head should possess the following three abilities.
Firstly, in the same image, multiple objects of different scales may exist simultaneously.
Therefore, the detection head should have good scale-awareness. Secondly, in the same
image, objects can appear with different shapes, rotations, and positions. Hence, the de-
tection head should have good spatial awareness. Thirdly, different objects may require
different task-specific representations, where different channels of feature maps correspond
to different detection tasks. Thus, the detection head should have good task awareness.
Building upon the previous sections, this subsection introduces a dynamic head mod-
ule that combines three attention mechanisms of scale-awareness, spatial awareness and
task awareness. This module is incorporated into the improved model through multiple
nested layers.
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In the dynamic head module, the three feature maps output by the neck network are
treated as a three-dimensional tensor FεRL×S×C. The general expression of self-attention is
applied, as shown in Equation (13):

W(F) =π(F)·F (13)

where π(·) is an attention function.
Based on the above Equation, tensor F undergoes learning process in all three dimen-

sions: the difference in object scales is related to features at different levels, The cross-scale
learning of tensor F facilitates scale awareness in object detection; various geometric trans-
formations of different object shapes are related to features at different spatial positions,
and learning of tensor F at different spatial positions benefits spatial awareness in ob-
ject detection; different tasks can be associated with features in different channels, and
cross-channel learning of tensor F is beneficial for task-awareness in object detection.

Implementing this attention mechanism through fully connected layers is a good solu-
tion. However, due to the high dimensionality of the tensor, directly learning an attention
function for all dimensions would cause a significant computational cost, which is not fea-
sible in practical engineering application. Therefore, the attention function is transformed
into three consecutive attentions, with each attention focusing on one dimension only, as
shown in Equation (14).

W(F) =πc(πs(πl(F)·F)·F)·F (14)

where πc(·), πs(·), and πl(·) represent three different attention functions applied to scale,
space, and task dimensions, respectively.

On one hand, objects with significant scale differences often co-exist in natural images,
and detection objects of different scales correspond to feature maps of different sizes.
However, features at different levels are usually extracted from different depths of the
network, leading to noticeable semantic gaps. Therefore, changing the expressive power of
different feature maps can enhance the scale-awareness ability of the model. This paper
introduces a scale-aware attention module based on semantic importance to dynamically
fuse features of different scales, allowing the importance of various feature levels to adapt
to the input. The expression of this module is shown in Equation (15):

πl(F)·F = σ

(
f

(
1
sc∑

s,c
F

))
·F (15)

where f (x) represents a linear function that acts similar to a (1×1) convolutional layer; σ(x)
represents the hard Sigmoid function, which is expressed as Equation (16):

σ(x) = max
[

0, min
(

1,
x+1

2

)]
(16)

On the other hand, detection objects can appear at arbitrary positions in an image,
corresponding to feature maps of different spatial locations. In order to focus on the discrimi-
native ability of different spatial positions, this paper introduces a spatial-awareness attention
module based on fused features to focus on discriminative regions that co-exist consistently
between spatial positions and feature levels. Considering the high dimensionality of space,
this module is decomposed into two steps: first, using deformable convolution to sparsify
the attention learning and then aggregating features across different levels at the same spatial
position. This approach applies attention to each spatial position and adaptively aggregates
multiple feature levels together to learn more discriminative representations.

The process can be shown in Equation (17):

πs(F)·F =
1
L

L

∑
l=1

K

∑
k=1

wl,k·F(l, pk+∆pk, c)·∆mk (17)
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where k represents the number of sparse sampling positions and pk+∆pk denotes the
position transferred by the self-learned spatial offset ∆pk, focusing on a discriminative
region. ∆mk is an important self-learned scalarat position pk. Both ∆pk and ∆mk are learned
from the input features at the median level of F.

In addition, detection objects can have different task-specific representations, often
corresponding to different detection heads. To facilitate joint learning and ensure the
generalization of object representations, a task-aware attention module is proposed: this
module can dynamically open or close functional channels to support different tasks. This
process can be represented as Equation (18). Firstly, global average pooling is performed
on dimensions L × S to reduce dimensionality. Then, two fully connected layers and a
normalization layer are used. Finally, a Sigmoid function is applied to normalize the output.

πs(F)·F= max(α1(F)·FC + β1(F), α2(F)·FC + β2(F)) (18)

where FC is the feature segment of the c-th channel, and θ(i) =
[
α1, α2, β1, β2] is a hyper-

function used to learn the threshold that controls the activation attention.
The above three attention mechanism modules are sequentially applied and can be

nested multiple times. The detailed structure of the dynamic head module is shown in
Figure 9. Firstly, the scale-aware attention module and spatial-aware attention module
are applied to the feature pyramid. Then, the output is passed through an ROI pooling
layer and replaces the original fully connected layer with the task-aware attention module.
Finally, multiple dynamic head modules are stacked together.
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Figure 9. Dynamic head module.

In this paper, we utilize the dynamic head module to unify the attention mechanisms
and construct the Dyhead-YOLOv5m architecture for YOLOv5, as shown in Figure 10.
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Figure 10. Dyhead-YOLOv5m module.

This architecture adjusts the (80, 80, 256), (40, 40, 512), and (20, 20, 1024) feature
layers extracted from the YOLOv5m neck network to the same scale, forming a three-
dimensional tensor FεRL×S×C as the input to the dynamic head. Then, multiple dynamic
head modules are stacked, including scale-aware, spatial-aware, and task-aware attention
modules. The scale-aware module makes the feature maps more sensitive to the scale
differences of foreground objects. The spatial-aware module sparsifies the feature maps
and focuses on the discriminative spatial positions of foreground objects. The task-aware
module reconfigures the feature maps into different activation features according to the
requirements of downstream tasks. Finally, the output feature maps after multiple dynamic
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head modules are fed into the object detection head of the model to complete the object
detection task.

4. Results and Discussion
4.1. Comparative Experiment of Lightweight

In this paper, under the condition of the same input feature map size, the YOLOv5m
model is used as the basic network. The training performance of F-YOLOv5m was com-
pared with three typical lightweight structures: MobileNetV3-YOLOv5m (M-YOLOv5m),
PP-LCNet-YOLOv5m (P-YOLOv5m), and GhostNet-YOLOv5m (G-YOLOv5m) on the
substation image dataset in this paper. The results are shown in Table 3.

Table 3. Experimental results of model lightweighting.

Network Model Recall Rates Average Precision/% Parameter Number/M FPS

YOLOv5m 0.653 67.3 20.94 111.29
M-YOLOv5m 0.6 62.4 10.88 286.64
P-YOLOv5m 0.593 63.6 10.94 290.42
G-YOLOv5m 0.618 65.5 10.85 207.72
F-YOLOv5m 0.641 64.5 11.72 247.86

Combining with Figure 11, we can conclude that compared to the original model, the
FasterNet-YOLOv5m proposed in this paper reduces the parameter number by 44.03%,
increases the FPS by 122.7%, and decreases the average precision by 2.8%. The G-YOLOv5m
model exhibits high precision, low parameter number, flexibility, and near real-time perfor-
mance, making it a powerful object detection model. Despite having the highest average
precision (65.5%) and the lowest parameter number (10.85 M), the G-YOLOv5m model
has a slower computational speed but still achieves an FPS of 207.72. This demonstrates
its reasonable near real-time performance. The FasterNet-YOLOv5m model adopts the
lightweighting approach of FasterNet and improves the C3 module of the original model,
which reduces the parameter number and computational complexity, thereby improving
the computational speed of the model. In comparison, the G-YOLOv5m model has a slower
computational speed. The FasterNet-YOLOv5m model achieves a good balance between
precision and speed. Although it may not match the average precision of the G-YOLOv5m
model (65.5%), it still provides reasonable detection precision while offering faster com-
putational speed. Therefore, the FasterNet-YOLOv5m model is suitable for applications
which require real-time performance.
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In contrast, the F-YOLOv5m model achieves the best balance among parameter
number, real-time detection performance, and precision. Hence, this paper selects the
lightweight model F-YOLOv5m as the foundation for further improvements.

4.2. Comparative Experiment of Improved Loss Function

The NWD-CIoU loss function proposed in Section 3.2 of this paper is applied to the
F-YOLOv5m network architecture. Under the condition of the same input feature map size,
comparative experiments were conducted with different fusion weights, and the results are
shown in Table 4.

Table 4. Comparison of fusion weights of the loss function.

Fusion Weight Precision Recall Average Precision/%

1.00 0.709 0.641 64.5
0.95 0.786 0.601 65.6
0.85 0.730 0.575 63.5
0.75 0.684 0.623 65.3
0.65 0.758 0.61 65.1
0.55 0.704 0.638 64.5
0.45 0.688 0.62 62.6
0.35 0.768 0.588 64.2
0.25 0.728 0.589 63.0
0.15 0.736 0.615 62.0
0.00 0.663 0.645 64.2

Based on Figure 12, it can be concluded that when CIoU accounts for 95% of the loss
function and NWD accounts for 5%, the model achieves an average precision of 65.6%,
which is 1.1% higher than that of F-YOLOv5m. Additionally, the convergence speed of the
total loss remains almost the same.
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Figure 12. Improved results of the loss function: (a) average precision and (b) total loss.

To verify the regression improvement of the proposed NWD-CIoU function in this
paper, experiments were conducted to compare the localization and overall losses using
the CIOU, Focal-CIoU [25], and the NWD-CIoU function with the best fusion weight of
0.95. The results are shown in Figure 13.

Table 5 presents the performance metrics of the model obtained in the last training epoch
after 200 iterations. Combined with Figure 13, it can be observed that compared to the default
complete intersection over union (CIoU) loss function used in the original YOLOv5 training,
Focal-CIoU reduces the localization loss by 22.65% and the overall loss by only 13.86%.
However, it results in a slight decrease in average precision by 1.4%. On the other hand, the
proposed NWD-CIoU function in this paper outperforms both of the aforementioned loss
functions. Compared to the default CIoU loss function used in the original YOLOv5, the
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NWD-CIoU function reduces the localization loss by 35.37% and the overall loss by 19.74%.
Moreover, it demonstrates a clear advantage in terms of convergence speed.
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Table 5. The convergence process of the loss function.

Loss Function Total Loss Localization Loss

CIoU 0.038303 0.064629
Focal-CIoU 0.029626 0.055672
NWD-CIoU 0.024755 0.051871

The performance indicators of the best-performing model in 200 rounds of training, as
shown in Table 6, using the original YOLOv5 with the fully intersection over union (IoU)
loss function, yielded an average precision of 62.6%. After replacing the fully IoU with
Focal-CIoU, there was a slight decrease in average precision. However, with our improved
loss function NWD-CIoU, the average precision increased by 3% compared to the original
YOLOv5. Combining the total loss value curves shown in Figure 13, it is visually evident
that the loss value of NWD-CIoU decreases faster among the three loss functions and
ultimately reaches a lower converged value. In conclusion, our improved NWD-CIoU loss
function not only enhances the accuracy of the original algorithm but also significantly
accelerates the convergence speed of the model.

Table 6. Improved results of the loss function.

Loss Function Precision Recall Average Precision/%

CIoU 0.701 0.6 62.6
Focal-CIoU 0.662 0.609 61.2
NWD-CIoU 0.786 0.601 65.6

4.3. Comparative Experiment of the Dynamic Head

The performance of the model was compared by altering the stack number (block) of
the dynamic head in the detection head, using the improved model with a fusion weight
of 0.95 (F-YOLOv5m-95) for the loss function in Section 3.2 as the baseline network. The
experimental results are shown in Table 7.
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Table 7. Experimental results of the dynamic head.

Block Recall Rates Average Precision/% Parameter Number/M FPS

0 (YOLOv5m) 0.653 67.3 20.94 111.29
0 (F-YOLOv5m-95) 0.601 65.6 11.72 247.86

1 0.627 66.8 12.35 131.57
2 (YOLOv5m-SS-Large) 0.637 67.6 12.36 196.86

4 0.633 67.6 12.92 152.60
6 0.612 65.7 12.35 196.13

Based on Figure 14, it can be concluded that the F-YOLOv5m-95, which is a lightweight
and loss-function-improved version of the base model YOLOv5m, achieves a reduction in
parameter number and an increase in FPS. However, it suffers from a decrease in average
precision. Introducing the dynamic head module effectively solves this problem. When
block = 2, which means two dynamic head modules are stacked, the model achieves an
average precision of 67.6%, which is a 0.3% improvement over YOLOv5m. The FPS reaches
196.86, which is a 43.5% increase compared to YOLOv5m, and the parameter number
is reduced to 12.36M, which is a 41.0% decrease compared to YOLOv5m. Overall, this
model demonstrates the best performance and is referred to as YOLO-Substation-large
(YOLO-SS-Large) in this paper.
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4.4. Comparative Experiment of YOLO-SS-Large

In order to validate the effectiveness of each improvement module in the YOLO-SS-
Large model, multiple rounds of ablation experiments were conducted in this study. The
experimental results, as shown in Table 8, indicate the following: after the lightweight
model based on the idea of FasterNet was improved, the FPS increased by 136.57 and the
parameter count decreased by 44%, but there was a noticeable decrease in average precision
and recall. After applying the NWD-CIoU loss function designed in this study, the total
loss of the model decreased by 19.74%, resulting in improved convergence performance,
and the average precision increased by 0.9%. Additionally, introducing the dynamic head
module further increased the average precision by 2% while maintaining a stable FPS of
196.86. The improved model (YOLO-SS-Large) achieved an average precision of 67.6%
while reducing the parameter count of the original model by 41.0%, resulting in a 0.3%
improvement compared to the base model. Finally, by combining with Figure 15, the
proposed model achieved an average precision of 69.1%, a 24.3% decrease in total loss and
a 43.5% increase in FPS compared to the original model with a 27.8% increase in parameter
count. The overall performance of the model is significantly better than YOLOv5m and
YOLOv5l. The results of the ablation experiments demonstrate the effectiveness of each
improvement module in the YOLO-SS-Large model.
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Table 8. Experimental results of the ablation experiment.

Model Total Loss Recall Rates Average Precision/% Parameter Number/M FPS

Base model
(YOLOv5m) 0.06463 0.653 67.3 20.94 111.29

+FasterNet 0.05187 0.641 64.5 11.72 247.86
+FasterNet+NWD-CIoU 0.04748 0.601 65.6 11.72 247.86

+FasterNet+NWD-
CIoU+Dynamic head

(YOLO-SS-Large)
0.0489 0.637 67.6 12.36 196.86

YOLOv5l 0.0605 0.612 65.7 12.35 146.13
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Figure 15. Improved results of YOLO-SS-Large: (a) total loss and (b) average precision.

To further validate the performance of the YOLO-SS-Large model in detecting defects
in the collected substation dataset in this study, a comparison was made between the
proposed YOLO-SS-Large model and other state-of-the-art object detection methods. These
methods include the two-stage object detection model Faster R-CNN in the RCNN family,
the single-stage object detection model SSD with SSD-MobileNetv2, and the YOLO series
models YOLOv7-tiny and YOLOv8n.

The experimental results, as shown in Table 9, led to the following conclusions: the
proposed lightweight model, YOLO-SS-Large, achieves a balance between parameter count,
average precision, and FPS, outperforming the other models. It only has a slight increase
in parameters (2.19M) compared to YOLOv8n, while improving the average precision by
2.3%. Furthermore, the total loss of this model after 200 training epochs is significantly
lower than other models, including YOLOv7-tiny, while achieving a 6.5% higher average
precision than YOLOv7-tiny. Therefore, the proposed YOLO-SS-Large model exhibits
superior comprehensive detection performance in substation defect detection compared to
other similar methods.

Table 9. Horizontal comparison experiment.

Model Total Loss Average Precision/% Parameter Number/M FPS

Faster-RCNN 1.653 40.3 138.36 —
SSD-MobileNetv2 4.692 44.2 8.8 84.7

YOLOv7-tiny 0.046 61.1 6.04 259.0
YOLOv8n 2.689 65.3 10.16 273.3

YOLO-SS-Large 0.049 67.6 12.35 196.8

5. Conclusions

This paper addresses the issues of high computational requirements, large parameter
numbers, and compromised average precision in the traditional YOLO algorithm for defect
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detection in substations. To mitigate these problems, a lightweight and high-performance
improved model called YOLO-SS-Large is proposed.

The YOLO-SS-Large model is based on the YOLOv5m as the basic network, incor-
porating the lightweighting concept of FasterNet to construct the F-YOLOv5m model.
Comparative experiments are conducted with three other improved models: MobileNet-
YOLOv5m, PP-LCNet-YOLOv5, and GhostNet-YOLOv5. It was observed that F-YOLOv5m
achieves the best balance between average precision and parameter number. By comparing
experiments with different fusion weight ratios, it was concluded that a fusion weight of
0.95 leads to the maximum performance improvement. Through comparative experiments
on the depth of the dynamic head module, it was concluded that the model proposed in
this paper performs relatively best when block = 2.

The YOLO-Substation-Large (YOLO-SS-large) model proposed in this paper com-
bines three improvements and achieves an average precision of 67.6%, which is 0.3%
higher than that of YOLOv5m. The FPS reaches 196.86, showing 43.5% higher than that of
YOLOv5m. The parameter number is reduced to 12.36M, which is 41.0% lower than that
of YOLOv5m. The proposed model demonstrates superior detection performance in sub-
station defect detection compared to other models in its category, including YOLOv7-tiny,
YOLOv8n, and Faster R-CNN. These results demonstrate that the proposed YOLO-SS-large
model significantly reduces computational requirements while achieving faster computa-
tion. The model effectively mitigates the decrease in average precision by lightweighting
through the use of a novel loss function and dynamic head module. It achieves the
balance between detection precision and speed, providing new insights and theoretical
models for reliable and efficient intelligent detection in substations, thereby having practical
engineering significance.
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