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Abstract: Non-orthogonal multiple access (NOMA) has emerged as a promising solution to support
multiple devices on the same network resources, improving spectral efficiency and enabling massive
connectivity required by ever-increasing Internet of Things devices. However, traditional NOMA
schemes operate in a grant-based fashion and require channel-state information and power control,
which hinders its implementation for massive machine-type communications. Accordingly, this
paper proposes synchronous grant-free NOMA (GF-NOMA) frameworks that effectively integrate
user equipment (UE) clustering and low-complexity power control to facilitate the power-reception
disparity required by the power-domain NOMA. Although single-level GF-NOMA (SGF-NOMA)
designates an identical transmit power for all UEs, multi-level GF-NOMA (MGF-NOMA) groups
UEs into partitions based on the sounding reference signals strength and assigns partitions with
different identical power levels. Based on the objective of interest (e.g., max–sum or max–min rate),
the proposed UE clustering scheme iteratively admits UEs to form clusters whose size is dynamically
determined based on the number of UEs and available resource blocks (RBs). Once the UEs are
acknowledged with power levels and allocated RBs through random-access response (RAR) messages,
UEs can transmit anytime without grant acquisition. Numerical results show that the proposed
GF-NOMA frameworks can compute clusters in the order of milliseconds for hundreds of UEs. The
MGF-NOMA can reach up to 96–99% of the optimal benchmark max–sum rate, and the SGF-NOMA
reaches 87% of the optimal benchmark max–sum rate at the same power consumption. Since the
MGF-NOMA and optimal benchmark enforce the strongest and weakest channel UEs to transmit at
maximum and minimum transmit powers, respectively, the SGF-NOMA also offers a significantly
higher energy consumption fairness and network lifetime as all UEs consume equal transmit powers.
Although the MGF-NOMA delivers an inferior max–min rate performance, the SGF-NOMA is shown
to reach 3e6 MbpJ energy efficiency compared to the 1e7 MbpJ benchmark.

Keywords: machine-type communications; massive connectivity; power domain; grant-free;
non-orthogonal multiple access; Internet of Things; resource allocation; user pairing, clustering

1. Introduction

The ever-increasing demand for connectivity in today’s world is driving continuous
evolution in wireless networks. With the advent of the digital age, there is an increasing
emphasis on designing network architectures that can seamlessly integrate with various
forms of communication and smart technologies. As envisioned by the International
Telecommunication Union (ITU), future wireless networks are expected to be versatile
enough to cater to the diverse quality of service (QoS) requirements for distinct types of
network usage scenarios [1], which can be broadly categorized into three paradigms:

• Enhanced Mobile Broadband (eMBB): This primarily focuses on supporting tradi-
tional human-type communications (HTC), emphasizing high data rates, broadband
services, and providing high-capacity connectivity [2].
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• Massive Machine-Type Communications (mMTC): As we move towards a more
interconnected world, there is a surge in the deployment of the Internet of Things (IoT)
devices [3]. mMTC focuses on ensuring that cellular networks can handle the immense
connectivity demand from billions of these devices. Unlike eMBB, the emphasis here
is not on high data rates but on ensuring reliable, efficient communication for devices
that might transmit data sporadically, often in very short packets [4].

• Ultra-Reliable Low-Latency Communications (URLLC): In applications like autonomous
vehicles or industrial automation, it is crucial to have instantaneous communication
with near-zero latency and ultra-high reliability [5]. URLLC has been tailored to meet
reliability and latency requirements beyond the perception of a human.

Traditional cellular networks predominantly operated on contention-based channel
access methods orthogonally allocate radio resource blocks (RBs) to devices/user equip-
ment (UEs) through the physical random-access channel (PRACH), where the foundational
mechanism a four-way handshake [6]: (1) Every device randomly chooses one out of the
available preambles and sends it to the BS; (2) the BS sends a random-access response (RAR)
message including information about allocated RBs and timing advance for synchroniza-
tion; (3) following the RAR message reception, devices make a radio resource control (RRC)
connection request through the Physical UL shared channel (PUSCH); and (4) the BS sets
up RRC connection by sending information of allocated RBs to all devices by specifying
their terminal identity. Although device and user equipment are terms typically preferred
for MTC and HTC, respectively, this paper uses them interchangeably, as the proposed
methods are not limited to the communication type. This handshake ensures not only the
establishment of communication between the base station (BS) and the device but also ad-
dresses key requirements such as initial access, uplink synchronization, data transmission,
acknowledgment responses, and handover management, among other functionalities [7].

However, as efficient as this grant-based (GB) mechanism may seem for eMBB scenar-
ios, where the sheer volume of data might overshadow the signaling overhead, it does show
its limitations in the face of mMTC. Given the vast number of IoT devices transmitting
short packets intermittently, the delay from this GB process becomes a critical performance
bottleneck [8]. Non-orthogonal multiple access (NOMA) is a prospective multiple-access
technique envisioned to augment spectral efficiency in wireless communication systems [9].
Unlike traditional orthogonal multiple-access (OMA) methods, where users are distinctly
allocated resources to avert interference, NOMA facilitates the simultaneous transmission
of multiple users over identical resources, such as time, frequency, and space, yielding
various types of NOMA schemes [10]:

Power-domain NOMA (PD-NOMA) primarily relies on superimposing signals from
multiple users in the power domain before actual transmission [11], which is made possible
by assigning varying power levels to the signals of the different users. The receiver then
employs a mechanism known as successive interference cancellation (SIC) to segregate the
signals of the individual users [12]. The user signal with the highest power level is decoded
first. Subsequently, its influence is removed from the combined signal, allowing the next
user’s signal to be decoded. This process is reiterated until all signals are decoded. The
allure of PD-NOMA emerges especially in scenarios characterized by heterogeneous user
channel conditions, where it often demonstrates enhanced spectral efficiency compared to
OMA techniques.

In parallel, code-domain NOMA (CD-NOMA) is another vibrant domain, occasionally
referred to by names such as sparse code multiple access (SCMA) [13] or multi-user shared
access (MUSA) [14], which hinge on employing distinct codebooks for different users.
Essentially, the data of each UE is diffused across several resource elements, each having a
specific spreading factor. On the receiving end, techniques leveraging multi-dimensional
codebooks or multi-user detection come into play to extricate the overlapping users. The
cardinal advantage of this method is its enablement of an overloading factor that allows
more users to be served simultaneously than the orthogonal resources available. Such a
characteristic provides the system with added flexibility and superior spectral efficiency.
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Furthermore, spatial NOMA [15] incorporates the principles of multiple-input multiple-
output (MIMO) technology by using the spatial domain, i.e., the multiple antennas at the
transmitter and/or receiver, to serve multiple users simultaneously over the same fre-
quency resource. The spatial differences of the users’ channels are exploited to differentiate
and decode the overlapping signals. When combined with techniques from PD-NOMA
or CD-NOMA, this spatial-based differentiation offers another dimension to improve
spectral efficiency and user connectivity. In addition to these primary schemes, hybrid
approaches amalgamating features from multiple topologies have also been explored by
researchers [16]. Such hybrid strategies aim to assimilate various domains’ strengths,
enhancing the robustness and efficiency of wireless communication systems.

PD-NOMA is the most studied and promising approach among these primary NOMA
schemes. However, it brings forth its set of challenges, especially concerning the non-
convex and combinatorial complexities of power control, user clustering, and the excessive
signaling overhead due to the need for channel-state information (CSI) [17,18]. Grant-free
NOMA (GF-NOMA) manifests as an evolved facet of the NOMA paradigm, designed
meticulously to mitigate certain intrinsic challenges observed in GB-NOMA systems,
predominantly in PD-NOMA. In mMTC, many IoT devices frequently exhibit sporadic
data transmission patterns and often remain dormant for extended durations, transmitting
exclusively upon detecting specific events. The aforementioned GB-NOMA schemes may
demonstrably falter in efficiency in such traffic patterns. The consequent overhead spawned
by this iterative request-grant protocol, particularly when dealing with concise data packets,
emerges as a substantial bottleneck in networks with dense deployments. There are three
main advantages of GF-NOMA schemes:

1. Signaling Overhead Attenuation: A primary impetus propelling GF-NOMA’s in-
ception is its prowess in truncating the signaling overhead, an inevitable byproduct
of recurrent grant access requests in ultra-dense networks [19]. GF-NOMA can
streamline network operations, allowing devices to transmit without waiting for prior
scheduling, especially for short and sporadic data transmissions.

2. Power Control Dynamics: Although classical PD-NOMA is profoundly reliant on
power control to delineate users, in the GF-NOMA context, this emphasis is palpably
attenuated, albeit not rendered obsolete [20]. Devices might necessitate intermit-
tent power calibrations to ascertain the decodability of their signals at the receiver,
especially in the presence of potential interference.

3. Latency Minimization: Another salient advantage offered by GF-NOMA is its po-
tential to curtail latency. By obviating the inherent latency in grant-based systems,
devices experience expedited data relay, a facet paramount for applications with a
penchant for URLLC [21].

In encapsulation, GF-NOMA epitomizes a pivot towards a more structured, adaptable,
and efficient wireless communication, especially in network landscapes characterized by
density and unpredictability. Although it embodies the promise of aligning with futuristic
network aspirations, especially those overcrowded with many IoT devices, GF-NOMA is
not devoid of challenges. Accordingly, this paper will focus on providing a fast yet efficient
user clustering approach with implicit power control mechanisms, allowing grant-free
operation of users.

1.1. Related Work

The GF-NOMA can be categorized into synchronous and asynchronous depending on
whether it relies on the abovementioned PRACH mechanism. Once UEs perform PRACH
and become aligned with the BS in the synchronous GF-NOMA, there is no need for
further grant acquisition (GA). On the other hand, the asynchronous GF-NOMA does not
need any access or GA processes. Noting that there exist various GF-NOMA schemes
exploiting different domains of non-orthogonality (e.g., power, spreading, scrambling,
interleaving, etc.) [22], we restrict this section with literature on power-domain GF-NOMA
as it is the main focus of the paper. Early GF-NOMA schemes integrated slotted-ALOHA
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protocols with PD-NOMA [23–25], where the BS estimated the number of active devices by
various statistical tools (e.g., hypothesis testing) and allow devices independently select
predetermined power levels. Stochastic geometry has also been used as an effective tool to
analyze the performance of GF-NOMA [26–28]. In [26], the authors proposed a semi-GF-
NOMA scheme to improve spectral efficiency by multiplexing GB and GF devices on the
same RB. By leveraging stochastic geometry techniques, they developed a dynamic protocol
that reduces GF devices’ interference to a large extent compared to the open-loop protocol
benchmark. This work was further studied in [27] to analyze ergodic rates by deriving
the closed-form analytical and approximated expressions. In [28], Liu et al. exploited
compressive sensing and stochastic geometry tools to model, analyze, and optimize the GF-
NOMA scheme, where active devices were allowed to send preambles and data symbols
without a need for GA. In [29], Fayaz et al. proposed an open-loop power control technique,
where each UE acts as an agent and power levels are learned through a multi-agent deep Q-
network. In [30], Abbas et al. developed a framework treating collisions as interference and
deriving approximate expressions of the outage probability and throughput using Poisson
point processes and ordered statistics. In [31], Dogan et al. introduced a GF approach for
URLLC based on index modulation-based orthogonal frequency division multiplexing
(OFDM-IM) to reduce the impact of the collision on the URLLC and achieved 99.999%
success probability within 1 ms.

In recent years, there has been a considerable exploration into integrating deep-
learning (DL) techniques with GF-NOMA schemes that can substantially improve efficiency
and performance, especially for mMTC and URLLC. For instance, Liu et al. [32] introduced
a novel learning framework for multiple configured-grants GF-NOMA systems designed
to comply with URLLC requirements. They employed a cooperative Multi-Agent Double
Deep Q-Network (MA-DDQN) to optimize channel resource allocations, which improved
latency and reliability performance, underlining the potential of DL techniques in enhanc-
ing URLLC. The use of DL in dynamic resource configuration was further developed in [33],
wherein Liu et al. developed an MA-DQN framework for signature-based GF-NOMA,
demonstrating a significant improvement in heavy traffic performance for URLLC services.
On the other hand, Zhang et al. [34] proposed two efficient Bayesian learning algorithms,
which significantly reduced the computational complexity of GF-NOMA systems, show-
ing the benefits of DL in computational efficiency. Their later work [35] further utilized
Sparse Bayesian Learning (SBL) approaches to tackle the multi-user detection problem in
GF-NOMA and demonstrated the capacity of DL to handle complex detection problems
in mMTC.

Moreover, the use of DL has also been extended to address challenges in user activity
detection and channel estimation in GF-NOMA. Yu et al. [36] introduced a novel DL
architecture, UAD-CE-NN, which showed higher detection accuracy, especially with short
preamble sequences. Meanwhile, Khan et al. [37] presented a Deep Neural Network
(DNN)-based approach for active user detection in GF-NOMA with sparse spreading. Their
active user enumeration and identification method demonstrated substantial performance
improvements over traditional methods. Furthermore, Cao et al. have focused on the
security aspects of semi-grant-free NOMA transmission [38], wherein they investigated
passive and active eavesdropping attacks and proposed DL-based user scheduling schemes
to enhance security, showing the flexibility and applicability of these techniques in GF-
NOMA design.

Reconfigurable intelligent surfaces (RIS) have recently received attention owing to
their ability to control wireless channels by changing impinging signals’ electromagnetic
properties [39–41], wherein RIS control wireless channels to facilitate GF-NOMA by im-
proving channel gain disparity among NOMA users and eliminate the need for power
control, which is especially problematic for UL traffic. In [40], authors proposed a user
pairing, RIS assignment, and phase shift alignment framework to utilize multiple RIS
distributed across the cell area to realize a GF-NOMA network. In [41], authors optimally
divided RIS into two partitions, each of which is aligned to one of the two NOMA users,
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and the size of each partition is adjusted to maximize the max–sum and max–min rate
while satisfying UL and DL QoS requirements of bidirectional NOMA networks.

1.2. Paper Contributions and Novelty

This paper proposes synchronous GF-NOMA frameworks that substantially differ
from the above works in that low-complexity power control and UE clustering are effec-
tively integrated to facilitate the power-reception disparity required by the PD-NOMA. The
main contributions of this paper can be summarized as follows:

• Two simple yet effective PD-NOMA schemes are proposed for the low-complexity
power control required by the GF-NOMA concept. In single-level GF-NOMA (SGF-
NOMA), all UEs are requested to transmit at the same power level through a broadcast
RAR message. Even though all UEs transmit at the same power, the SGF-NOMA
reaches power-reception disparity based on the channel gain disparity of UEs.

• To further improve SGF-NOMA, we propose a multi-level GF-NOMA (MGF-NOMA)
approach that groups UEs into partitions based on sounding reference signals (SRS)
signal strength. Then, partitions are assigned with different but identical power levels
and shared with partition members through broadcast signals. The MGF-NOMA
executes partitioning and power leveling dynamically depending on the available
number of RBs and UEs awaiting admission. In addition to channel gain differences,
the MGF-NOMA further improves the power-reception disparity by varying partitions’
power levels. Assuming channel reciprocity, the proposed schemes are also adopted
to downlink (DL) power control for low-complexity operations.

• An iterative UE clustering scheme is proposed using the proposed low-complexity
power control schemes as building blocks. The clustering algorithm iteratively pairs
UEs awaiting admission with the available RBs to maximize the network sum or
max–min rate. Therefore, the iterative clustering approach introduces extra power
control while performing RB allocation. Finally, clustering information is shared with
UEs by broadcasting RAR messages, and UEs can transmit on allocated RBs anytime
without GA.

The MGF-NOMA is shown to provide a power control behavior very close to a GB
benchmark with optimal power control and deliver 96–98% and 96–99.9% of the benchmark
UL and DL max–sum rate. When the identical power level is set to match the same power
consumption with other schemes, the SGF-NOMA is shown to deliver 87% and 88% UL
max–sum rate of the MGF-NOMA and benchmark schemes, respectively. This clearly
shows the efficacy of implicit power control imposed by the proposed UE clustering
scheme, which only depends on readily available standard SRS signals and forms clusters
in the order of milliseconds for a network with hundreds of UEs. From an energy-efficiency
point of view, the SGF-NOMA is shown to deliver up to three orders of magnitude better
max–sum rate performance, especially at transmission powers less than 5 dBm. Since the
MGF-NOMA and optimal benchmarks enforce the strongest and weakest channel UEs to
transmit at maximum and minimum transmit powers, respectively, the SGF-NOMA offers a
significantly higher energy consumption fairness and network lifetime as all UEs consume
equal transmit powers. If one also accounts for its low signal overhead and simplicity, the
SGF-NOMA can be regarded as the best fit for low-power and low-complexity IoT devices.
On the other hand, the MGF-NOMA is especially more suitable for DL transmission for
three reasons: (1) the broadcasting of partitions’ power levels is redundant; (2) the BS exactly
knows the active UEs, thus not affected by the MGF-NOMA’s dependence on the accurate
estimation of active UEs to determine power levels; and (3) the MGF-NOMA’s relatively
lower energy efficiency can be tolerated at the BS. Albeit its significant performance in
max–sum rate, the MGF-NOMA turns an extremely low performance in max–min rate.
This is mainly because max–min rate optimization requires all nodes to reach the same
transmission rate, which does not comply with the leveled power approach. On the other
hand, the SGF-NOMA delivers a much better max–min rate performance than the MGF-
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NOMA. Especially at low transmission power range up to −10 dBm, the SGF-NOMA
yields 3× 106 MbpJ energy efficiency compared to 1× 107 MbpJ benchmark.

1.3. Notations and Paper Organization

Throughout the paper, sets and their cardinality are denoted with calligraphic and
regular uppercase letters (e.g., |A| = A), respectively. Vectors and matrices are represented
in lowercase and uppercase boldfaces (e.g., a and A), respectively. The ith member of a
vector and set is denoted by a[i] and A{i}, respectively. Likewise, matrix A’s entry on
ith row and jth column is denoted by A[i, j]. Subscripts b, r, and u are used for indexing
the BS, RB/cluster, and UEs, respectively. The most frequent symbols and notations are
summarized in Table 1 for readers’ convenience.

The remainder of the paper is organized as follows: Section 2 presents the considered
network model. Section 3 discusses the problem formulation and explains the proposed
solution methodology. Section 4 introduces the optimal benchmark and the proposed
low-complexity power control schemes. Section 5 presents the algorithmic implementation
of the clustering approaches. Lastly, Section 6 presents numerical results, and Section 7
concludes the paper by remarking on the key findings.

Table 1. Table of Notations.

Nots. Description

U Set of U users

R Set of R RBs

N Cluster size, N = dU/Re

B RB bandwidth

αu Access probability of UEu, u ∈ U

χu
r Clustering binary indicator χu

r = 1 if UEu is assigned to RBr, 0 otherwise

Cr Cluster set of Cr users belonging to RBr, ∀r ∈ R

C̃r Set of active members of Cr, r ∈ R

Pu
max Maximum transmit power of UEu ∈ U

Pu
min Minimum transmit power of UEu ∈ U

hj
i

Composite channel gain between generic nodes i and j

γu
r SINR of UEu at RBr

λu QoS requirement of UEu ∈ U

ωr Power allocation vector for Cr

L(N) Linearly spaced N power transmit levels, `1, . . . , `N

W(N) N levels of DL transmit power, ω_1, . . . , ωN

An Number of users awaiting cluster admission

Qn R× An cost matrix of nth user admission iteration

2. Network Model

We consider a cellular network consisting of a BS serving U UEs over R available RBs,
each with B Hz bandwidth, whose index sets are denoted by U andR, respectively. Based
on the underlying traffic characteristics, the BS controls the network and allocates resources
to achieve various performance goals, e.g., max–sum rate, max–min fair rate, etc. The
UEu accesses the allocated RB with probability αu ∈ [0, 1], which also depends on traffic
characteristics of its communication type, e.g., HTC, MTC. Through long-term observation
of access requests, the BS is assumed to have an accurate estimate of αu. It is worth noting
that exact information on active UEs in the DL direction is already available to the BS.
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To demonstrate the massive connectivity capability of the proposed GF-NOMA
schemes, we primarily focus on network scenarios satisfying U � R such that an RB/cluster
can admit up to N =

⌈
U
R

⌉
UEs, which is referred to as the maximum cluster size. The

set of UEs allocated to operate on RBr is referred to as a cluster that is represented by set
Cr = {u | χu

r = 1, ∀u ∈ U , ∑u∈U χu
r ≤ N}, where the binary clustering variable χu

r = 1
if UEu is allocated to RBr, χu

r = 0 otherwise, i.e., there is a one-to-one correspondence
between RBr and rth UE cluster, Cr, which are used interchangeably throughout the paper.
Since cluster members randomly access the channel, the set of cluster members currently
active at the RBr, r ∈ R, is given by C̃r = {u | βu = 1, ∀u ∈ Cr}, C̃r ⊆ Cr, where βu ∈ {0, 1}
is the binary indicator of channel access following from αu and C̃r = ∑u∈C̃r

βu.
The BS and UEs operate in a single-input single-output (SISO) fashion, where the

maximum transmission power of the BS is denoted by Pb
max that is shared equally across all

RBs. Moreover, the maximum and minimum transmission powers of UEs are represented
by Pu

max and Pu
min, respectively. In the SGF-NOMA scheme, all UEs transmit at an identical

power, denoted by Pid. On the other hand, the MGF-NOMA divides the power control
range [Pu

min, Pu
max] into N levels and requires UEs placed at level ` ∈ {1, 2, . . . , N} to adjust

its transmission power to P`. Figure 1 illustrates an aerial view of a network where the
BS is located at the origin and serves 100 UEs over 25 RBs/clusters, each hosting 4 UEs.
Although the rings represent four partitions, the ring colors indicate the transmission
power of partitions such that UEs fall into yellow (level 1), green (level 2), blue (level 3),
and purple (level 4) rings transmit at 23 dBm, 2 dBm, −19 dBm, and −40 dBm, respectively.

Figure 1. Illustration of UE partitioning for U = 100, R = 25, and N = 4.

Channel Model

All channels are assumed to be quasi-static, i.e., channel coherence time is longer than
the time-slot duration during which UEs experience flat-fading. For a generic transmitter
node i and receiver node j, the composite channel gain is given by

hj
i = 10−ρ

j
i /10gj

i , {i, j} ∈ {b, u}, i 6= j, (1)
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where gj
i is the channel gain representing small-scale fading modeled by Rayleigh distribu-

tion and ρ
j
i is the large-scale fading. Since man-made structures incur significant shadowing

and scattering impact on the channel attenuation, the commonly exploited free-space path
loss model is inadequate to capture real-life signal losses. Therefore, we consider the statis-
tical features of the underlying urban environment, such as (i) the percentage of build-up
area to the total land area, (ii) the number of buildings per unit area, and (iii) the statistical
distribution of building heights. Accordingly, the spatial expectation of channel attenuation
over the probabilities of having line-of-sight (LoS) and non-line-of-sight (NLoS) links is
given by [42]

ρ
j
i = ∑

k∈{LoS,NLoS}
υ

j
i(k)

(
FSPLj

i + ηk

)
[dB], (2)

where ηk, k ∈ {LoS, NLoS}, refers to the mean value of the excessive path loss over the
free-space path loss (FSPL) between transceivers, which is expressed as

FSPLj
i = 20

[
log10(d

j
i) + log10( fc) + log10

(
4π

c

)]
[dB],

where dj
i is the distance between transceivers, fc is the carrier frequency, and c is the speed

of light. Denoting the heights by Hi and Hj, the probability of having an LoS transmission
is given by

υ
j
i(LoS)

1

1 + ai exp
[
−bi

(
arctan

(
Hj−Hi

dj
i

)
− ai

)] , (3)

where ai and bi are the approximation parameters depending on Hi/Hj, the mean number
of buildings per km2, distribution of building heights, and the ratio of lands covered by
buildings to the total land area [1]. The probability of having NLoS links directly follows
from (3) as υ

j
i(LoS) = 1− υ

j
i(NLoS).

3. Problem Definition and Solution Methodology

In this section, we first provide joint power control and user clustering formulation of the op-
timal PD-NOMA scheme, then provide an overview of the proposed GF-NOMA frameworks.

3.1. Problem Definition

The DL sum rate maximization problem can be formulated as follows

Ps : max
χu

r ,ωu
r

∀r,∀u

∑
∀u∈C̃r ,∀r∈R

γu
r (ωr)χ

u
r

s.t.

C1
s : γu

r (ωr)χ
u
r ≥ 2λu/B − 1, ∀u ∈ C̃r, ∀r ∈ R,

C2
s : ∑

r∈R
χu

r ≤ 1, ∀u ∈ U ,

C3
s : ∑

∀u∈U
χu

r ≤ N, ∀r ∈ R, // omitted in the UL

C4
s : ∑

∀u∈C̃r

ωu
r ≤ 1, ∀r ∈ R,

C5
s : χu

r ∈ {0, 1}, ωu
r ∈ [0, 1], ∀r, ∀u

, (4)
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where ωr is the power allocation vector, C1
s ensures that the SINR of each UE, γu

r (ωr),
∀u ∈ C̃r, ∀r ∈ R, satisfy the QoS requirement λu [bps], C2

s assures each UE is allocated
at most one cluster, C3

s limits the cluster size by N = dU/Re, C4
s is the constraint on total

cluster transmission power, and C5
s specifies the domain and bounds on optimization

variables. The UL sum rate maximization problem can be formulated as in (4) by omitting
the constraint on total cluster transmission power, C4

s , as each UE has its own power source
in the UL transmission. By introducing an auxiliary variable ψ and enforcing all UEs
to reach an SINR no less than ψ, the DL max–min fair rate problem can be formulated
as follows

Pf : max
ψ,χu

r ,ωu
r

∀r,∀u

ψ

s.t. γu
r (ωr)χ

u
r ≥ ψ, ∀u ∈ C̃r, ∀r ∈ R,

C2
s −C5

s

, (5)

which can be further reduced to the UL max–min fair rate problem by ignoring C4
s as in

the max–sum rate problem. Pm and Pf are both mixed-integer non-linear programming
(MINLP) problems, whose computational complexity is prohibitively high to employ in
real life even for a moderate size of the network. Although the binary clustering variables
cause the mixed-integer nature, the non-linearity results from power control variables.
Given a certain clustering solution, the non-linear power control problem is indeed non-
convex due to the interference terms in the SINR expressions, which are defined in the
next section. Even though variations of these problems are studied extensively in the PD-
NOMA literature, the underlying complexity of power control is not suitable to the spirit
of GF-NOMA, as explained before. Therefore, we will benchmark the solution to these
problems against the proposed low-complexity GF-NOMA frameworks presented next.

3.2. Solution Methodology

As shown in Figure 2, the proposed GF-NOMA framework operates merely on the
received signal strength (RSS) of SRS, which is a Zadoff-Chu sequence transmitted by
each UE separately from PUSCH and physical uplink control channel (PUCCH). UEs can
transmit SRS on any subcarriers in the last symbol in an uplink subframe regardless of
subcarriers assigned to another channel. For the sake of channel reciprocity, we focus on
TDD mode, where SRS can also be sent in the last two symbols of the special subframe if
the uplink pilot time slot (UpPTS) is configured to be long enough. Based on the RSS, the
network controller computes the UL power levels L and DL power weightsW to form
a look-up table. Then, the proposed clustering approach iteratively forms clusters based
on input parametersR, U , L, andW . The nth, n ∈ [1, N − 1], iteration starts with creating
bi-partite matching weights, i.e., cost matrix entities, between RBs/clusters and the set of
UEs awaiting admission An. After that, the cost matrix is used to perform UE admission
by solving linear sum or linear bottleneck assignments for max–sum rate and max–min
rate objectives, respectively. Following the user-cluster assignment, clusters are updated
and prepared for the next phase of the UE admission. Once the admissions are finalized,
the clustering algorithm returns the cluster sets Cr along with their fitness fr, ∀r. Finally,
allocated RBs and power levels are encapsulated into RAR messages and broadcast to UEs.
Further details of the proposed scheme are provided in the next two sections.



Sensors 2023, 23, 8245 10 of 22

.

.

.

.

.

.

.

.

.

.

.

.

SRS RAR

Figure 2. Schematic illustration of the solution methodology.

4. A Low-Complexity PD-NOMA

In the DL (UL) NOMA schemes, the BS (UEs) perform successive interference can-
cellations, where the messages broadcast (transmitted) from the BS (UEs) are decoded in
the descending order of signal reception power. It is worth noting that the optimal power
allocation strategy is the opposite for UL and DL transmissions. The optimal UL-NOMA
scheme ensures the strongest channel gain UE has the highest reception power at the BS
such that remaining cluster members have more room to cause interference to improve
their SINRs. This is typically achieved by forcing the UE with the strongest channel gain to
transmit maximum power. On the contrary, the optimal DL-NOMA ensures the weakest
channel gain UE has the highest reception power and experiences interference from the
stronger users in the cluster. In this case, the strongest channel gain UE is allocated with
the lowest power weight while enjoying substantially reduced interference after the SIC
procedure. It is worth noting that a residual interference is possible after the SIC proce-
dure due to hardware imperfections and inaccurate channel estimation [17,18]. Therefore,
we numerically evaluate the impact of SIC imperfections in Section VII. In light of the
above discussions, this section first formulates the optimal PD-NOMA benchmark. Then,
it introduces the low-complexity power control developed explicitly for the proposed
GF-NOMA approach.

4.1. Benchmark Optimal PD-NOMA

The benchmark scheme requires UEs’ exact CSI to calculate optimal transmission
powers to reach the objective function of interest. For the rth cluster, C̃r, ∀r, we denote
the power weight, composite channel gain, and received power vectors by ωr, hr, and pr,
respectively. Assuming the reciprocity of DL and UL channels, the optimal received powers
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in DL and UL transmissions are given by pr =
1
R Pb

maxωrhr and pr = Pmaxωrhr, respectively.
Likewise, the optimal received powers sorted in descending order are represented by p̌r
with p̌r[i] < p̌r[j], j > i, {i, j} ∈ [1, Cr]. Accordingly, the signal-to-interference-plus-noise-
ratio (SINR) of ith ordered member of Cr is expressed as

γ̃i
r(ωr) =

p̌r[i]
∑∀j∈C̃r

j>i
p̌r[j] + σ2 , ∀i ∈ C̃r, (6)

where 1 � ωr � 0, ∑∀j∈C̃r , j>i p̌r[j] is the intra-cluster interference, σ2 = N0B is the thermal
noise power and N0 is the noise power spectral density. When all cluster members are
active, i.e., C̃r ≡ Cr, Equation (6) is specially denoted by γu

r . The problem formulations
for UL and DL optimal power control for max–min rate and max–sum rate objectives
are presented in Table 2, where ψ̄ = 2λ/B − 1. These can be reformulated as geometric
programming problems as explained in [17,18,43,44] and optimal power control weight
vectors ?

ωr can be obtained by using numerical solvers.

Table 2. Problem formulations for optimal max–min fair and max–sum rate PD-NOMA schemes.

?
ωr Uplink PD-NOMA Downlink PD-NOMA

Max–Min max
ωr ,ψ

ψ (s.t.) γ̃r,i(ωr) ≥ ψ, ∀i ∈ C̃r max
ωr ,ψ

ψ (s.t.) γ̃r,i(ωr) ≥ ψ, ∑i ωi ≤ 1, ∀i ∈ C̃r

Max–Sum max
ωr

∑i γ̃r,i(ωr) (s.t.) γ̃r,i(ωr) ≥ ψ̄, ∀i ∈ C̃r max
ωr

∑i γ̃r,i(ωr) (s.t.) γ̃r,i(ωr) ≥ ψ̄, ∑i ωi ≤ 1, ∀i ∈ C̃r

4.2. Proposed Low-Complexity PD-NOMA

In the MGF-NOMA, the BS orders UEs as per the RSS obtained from SRSs transmitted
by UEs. The ordered UE sets are then partitioned into N distinct groups such that Ui
represents the ordered index set of ith highest RSS group of UEs with partition sizes
Ui = R, i ∈ {1, 2, . . . , N − 1}, and UN = U mod (R). The power control range of UEs is
divided into N levels such that the dBm scaled maximum and minimum levels are given
by `max = 10 log10(Pu

max) + 30 and `min = 10 log10(Pu
min) + 30, respectively. Accordingly,

the linearly spaced transmit power level set is given by

L(N) =

{
`i

∣∣∣∣`i = `max −
(i− 1)(`max − `min)

N − 1
, i ∈ [1, N]

}
, (7)

where `i [dBm] is the transmission power level of UEs belonging to Ui. By taking the
union of transmit power levels for various cluster sizes, i.e., L =

⋃K
k=1 L(k), the BS can

form a look-up table, which is known by all UEs in advance. Based on the maximum and
minimum UE output power specifications of LTE standards [45], Table 3 shows a power
level look-up table for `max = 23 dBm, `min = −40 dBm, and N ≤ 10. Based on Table 3,
the power level vector of the clusters, `r, ∀r, can be decided. For instance, in Figure 1, the
highlighted cluster is allocated to RBr with power level vector of highlighted cluster is
`r = [1, 10, 20, 30]. Thus, the cluster members falling into yellow, green, blue, and purple
rings receive RAR messages indicating (r, 1), (r, 10), (r, 20), and (r, 30); and transmit with
power levels 23 dBm, 2 dBm,−19 dBm, and−40 dBm on RBr freely until it receives another
RAR, respectively. Accordingly, the SINR of ith ordered member of C̃r is expressed as

γ̃i
r(`r) =

10(`r [i]−30)/10hr[i]
∑∀j∈C̃r

j>i
10(`r [j]−30)/10hr[j] + σ2

, ∀i ∈ C̃r, (8)

where cluster members always transmit at a designated power level regardless of which
members are active or passive. The second term of (8), ∑∀j∈C̃r , j>i 10(`r [j]−30)/10hr[j], rep-
resents the intra-cluster interference. In the SGF-NOMA, the BS designates an identical
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power level and broadcasts an RAR message indicating the power level index to all UEs,
which can be updated whenever necessary. Since the SGF-NOMA does not need to transmit
individual power levels along with the RB indices for each UE, it incurs less signaling
overhead than the MGF-NOMA.

Table 3. Power level look-up table for Pu
min = −40 dBm, Pu

max = 23 dBm, and N ≤ 10.

Level Indices Powers [dBm]
N (Cluster Size)

2 3 4 5 6 7 8 9 10

`1 23 X X X X X X X X X

`2 16 – – – – – – – – X

`3 15.125 – – – – – – – X –

`4 14 – – – – – – X – –

`5 12.5 – – – – – X – – –

`6 10.4 – – – – X – – – –

`7 9 – – – – – – – – X

`8 7.25 – – – X – – – X –

`9 5 – – – – – – X – –

`10 2 – – X – – X – – X

`11 −0.625 – – – – – – – X –

`12 −2.2 – – – – X – – – –

`13 −4 – – – – – – X – –

`14 −5 – – – – – – – – X

`15 −8.5 – X – X – X – X –

`16 −12 – – – – – – – – X

`17 −13 – – – – – – X – –

`18 −14.8 – – – – X – – – –

`19 −16.375 – – – – – – – X –

`20 −19 – – X – – X – – X

`21 −21 X – – – – – – – –

`22 −22 – – – – – – X – –

`23 −24.25 – – – X – – – X –

`24 −26 – – – – – – – – X

`25 −27.4 – – – – X – – – –

`26 −29.5 – – – – – X – – –

`27 −31 – – – – – – X – –

`28 −32.125 – – – – – – – X –

`29 −33 – – – – – – – – X

`30 −40 – X X X X X X X X

Although the DL-NOMA schemes are not limited by signaling overhead, the computa-
tional complexity required to calculate the optimal power weights for the massive number
of users is still prohibitive. Therefore, we further extend the proposed ultra low-complexity
power control scheme to the DL-NOMA by translating the power level set in (7) into the
DL power weights as follows
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W(N) =

{
ωi

∣∣∣∣∣ωi =
10(`i−30)/10

∑i 10(`i−30)/10
, `i ∈ L̂(N)

}
, (9)

where L̂(N) is obtained by sorting L(N) in ascending order since the DL power weights
follow opposite power weights as explained at the beginning of this section. Similar to
the UL case, the BS can take the union of power weights for various cluster sizes to form
a look-up table of weightsW =

⋃K
k=1W(k). For instance, in Figure 1, the BS adjusts the

power weight of UEs falling into yellow, green, blue, and purple rings to ω1 = 4.97× 10−7,
ω2 = 6.26× 10−5, ω3 = 7.9× 10−3, and ω4 = 0.9921, respectively.

5. Iterative UE Admission

This section presents the iterative UE admission approach that integrates proposed
power control schemes with RB allocation and UE clustering. Algorithm 1 provides the
pseudo-code of the solution methodology pictorially depicted in Figure 2. For the sake of
generalization, Algorithm 1 is presented for the MGF-NOMA framework, which can be
simply reduced to the SGF-NOMA by considering a single partition and power level. In
the remainder, we explain Algorithm 1 in more details:

Following the SRS reception from all UEs in Line 2, the BS determines the number of
active UEs, maximum cluster size, and number of clusters in Line 3, Line 4, and Line 5,
respectively. Due to the reverse operation characteristics of NOMA in UL and DL direction,
Line 7 and Line 9 sort UEs in descending and ascending order of the channel quality for
UL and DL iterative UE admission, respectively. Based on the obtained sorted UE index set
I , Line 11 partitions the UE set into N subsets, i.e., Un = I{(n− 1)R + 1 : nR}, n ∈ [1, N].
Then, the clusters are initialized in Line 12, where Cr is initialized with the rth element of
the first partition, ∀r.

The iterative UE admission is executed between Line 13 and Line 22 as follows:
Line 14 updates the set of UEs awaiting admission. Then, Line 15 calls EVALCOSTMA-
TRIX procedure to compute the cost matrix of nth round of UE admission, Qn, which is
explained in the next paragraph. Then, Line 17 and Line 19 determine new admissions
that maximizes the sumrate and minimum rate of all clusters by calling LINEAR SUM

ASSIGNMENT and LINEAR BOTTLENECK ASSIGNMENT procedures, respectively. The as-
signment problems ensure that all clusters admit a UE if R ≤ An or all UEs are otherwise
assigned to a cluster. There exist algorithms that can solve linear assignment problems
in polynomial time. For example, the Jonker–Volgenant method has a cubic worst case
complexity [46], i.e., O

(
(Kn)3) where Kn = max{R, An}. Burkard et al. proves in Theorem

6.4 in [47] that LINEAR BOTTLENECK ASSIGNMENT can be solved in O
(
(Mn)2.5√log Mn

)
,

where Mn = min{R, An}. They also developed a thresholding-based algorithm that uses
LINEAR SUM ASSIGNMENT and maximum cardinality bipartite matching Algorithm 6.1
in [47]. Based on assignment results, Line 21 updates the clusters for the next round of
UE admission. Once the iterative user admission is finalized, power levels and weights
of clusters are updated in Line 23 and Line 24, respectively. Finally, Line 25 sends RAR
messages to UEs indicating allocated RB and assigned power levels.

The cost matrix Qn ∈ RR×An is computed by nested for loops between Line 28 and
Line 49. At jth inner loop iteration, Line 30 forms a temporary cluster Tr by admitting jth
element of An{j} into Cr. For the UL transmission, Line 32 determines the power levels as
per the MGF-NOMA or SGF-NOMA schemes introduced in the previous section. Based on
the objective function of interest, Line 34 and Line 36 compute Qn[i, j] by evaluating the
UL max–sum and max–min rates of temporary cluster Tr, respectively. Similarly, Line 39
determines the DL power weights. Then, Line 41 and Line 43 compute Qn[i, j] by evaluating
the DL max–sum and max–min rates of temporary cluster Tr, respectively. The final cost
matrix is then returned for the UE assignment.
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Algorithm 1 Proposed MGF-NOMA and SGF-NOMA
1: Input: R, O ∈ {MS, MM}, D ∈ {UL, DL}
2: s← Obtain SRS from UEs
3: U ← Determine active set of UEs
4: N ←

⌈U
R
⌉

// Determine maximum cluster size
5: C ← R // Determine number of clusters
6: if D=UL then
7: I ← SORTDESCEND(su, ∀u) // UE ordering for UL
8: else
9: I ← SORTASCEND(su, ∀u) // UE ordering for DL

10: end if
11: Un ← I{(n− 1)R + 1 : nR}, n ∈ [1, N] // Form UE partitions
12: Cr ← U1{r}, ∀r // Initialize clusters
13: for n=1:N-1 do // Iterative UE admission starts
14: An ←

⋃N
i=n+1 Un // Initialize admission awaiting UEs

15: Qn ← EVALCOSTMATRIX(p, Cr ,An)
16: if O=MS then // Max–Sum Rate Assignment
17: fr , χ← LINEAR SUM ASSIGNMENT(Qn)
18: else if O=MM then // Max–Min Rate Assignment
19: fr , χ← LINEAR BOTTLENECK ASSIGNMENT(Qn)
20: end if
21: Cr ← Cr

⋃An{j}, χ[r, j] = 1, ∀r, ∀j // Update clusters
22: end for
23: `r ← L(Cr + 1), ∀r // Update cluster levels
24: ωr ←W(Cr + 1), ∀r // Update cluster weights
25: UEj ← (r, `r [j]), UEj ∈ Cr , ∀j, ∀r // Send RARs out
26: return fr , Cr , `r , ωr
27: procedure EVALCOSTMATRIX(p, Cr ,An)
28: for i=1:R do
29: for j=1:An do
30: Tr ← Cr

⋃An{j} // Admit jth UE of An to Cr
31: if D=UL then
32: `← L(n + 1) // power levels as per (7)
33: if O=MS then
34: Qn[i, j]← ∑k∈Tr B log2(1 + γk

r (`))
35: else if O=MM then
36: Qn[i, j]← min

k∈Tr

{
B log2(1 + γk

r (`))
}

37: end if
38: else if D=DL then
39: ω←W(n + 1) // power weights as per (9)
40: if O=MS then
41: Qn[i, j]← ∑k∈Tr B log2(1 + γk

r (ω))
42: else if O=MM then
43: Qn[i, j]← min

k∈Tr

{
B log2(1 + γk

r (ω))
}

44: end if
45: end if
46: end for
47: end for
48: return Qn
49: end procedure
50: procedure LINEAR SUM ASSIGNMENT(Qn)
51: χ← max

χ
∑∀i,∀j Qn[i, j]χ[i, j]

52: s.t. ∑i χ[i, j] ≤ 1, ∑j χ[i, j] = 1
53: return χ
54: end procedure
55: procedure LINEAR BOTTLENECK ASSIGNMENT(Qn)

56: χ← max
χ

{
min
∀i,∀j
{Qn[i, j]χ[i, j]}

}
57: s.t. ∑i χ[i, j] ≤ 1, ∑j χ[i, j] = 1
58: return χ
59: end procedure

For the max–sum rate objective, the overall time complexity of iterative user admission
is given by

N−1

∑
n=1
O
(

RAn + (Kn)
3
)

R�1,An�1−−−−−−→
N−1

∑
n=1
O
(
(Kn)

3
)

,
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where the first and second terms of the left-hand side are the complexity of cost matrix
formation and LINEAR SUM ASSIGNMENT. Since Kn � 1 in practice, the overall complexity
can be approximated by the dominant term, which has cubic time complexity. Likewise,
the overall time complexity for the max–min rate objective is given by

N−1

∑
n=1
O
(
(Mn)

2.5√log Mn

)
,

where the complexity of cost matrix formation is omitted following the same reason above.

6. Numerical Results

Without loss of generality, we assume that UEs are uniformly distributed over a
macrocell area of a radius of 500 m. Unless explicitly stated otherwise, the numerical results
are obtained by Matlab using the default parameters summarized in Table 4. The number of
available RBs is intentionally selected as R = 25 to show the proposed GF-NOMA schemes’
capability of supporting mMTC, where many devices share an RB. For benchmarking,
we compare the proposed GF-NOMA frameworks with an optimal scheme that exploits
CVX’s geometric programming toolbox to solve problems formulated in Table 2. Obtained
UL and DL optimal power control weights are then used in the cost matrix formation
procedure of Algorithm 1. In the rest of this section, all presented results are obtained
by averaging over 1000 network instances. The proposed GF-NOMA frameworks are
compared with the optimal benchmark throughout the section. All results are presented
in double y-axes plots, where the left and right y-axes with blue and red colors show the
max–sum and max–min rates obtained by employing LINEAR SUM ASSIGNMENT and
LINEAR BOTTLENECK ASSIGNMENT, respectively.

Table 4. Table of default parameters [1,45].

Param. Value Param. Value Param. Value

U 150 Pu
max 23 dBm ηLoS 1.6

R 25 Pu
min −40 dBm ηNLoS 20

B 180 kHz Pb
max 46 dBm a 8

N0 −174 dBm fc 1.8 GHz b 0.2

λ 0.1 Mbps HBS 50 m HUE 2 m

6.1. Benchmark Comparison

Let us start with the elapsed time comparison of the proposed MGF-NOMA and
SGF-NOMA frameworks. Figure 3 shows that the proposed frameworks have similar
elapsed time performance, which increases with maximum cluster size N = dU

R e such
that U = {50, 75, . . . , 150} corresponds to N = {2, 3, . . . , 6}. Although the LINEAR SUM

ASSIGNMENT takes around 10 ms to finish the entire clustering, LINEAR BOTTLENECK

ASSIGNMENT ramps up to 100 ms, which is mainly due to the fact that it calls LINEAR SUM

ASSIGNMENT and maximum cardinality bipartite matching as sub-procedures. On the
other hand, the optimal benchmark takes half an hour to three hours to complete, where the
main complexity is due to the cost matrix formation, each element of which is computed
using CVX.

The max–sum and max–min rates of proposed GF-NOMA schemes are benchmarked
against the optimal NOMA scheme in Figure 4, where left and right y-axes are scaled to
Mbps and kbps for the sake of better visibility. Figure 4a shows that the MGF-NOMA
scheme can reach 96–98% of the UL optimal max–sum rate. It is important to note that
this slight difference is mainly caused by the power consumption difference, as explained
in the next section. On the other hand, the SGF-NOMA scheme can reach 40–50% and
75–80% of the optimal UL max–sum rate for Pid = −10 dBm and Pid = 10 dBm, respectively.
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Therefore, Pid significantly impacts the SGF-NOMA performance, as the next section shows
that the SGF-NOMA can reach above 90 % of the optimal UL max–sum rate under the same
power consumption.

50 75 100 125 150
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-2
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0

10
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OPT
MGF
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Figure 3. Time complexity compari1son.

Although the MGF-NOMA provides a max–sum rate performance very close to
the optimal benchmark, it delivers extremely poor max–min rate performance, which is
20 kbps at U = 50 and sharply reduces to 0.25 kbps for U ≥ 75. Such a huge performance
degradation is due to the fact that leveled power control does not comply with the max–min
rate power control’s main goal of having all nodes reach the same transmission rate. On
the other hand, the SGF-NOMA can reach 15–22% and 29–41% of the optimal UL max–min
rate for Pid = −10 dBm and Pid = 10 dBm, respectively. Similar to the case in the max–sum
rate, the Pid substantially impacts the max–min rate performance, which is investigated
more in detail in the next section.

Likewise, Figure 4b compares the DL max–sum and max–min rates of the proposed
GF-NOMA frameworks with the optimal benchmark. Figure 4b shows that the MGF-
NOMA and SGF-NOMA frameworks can reach 96–99.9% and 96–91% of the DL optimal
max–sum rate, respectively. The drop from 96% to 91% is due to the fact that the SGF-
NOMA equally shares the available DL transmission power among UEs, and it reduces as
U increases. However, the max–min rate performance of the SGF-NOMA is not as good
as the max–sum rate; it reaches 25–33% of the optimal max–min rate. Similar to the UL
scenario, the MGF-NOMA also delivers the worst max–min rate performance, which starts
with 132 kbps at U = 50 and sharply reduces to 212 kbps for U ≥ 75.

A common trend in Figure 4a,b is that the max–sum rate improves as U increases,
mainly because an RB is more efficiently utilized as cluster size increases. On the contrary,
the max–min rate degrades as cluster size increases since admitting more UEs into the same
RB has a detrimental impact on the UEs performing worst. Notice that power control cannot
simply eliminate this behavior, which all schemes share, including optimal benchmark.

Finally, Figure 4c shows the impact of the probability of being active on max–sum
and max–min rates. It is worth reminding that only the MGF-NOMA scheme requires the
number of active UEs to determine the proper power levels for UE partitions. The MGF
curve in Figure 4c shows the performance at various UE activity scenarios when power
levels are set, assuming all UEs are active. Therefore, the MGF curve converges to the
optimal benchmark as α reaches unity. At this point, it is obvious that having a coarse
estimate of U with ±R accuracy can still turn into a desirable performance compared to
the optimal benchmark.
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Figure 4. UL and DL max–sum rate and max–min rate comparison of proposed schemes. (a) UL
max–sum rate and max–min rate. [αu = 1, ∀u ∈ U ]. (b) DL max–sum rate and max–min rate.
[αu = 1, ∀u ∈ U ]. (c) UL max–sum rate and max–min rate. [U = 150].

6.2. Date Rate, Power Consumption, and Energy-Efficiency Comparison

As mentioned above, the Pid substantially impacts the performance of SGF-NOMA,
which is investigated more in depth in this section. Figure 5a shows the average power con-
sumption per UEs with respect to Pid. The optimal benchmark consumes 50% more power
than the MGF-NOMA to deliver around 2% higher max–sum rate as depicted in Figure 5b.
On the other hand, the optimal max–min rate benchmark consumes 27.5% less than the
optimal max–sum rate benchmark. It is obvious from Figure 5a that the SGF-NOMA
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consumes the same power consumption as the MGF-NOMA and optimal benchmark when
Pid reaches 15 and 16.5 dBm, respectively. At the same power consumption levels, the
SGF-NOMA can reach 87% and 88% of the optimal benchmark and MGF-NOMA max–sum
rate, respectively. On the other hand, the SGF-NOMA can reach a 25% max–min rate of the
optimal benchmark starting from Pid = −13 dBm, which is around 100 times less power
consumption than the optimal benchmark. However, increasing Pid does not improve the
max–min rate beyond Pid = −13 dBm.

At this point, it is crucial to compare these approaches from an energy-efficiency point
of view since most IoT nodes are designed as low-power devices to increase their cost
and lifetime [48]. As shown in Figure 5c, the optimal benchmark always has better energy
efficiency than the MGF-NOMA, i.e., the aforementioned 2% max–sum rate enhancement
in return for 50% more consumption yields a significant energy-efficiency improvement for
the optimal benchmark. Even though the SGF-NOMA delivers a lower max–sum rate up to
around Pid = 0 dBm, Figure 5c shows it has the highest energy efficiency in this region. For
the max–min rate case, the optimal benchmark, and the MGF-NOMA always deliver the
highest and the lowest energy-efficiency performance, respectively. The SGF-NOMA turns
relatively better energy efficiency, which constantly reduces after Pid = −13 dBm. Finally,
we summarize the best value of Pid for various performance metrics under max–sum rate
and max–min rate operational regimes in Table 5.

6.3. Impact of SIC Imperfections on System Performance

In real life, a perfect SIC operation is not always possible due to the imperfections
caused by CSI acquisition errors and hardware impairments.

• Decoding Errors: The success of SIC largely depends on the accurate decoding of
the strongest signal. If there is an error in the decoding of the strongest user, this
error becomes propagated when subtracting it from the combined signal, affecting the
decoding of the next user.

• Receiver Non-linearities: Even with perfect decoding, there might be residual inter-
ference after subtraction due to non-linearities in the receiver, which can degrade the
performance of the subsequent user’s signal decoding.

• Channel Estimation Errors: For the subtraction to be perfect, the receiver must accu-
rately estimate the channel conditions. Any error in channel estimation will lead to
imperfect cancellation.

• Out-of-Order Decoding: The assumption that users can be perfectly ordered ac-
cording to their channel conditions may not always hold, especially in dynamic
environments. Decoding a user out of order can degrade the performance of SIC.

One way of showing detrimental impacts of imperfect SIC operation is quantifying
the residual error after each SIC operation using an SIC error factor 0 ≤ ε ≤ 1 [17,18,43,44],
which can be incorporated into the SINR expression in (10) as follows

γ̃i
r(ωr) =

p̌r[i]
ε ∑∀j∈C̃r

j<i
p̌r[j] + ∑∀j∈C̃r

j>i
p̌r[j] + σ2 , ∀i ∈ C̃r, (10)

where the first term in the denominator represents the total residual interference after SIC
due to the aforementioned imperfections, whereas the second term is non-cancellable intra-
cluster interference. To investigate the impact of residual interference on max–sum and
max–min rates, let us content ourselves with the UL scenario and set the identical transmit
power of SGF-NOMA to the mean power consumption of MGF-NOMA (i.e., Pid ≈ 16 dBm)
for a fair comparison. Figure 6 compares the impact of increasing the SIC error factor on
SGF-NOMA, MGF-NOMA, and OPT-NOMA schemes on the average cluster sum and
max–min rate. For the max–sum rate, SGF-NOMA provided a performance close to OPT-
NOMA that exploits the CVX solver to optimize power levels by taking ε into account.
Even if the proposed schemes are not designed to account for SIC imperfection factor ε,
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their performance is noteworthy as they deliver a performance comparable to the optimal
scheme that adjusts power weights to mitigate the impact of residual interference. This was
possible due to the implicit power control through the proposed clustering approach. On
the other hand, MGF-NOMA provides better immunity against SIC imperfections starting
from ε = 10−4. Nonetheless, all schemes suffer from increasing residual interference
regardless of underlying the power control and clustering approach. The influence of
optimal power control is more significant in the case of max–min fairness, where OPT-
NOMA outperforms SGF-NOMA, especially for ε ≥ 10−3. Notice that MGF-NOMA is not
shown in Figure 6 as it delivers around 50 bps max–min rate performance, which is much
less than 104 bps.
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Figure 5. Data rate, power consumption, and energy-efficiency comparisons. [U = 150, αu = 1,
∀u ∈ U ]. (a) Average power consumption comparisons. (b) Max–sum rate and max–min rate
comparisons. (c) Energy-efficiency comparisons.
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Table 5. The best value of Pid for various performance metric under different regimes.

Performance Metrics

Operational Regime Power Consumption Data Rate Energy Efficiency

Max–Sum Rate 14.50 [dBm] 23.00 [dBm] −40.00 [dBm]

Max–Min Rate 15.25 [dBm] 23.0 [dBm] 2.00 [dBm]
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Figure 6. Impact on residual SIC interference.

7. Conclusions and Future Research Directions

This paper introduces a synchronous GF-NOMA framework that seamlessly integrates
straightforward yet highly efficient power control techniques with UE clustering and RB
allocation strategies. The results obtained from these methods demonstrate the remarkable
capability to form clusters within milliseconds and achieve max–sum rates that closely ap-
proach the optimal benchmark. However, it is worth noting that the proposed frameworks
exhibit relatively lower performance when compared to the optimal benchmark in terms of
max–min fairness. Therefore, future research endeavors should be directed towards the
development of low-complexity power control schemes aimed at further enhancing the
max–min rate performance.

In addition, an intriguing avenue for exploration lies in extending the proposed frame-
works to MIMO systems. Hybridizing spatial NOMA schemes with the proposed approach
in MIMO configurations holds the potential to yield fascinating insights and performance
improvements. Furthermore, there is considerable promise in leveraging deep-learning
methodologies for tasks such as user activity detection and dynamic power level determi-
nation based on underlying network parameters. These machine-learning techniques can
potentially enhance the adaptability and optimization of GF-NOMA systems.

Another vital area ripe for future research is the security aspects of GF-NOMA. This
includes a comprehensive exploration of vulnerability analysis, the development of robust
encryption techniques, and the creation of innovative methods to safeguard against eaves-
dropping attacks, which become particularly challenging in grant-free operations where
traditional user authentication mechanisms through grant acquisition are absent.
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