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Abstract: Bearings are critical components of motors. However, they can cause several issues. Proper
and timely detection of faults in the bearings can play a decisive role in reducing damage to the
entire system, thereby reducing economic losses. In this study, a hybrid fuzzy V-structure fuzzy fault
estimator was used for fault diagnosis and crack size identification in the bearing using vibration
signals. The estimator was designed based on the combination of a fuzzy algorithm and a V-structure
approach to reduce the oscillation and improve the unknown condition’s estimation and prediction in
using the V-structure method. The V-structure surface is developed by the proposed fuzzy algorithm,
which reduces the vibrations and improves the stability. In addition, the parallel fuzzy method is
used to improve the robustness and stability of the V-structure algorithm. For data modeling, the
proposed combination of an external autoregression error, a Laguerre filter, and a support vector
regression algorithm was employed. Finally, the support vector machine algorithm was used for data
classification and crack size detection. The effectiveness of the proposed approach was evaluated by
leveraging the vibration signals provided in the Case Western Reserve University bearing dataset.
The dataset consists of four conditions: normal, ball failure, inner fault, and outer fault. The results
showed that the average accuracy of fault classification and crack size identification using the hybrid
fuzzy V-structure fuzzy fault estimation algorithm was 98.75% and 98%, respectively.

Keywords: bearing; vibration data; V-structure technique; autoregressive technique; fuzzy algorithm;
support vector method; Laguerre filter; fault classification; crack size identification

1. Introduction

Bearings are system parts that generally reduce friction. The study of these compo-
nents has significantly advanced in recent years owing to their many applications. Bearings
are used in various industries, such as oil refining, gas transportation, and power genera-
tion. Early bearing anomaly detection can improve a system’s performance and increase
operation safety. Generally, three types of failures in bearings have been analyzed: ball,
inner, and outer faults. Diverse types of sensors can be selected to exploit the normal and
abnormal data from bearings, such as vibration sensors, acoustic emission (AE) sensors,
current sensors, and voltage sensors. In recent years, vibration and AE sensors have been
most generally applicable in industries [1,2].

For bearing fault diagnosis, various methods have been used. They can be catego-
rized into four basic groups: model-based, signal processing-based, artificial-intelligence
(AI)-based, and hybrid approaches [3]. The model-based technique is designed based
on the mathematical modeling of systems/signals. Most of the model-based techniques
are robust and stable; however, they are strongly dependent on the system model. The
signal processing-based techniques are algorithms that are evaluated based on the signal
processing methods in the time domain, frequency domain, and time-frequency domain.
Signal processing-based algorithms have limitations in improving robustness in uncertain
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conditions. The AI-based techniques are developed based on machine learning, deep learn-
ing, and fuzzy algorithms. Meanwhile, AI-based approaches that are used in numerous
applications for fault diagnosis require a huge dataset. To improve the performances of
model-based, signal processing-based, and AI-based techniques, hybrid-based algorithms
have been recommended for various applications. The hybrid algorithms are designed
using a combination of the above algorithms [4–6].

The application of AI for fault detection and isolation is discussed in refs. [7–9], and
the application of fuzzy logic algorithms, neural networks, machine learning, and deep
learning algorithms for fault diagnosis is described in refs. [10–14]. However, robustness
and optimization of the rule table are two important challenges for fuzzy-based algorithms.
To improve the performance of the fuzzy-based algorithm, neural network algorithms
and neuro-fuzzy approaches are suggested in refs. [11,12]. In addition, the application
of machine learning and deep learning algorithms for fault diagnosis is addressed in
refs. [13,14]. For example, Prosvirin et al. [15] designed a deep learning-based observation
technique for blade-rub impact fault identification. Moreover, the combination of an
autoencoder technique and a convolutional neural network for bearing fault diagnosis
under different operating conditions has been explained in ref. [16]. On the other hand,
the application of signal processing-based algorithms for fault detection and isolation
is discussed in refs. [17–19]. Furthermore, to design bearing fault diagnosis techniques,
various approaches have been carried out that can be used in three main domains: the time
domain, the frequency domain, and the time–frequency domain. Time- and frequency-
domain analyses have the challenge of high feature dimensions. Time–frequency domain
analysis, such as the short-time Fourier transform [17], Wigner Ville distribution [18], and
wavelet packet transform [19], have been recommended to solve problems associated with
the nonstationary and nonlinear nature of the bearings’ signals.

Numerous algorithms can be introduced as model-based approaches that are catego-
rized into three main groups: data estimation algorithm techniques, output observation
approaches, and data identification methods. The application of the Kalman filter (KF)
observer for fault diagnosis of the lithium-ion battery is presented in ref. [20]. Based on
that article, the adaptive technique has been recommended to improve the robustness of
the KF in uncertain conditions. Moreover, the application of an unknown input observer
for fault diagnosis is presented in ref. [21]. However, although that technique is robust, its
complexity is a challenge. In addition, the fault detection filter observer for fault diagnosis
in industrial applications has been analyzed in ref. [22]. This algorithm is used to detect un-
known conditions in the state and output them using different types of filtering techniques.
Complexity and robustness are two important challenges in refs. [21,22]. The observation
technique has been introduced to improve the performance of KF techniques.

Furthermore, using the interval observer for a linear parameter system is discussed in
ref. [23]. With this technique, faults can be detected by parameter deviation approxima-
tion. The limitation of this technique is that the unknown conditions and faults must be
bounded [23]. The observation approach can be divided into two important groups: linear
observers [24,25] and nonlinear observers [26–32]. The application of linear observers is
presented in refs. [24,25]. The robustness and reliability are the main drawbacks of linear
observers. To solve the challenge of linear observers, nonlinear observation techniques,
such as sliding mode (variable structure) observers [26–30] and feedback linearization
observers [31,32], have been suggested. The sliding mode observer is a type of variable
structure (V-structure) observer that can be used for fault detection and isolation and is
presented in ref. [26]. Despite its reliability and robustness, this technique suffers from
the chattering phenomenon and system dependency. To resolve these challenges in the
sliding mode observer/V-structure, higher-order techniques [27], the super-twisting algo-
rithm [28], the smooth-sliding mode observer [29], and the combined AI and sliding-mode
observer [30] have been recommended. The main challenge of higher-order techniques [27]
and the super-twisting algorithm [28] is complexity. In addition, the smooth-sliding mode
observer [29] and the combined AI and sliding-mode observer [30] have been recommended
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to solve the complexity; however, robustness is the main problem of these techniques.
Moreover, the application of a feedback linearization observer for anomaly detection and
isolation is presented in ref [31]. However, a strong dependence on the system model
and robustness are the greatest limitations of this approach. To reduce the challenge of
modeling dependency, the combination of AI and a feedback linearization observer has
been presented in ref. [32].

Although model-based approaches are stable and reliable, a key challenge of these
approaches is data and system modeling. Two important algorithms can be used for
data modeling: mathematical-based approaches and data identification algorithms [29].
Mathematical-based data modeling is accurate and reliable. Nevertheless, this technique
is notably complex, especially for highly nonlinear systems [32]. In data identification
techniques, the data can be modeled using machine learning algorithms and regression
techniques. The autoregressive technique and the autoregressive approach with external
input are essential approaches for data identification using regression methods. To improve
the reliability and robustness of regression algorithms, the combination of regression
methods and filters, such as autoregression with an external input Laguerre filter, has been
recommended in ref. [33]. Another method to improve the performance of data modeling
using regression algorithms is the combination of regression techniques and AI algorithms,
such as nonlinear autoregression with external input, which is suggested in ref. [34].

In this study, a hybrid technique was leveraged for fault diagnosis in the bearing. This
hybrid approach is based on the combination of hybrid data modeling, hybrid data estima-
tion, and data classification. The main advantages of the proposed technique compared
with the existing methods are robustness, a low rate of high-frequency oscillation, and
reliability. The V-structure technique is a robust algorithm, but this technique suffers from
high-frequency oscillation. To reduce the challenge of chattering, the V-structure surface
is designed by the proposed Proportional-Integral-Derivative (PID) fuzzy with minimum
fuzzy rules and complexity. In addition, to reduce the challenge of uncertainties in the
V-structure technique, the fuzzy technique is suggested. In this part, the fuzzy algorithm
is selected to increase the flexibility of the proposed method. For hybrid-based bearing
data modeling, the combination of the autoregressive error method, a Laguerre filter, and a
support vector regression (SVR) were employed. First, the autoregressive technique was
used for bearing data modeling. To reduce the data modeling error rate and decrease the
order of the autoregression technique, the external error input was applied to the autore-
gression technique. Moreover, the Laguerre filter was used to improve the robustness of
the bearing data modeling. Finally, to improve the nonlinear behavior of the bearing data
modeling, the SVR technique was applied to the method of autoregression combined with
the error input of the Laguerre approach. For hybrid-based bearing data estimation, the
combined V-structure observation algorithm, fuzzy high frequency reduction, and fuzzy
fault estimation improvement were employed. First, the robust V-structure observer was
used for bearing data estimation. To increase the accuracy and reduce high-frequency
oscillation, the PID fuzzy method was used with the V-structure observer. Lastly, the fault
estimator was improved by applying the fuzzy fault estimation technique to the previous
part of the bearing data estimation. Furthermore, the support vector machine (SVM) was
leveraged for fault detection and isolation. The main contributions of the proposed hybrid
fuzzy V-structure fuzzy fault estimation technique are outlined below.

1. A hybrid bearing vibration data modeling method using a robust autoregressive-
Laguerre SVM regression algorithm was created.

2. A robust hybrid vibration data estimation approach using the fuzzy V-structure fuzzy
fault estimator was designed.

3. SVM was applied to the proposed robust fuzzy V-structure fuzzy fault estimator
approach for data classification and data crack size identification.

The remainder of this paper is organized as follows: the experimental Case Western
Reserve University bearing dataset is explained in Section 2. The design of the proposed
data modeling, data estimation, and data classification is described in Section 3. The results
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and discussion for bearing fault detection and classification are provided in Section 4.
Finally, in Section 5, conclusions and future work are discussed.

2. Experimental Dataset

The Case Western Reserve University Bearing Dataset (CWRUBD) was used to experi-
mentally test the combination of the proposed fuzzy V-structure fuzzy fault estimator and
SVM, which is illustrated in Figure 1 [31].
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Figure 1. Case Western Reserve University benchmark for recording bearing dataset.

This experimental data acquisition was used to extract the bearing data in normal
and abnormal conditions. A 2 hp Reliance electric induction motor is used to supply the
bearing’s energy. These bearings are used to support the motor shaft. In addition, the
dynamometer and electric control system are used to apply the torque to the shaft. To
collect the acceleration data, a vibration sensor (6205-2RS JEM SKF) was employed. This
vibration sensor collected data under four conditions: bearing in a normal condition (N),
bearing in a ball faulty condition (B), bearing in an inner faulty condition (I), and bearing
in an outer faulty condition (O). The 16-channel data equation (DA) recorder is used for
data collection, and it was processed in a MATLAB environment. The sampling rate for
the bearing data collection was 12 kHz samples per second for four different torque loads
between 0 horsepower (hp) and 3 hp, with motor speeds of 1720 to 1797 rpm. Moreover,
single-point faults with three different crack sizes of 0.007 in, 0.014 in, and 0.021 in were
collected in CWRUBD [31]. Furthermore, the depth of the fault was 0.011 inches for all the
bearing faults. Table 1 provides a summary of the bearing dataset.

Table 1. Bearing data information for four conditions.

Conditions Load [hp] Size of Crack [inches]

N 0, 1, 2, 3 -
B 0, 1, 2, 3 0.007, 0.014, 0.021
I 0, 1, 2, 3 0.007, 0.014, 0.021
O 0, 1, 2, 3 0.007, 0.014, 0.021

Figure 2 presents the original raw data for the bearing in the normal and three abnor-
mal conditions.
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3. Proposed Scheme

The proposed algorithm for bearing anomaly classification and crack size detection is
illustrated in Figure 3. As shown in the figure, the proposed bearing fault diagnosis method
has three main parts: (1) data modeling, (2) data estimation, and (3) data classification and
size identification.
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For data modeling, the combination of the autoregression external error, Laguerre
filter, and SVR algorithm is proposed. The autoregression method is a linear regression
algorithm for data modeling. To decrease the data modeling error rate and reduce the order
of the autoregression technique, the external error input is applied to the autoregression
technique. To improve the robustness of data modeling, the Laguerre filter is applied to the
autoregression external error (AE) to utilize the AE with the Laguerre filter (AEL). After
improving the robustness of data modeling to improve the power of nonlinear condition
modeling, the SVR technique is applied to the AEL method, and AE is utilized with the
Laguerre filter in parallel with the SVR (AEL) technique.

For data estimation, the combination of the V-structure estimator, fuzzy high-frequency
reduction, and fuzzy fault estimation improvement is proposed. The V-structure (VS)
estimator is a robust, reliable, and nonlinear estimator. This estimator has three parts:
(1) a nonlinear section, (2) a linear-based part, and (3) a fault (unknown information)
estimation part. The nonlinear section is extracted from data modeling. To improve
the performance of the linear-based part and reduce the high-frequency oscillation, the
proportional-integral-derivative (PID) fuzzy method is applied to the VS estimator, and
the FVS approach is utilized. Furthermore, to modify the fault estimation part, the fuzzy
algorithm is recommended in parallel with FVS and the application of the FVSF technique.

The data classification and size identification section have two parts. After determin-
ing the residual data using the difference between the bearing raw data and estimated data
using the proposed algorithm, the root means square (RMS) data are calculated. Further-
more, the SVM algorithm is used for data classification and crack size detection. As shown
in Figure 3, we use two levels of SVM: the first is for data classification, and the second is
to determine the crack sizes.

3.1. Data Modeling

The first step in designing the proposed scheme for bearing fault diagnosis is data
modeling. For data modeling, the combination of the autoregression external error, a
Laguerre filter, and the SVR algorithm is proposed. The autoregression method is a linear
regression algorithm for modeling the data under normal conditions. This approach is
linear and intended to reduce the error of data modeling and the order of the autoregression
technique; the external error input is applied to the autoregression technique. Although the
combination of the autoregressive and feedback error inputs improves the performance of
data modeling, the Laguerre filter is applied to the autoregression external error (AE) and
the AE is utilized with the Laguerre filter (AEL) to improve the robustness of data modeling.
After improving the robustness of data modeling to improve the power of nonlinear
condition modeling, the combination of the SVR technique and the AEL approach, AELS,
is suggested. The basic concept for data modeling in this work is a regression algorithm.
First, the autoregression (A) technique is defined using the following definition:

γa(k + 1) = [αγγa(k) + αiIi(k)] +∅a(k)

βa(k) = (αo)
T
γa(k)

(1)

Here, γa(k) is the state-space of the bearing vibration data modeling based on the
autoregression technique, Ii(k) is the bearing vibration data, βa(k) is the output of the
bearing vibration data modeling based on the autoregression technique, and (αγ, αi, αo) are
the coefficients for tuning the autoregressive technique. Moreover, ∅a(k) is the unknown
(uncertain) condition of the bearing vibration data modeling based on the autoregression
technique, and it is introduced by the following definition:

∅a(k) = Ii(k)− βae(k) (2)
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To modify the autoregression technique, AE is used in the next part.
γae(k + 1) = [αγγae(k) + αiIi(k)] +∅ae(k) + αeeae(k)

βae(k) = (αo)
T
γae(k)

(3)

where γae(k) is the state-space of the bearing vibration data modeling based on the AE
technique, eae(k) is the error of the bearing vibration data modeling based on the AE
technique, βae(k) is the output of the bearing vibration data modeling based on that
technique, and ∅ae(k) is the unknown (uncertain) condition of the bearing vibration data
modeling based on that technique. In addition, (αe) is the coefficient for tuning the
technique. Here, eae(k) and ∅ae(k) are introduced by the following equation:

∅ae(k) = Ii(k)− βae(k)

eae(k) = βae(k)− βae(k− 1)
(4)

To improve the robustness of the bearing vibration data modeling in the AE technique,
the AE with the Laguerre filter (AEL) technique is introduced in the next stage.

γael(k + 1) = [αγγael(k) + αiIi(k) + αββael(k)] +∅ael(k) + αeeael(k)

βael(k) = (αo)
T
γael(k)

(5)

Here, γael(k) is the state-space of the bearing vibration data modeling based on the AE
with the Laguerre filter technique, eael(k) is the error of the bearing vibration data modeling
based on the AE with the Laguerre filter technique, βael(k) is the output of the bearing
vibration data modeling based on the AE with the Laguerre filter technique, ∅ael(k) is the
unknown (uncertain) condition of the bearing vibration data modeling based on the AE
with the Laguerre filter technique, and (αβ) is the coefficient for tuning the AE with the
Laguerre filter technique. Additionally, eael(k) and ∅ael(k) are introduced by the following
equation: 

∅ael(k) = Ii(k)− βael(k)

eael(k) = βael(k)− βael(k− 1)
(6)

Moreover, to improve the nonlinear conditions for the bearing vibration data modeling
in the AE with the Laguerre filter technique, the combination of the AE with the Laguerre
filter and SVR technique (AELS) is presented in the next stage.

γaels(k + 1) = [αγγaels(k) + αiIi(k) + αββaels(k)] +∅ael(k) + αeeaels(k) + αsβSVR(k)

βaels(k) = (αo)
T
γaels(k)

(7)

where γaels(k) is the state-space of the bearing vibration data modeling based on the
combination of the AE with the Laguerre filter and SVR technique, eaels(k) is the error of the
bearing’s vibration data modeling based on the combination of the AE with the Laguerre
filter and SVR technique, βaels(k) is the output of the bearing vibration data modeling
based on the combination of AE with the Laguerre filter and SVR technique, βSVR(k) is
the output of the error vibration data modeling based on the SVR algorithm, ∅aels(k) is
the unknown (uncertain) condition of the bearing’s vibration data modeling based on the
combination of AE with the Laguerre filter and SVR technique, and (αs) is the coefficient



Sensors 2023, 23, 1021 8 of 21

for tuning the combination of AE with the Laguerre filter and SVR technique. In addition,
eaels(k) and ∅aels(k) are introduced by the following equation:

∅aels(k) = Ii(k)− βaels(k)

eaels(k) = βaels(k)− βaels(k− 1)
(8)

To compensate for the nonlinearity of the bearing’s data, the SVR technique is sug-
gested and introduced using the following definition:

βSVR(k) = ∑j

(
σj

+ − σj
−){(εi, ε) + ω (9)

Here,
(
σj

+ − σj
−) is the constant for the Lagrange function, {(εi, ε) is a nonlinear ker-

nel function, and ω is the bias of the function. The nonlinear Gaussian function is suggested
for the kernel in this work, and it can be introduced using the following definition:

{(εi, ε) = e(−
1

2∂2 ‖σj
+−σ‖2) (10)

where ∂ is the variance. Moreover, the bias of the function can be introduced using the
following definition:

ω =
1
|S|∑s∈S[βS −∑j∈S

(
σj

+ − σj
−)× {(εi, ε)− (µ× sgn

(
σj

+ − σj
−) )] (11)

Here, βS is the support vector signal, µ is the accepted boundary for the support
vector for signal compensation, and S is an approximation support vector. Furthermore,
the approximation support vector can be introduced in the following range:

S =
{

j
∣∣0 < σj

+ − σj
− < ∆

}
(12)

Here, ∆ is the constant that is used to calculate the range of the approximation support
vector. Regarding Figure 3, the vibration’s bearing data is modeled using the combination
of AE with the Laguerre filter and SVR technique (AELS). Table 2 outlines the steps for
designing the proposed data modeling using the combination of AE with the Laguerre filter
and SVR technique, ALES. In the next section, the hybrid robust estimator is introduced to
estimate the bearing’s data under unknown conditions.

Table 2. Proposed data modeling using the combination of AE with the Laguerre filter and SVR
technique.

1: Data modeling using the autoregressive procedure; Equations (1) and (2)
Detail

1.1 Calculate ∅a(k)← Ii(k)− βae(k) , Equation (2)
1.2 Calculate γa(k + 1)← [αγγa(k) + αiIi(k)] +∅a(k) , Equation (1)
1.3 Calculate βa(k)← (αo)

T
γa(k) , Equation (1)

2: Modifying the AE; Equations (3) and (4)
Detail

2.1 Calculate eae(k)← βae(k)− βae(k− 1) , Equation (4)
2.2 Calculate ∅ae(k)← Ii(k)− βae(k) , Equation (4)
2.3 Calculate γae(k + 1)← [αγγae(k) + αiIi(k)] +∅ae(k) + αeeae(k) , Equation (3)
2.4 Calculate βae(k)← (αo)

T
γae(k) , Equation (3)
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Table 2. Cont.

3: Improve the robustness: AE with Laguerre filter (AEL) technique; Equations (5) and (6)
Detail

3.1 Compute eael(k)← βael(k)− βael(k− 1) , Equation (6)
3.2 Calculate ∅ael(k)← Ii(k)− βael(k) , Equation (6)
3.3 Compute γael(k + 1)←

[
αγγael(k) + αiIi(k) + αββael(k)

]
+∅ael(k) + αeeael(k) , Equation (5)

3.4 Compute βael(k)← (αo)
T
γael(k) , Equation (5)

4: Improve the nonlinear system modeling: combination of AE with Laguerre filter and SVR technique; Equations (7) and (8)
Detail

4.1 Compute eaels(k)← βaels(k)− βaels(k− 1) , Equation (8)
4.2 ∅aels(k)← Ii(k)− βaels(k), Equation (8)
4.3 Compute γaels(k + 1)←

[
αγγaels(k) + αiIi(k) + αββaels(k)

]
+∅ael(k) + αeeaels(k) + αsβSVR(k), Equation (7)

4.4 Compute βaels(k)← (αo)
T
γaels(k), Equation (7)

3.2. Data Estimation

After modeling the normal data using the AELS approach, for data estimation (ob-
servation), the combination of the V-structure estimator, fuzzy V-structure surface for
high-frequency reduction, and fuzzy approach for fault estimation improvement is pro-
posed. The V-structure (VS) estimator is a robust, reliable, and nonlinear estimator. This
estimator has three parts: (1) nonlinear section, (2) linear-based part, and (3) fault (un-
known information) estimation part. The nonlinear section is extracted from the data
modeling explained in the previous part. The linear part can be designed based on the
linear proportional-integral-derivative (PID) controller, proportional-integral (PI) controller,
and proportional-derivative (PD) controller. In this work, the PID technique is suggested.
The challenge of a linear-based V-structure surface is high frequency oscillation. To improve
the performance of the linear-based part and reduce the high-frequency oscillation, the
proposed proportional-integral-derivative (PID) fuzzy method with a minimum rule base
is applied to the VS estimator, and the FVS approach is utilized. Furthermore, to modify
the fault estimation part, the fuzzy algorithm is used in parallel with the FVS technique
to design the FVSF approach. Based on Figure 3, this algorithm has three parts: (1) non-
linear functions that must be extracted from vibration data using the proposed modeling
algorithm, (2) linear-based part to improve and tune the V-structure approach, and (3)
fault prediction, which is used to reduce the error of signal estimation and increase the
ability to detect vibration data in normal and abnormal conditions. The classical V-structure
algorithm is defined as follows:

γvs(k + 1) = [αγγaels(k) + αiIi(k) + αββaels(k) + αsβSVR(k)] +∅vs(k) + α1evs(k)
+ α2sgn (V(k))

βvs(k) = (α3)
T
γvs(k)

(13)

where γvs(k) is the state-space of the bearing’s vibration data estimation based on the
V-structure technique, evs(k) is the error of the bearing’s vibration data estimation based on
the V-structure algorithm, βvs(k) is the output of the bearing’s vibration data estimation
based on the V-structure approach, ∅vs(k) is the fault estimation part based on the V-
structure scheme, V is the V-structure slope using the V-structure approach, and (α1, α2, α3)
is the coefficient for tuning the V-structure technique. The V-structure slope can be defined
using linear techniques such as the proportional-integral (PI) technique, the proportional-
derivative (PD) approach, and the proportional-integral-derivative (PID) scheme. In this
work, the V-structure approach is defined by the following definition:

V = α4evs(k) + α5 ∑ evs(k) + α6
.
evs(k) (14)

Here, ∑ evs(k) is the integral term of the error of the bearing’s vibration data estima-
tion based on the V-structure algorithm,

.
evs(k) is the derivative term of the error of the



Sensors 2023, 23, 1021 10 of 21

bearing’s vibration data estimation based on the V-structure algorithm, and (α4, α5, α6) is
the coefficient for tuning the PID algorithm. In addition, evs(k) and ∅vs(k) can be defined
using the following equation:

∅vs(k) = α7(Ii(k)− βvs(k)) + α2sgn (V(k)) + α1sgn (evs(k))

evs(k) = βvs(k)− βvs(k− 1)
(15)

where α7 is a coefficient. Moreover, the sign function, (sgn(V)), is introduced by the
following definition: {

sgn(V) = 1 i f V ≥ 0
sgn(V) = −1 i f V < 0

. (16)

This technique is robust and stable. However, to reduce the issue of oscillation at
a high frequency, two methods can be used: (1) using smooth functions instead of the
sign function, and (2) using the nonlinear V-structure algorithm instead of the linear PID
V-structure approach. In this study, the second method was selected. To improve the
performance of the linear PID V-structure function, the nonlinear fuzzy PID V-structure
function was recommended. In the classical PID fuzzy algorithm, the fuzzy system has
three inputs and one output. If seven conditions are considered for each input, 343 rule
bases must be defined for the classical PID fuzzy algorithm. To reduce the number of rule
bases in the algorithm, PD fuzzy plus PI fuzzy can be designed instead of PID classical
fuzzy. In this method, we have 49 rule bases for PD fuzzy and 49 rule bases for PI fuzzy.
Thus, the number of rule-bases in the proposed (PD+PI) fuzzy is 98. Figure 4 illustrates the
proposed (PD+PI) fuzzy observer.
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The fuzzy V-structure (FVS) technique is defined as the following equation:
γ f vs(k + 1) = [αγγaels(k) + αiIi(k) + αββaels(k) + αsβSVR(k)] +∅ f vs(k) + α1e f vs(k)

+ α2sgn
(

Vf−PID(k)
)

β f vs(k) = (α3)
T
γ f vs(k)

(17)

Here, γ f vs(k) is the state-space of the bearing’s vibration data estimation based on the
fuzzy V-structure technique, e f vs(k) is the error of the bearing’s vibration data estimation
based on the fuzzy V-structure algorithm, β f vs(k) is the output of the bearing’s vibration
data estimation based on the fuzzy V-structure approach, ∅ f vs(k) is the fault estimation
part based on the fuzzy V-structure scheme, and Vf−PID(k) is the V-structure slope using
the PID fuzzy V-structure approach. The fuzzy V-structure slope can be defined based on
Figure 4 and the following definition:

Vf−PID(k) = αPDVf−PD(k) + αPI ∑ Vf−PD(k) (18)



Sensors 2023, 23, 1021 11 of 21

where Vf−PD(k) is the V-structure slope using the PD fuzzy V-structure approach, and
(αPD, αPI) are coefficients for the PID fuzzy V-structure. Furthermore, e f vs(k) and ∅ f vs(k)
can be defined using the following equation:

∅ f vs(k) = α7

(
Ii(k)− β f vs(k)

)
+ α2sgn

(
Vf−PID(k)

)
+ α1sgn

(
e f vs(k)

)
e f vs(k) = β f vs(k)− β f vs(k− 1)

(19)

To improve the fault estimation in the FVS technique, the fuzzy algorithm is recom-
mended, and the FVSF technique was used. The FVSF estimator can be introduced using
the following definition:

γ f vs f (k + 1) = [αγγaels(k) + αiIi(k) + αββaels(k) + αsβSVR(k)] +∅ f vs f (k)

+ α1e f vs f (k) + α2sgn
(

Vf−PID(k)
)

β f vs f (k) = (α3)
T
γ f vs f (k)

(20)

Here, γ f vs f (k) is the state-space of the bearing’s vibration data estimation based on
the fuzzy V-structure fuzzy fault estimator technique, e f vs f (k) is the error of the bearing’s
vibration data estimation based on the fuzzy V-structure fuzzy fault estimator algorithm,
β f vs f (k) is the output of the bearing’s vibration data estimation based on the fuzzy V-
structure fuzzy fault estimator approach, and ∅ f vs f (k) is the fault estimation part based on
the fuzzy V-structure fuzzy fault estimator scheme. Additionally, e f vs f (k) and ∅ f vs f (k) can
be defined using the following equation:

∅ f vs f (k) = α7

(
Ii(k)− β f vs f (k)

)
+ α2sgn

(
Vf−PID(k)

)
+ α1sgn

(
e f vs f (k)

)
+ α fβ f (k)

e f vs f (k) = β f vs f (k)− β f vs f (k− 1)

(21)

where β f (k) is the output of the bearing’s vibration fault estimation based on the fuzzy
algorithm and αf is the fuzzy coefficient. Moreover, if ε is introduced by the fuzzy approach
is defined as follows.

i f e f sv f (k) is
(

evs f (k) + ε
)

then β f (k + 1) = β f (k)− α1sgn
(

e f vs f (k)
)

i f e f sv f (k) is
(

evs f (k)
)

then β f (k + 1) = β f (k) + αxsgn
(

e f vs f (k)
)

i f e f sv f (k) is
(

evs f (k)− ε
)

then β f (k + 1) = β f (k) + α1sgn
(

e f vs f (k)
) (22)

Here, ε is the band of error and αx > α1. In the next part, the residual data are gener-
ated using the difference between the original bearing’s vibration data and the estimated
bearing’s vibration data. The residual generator based on the FVSF technique, r f vsv(k), is
introduced using the following definition:

r f vsv(k) = Ii(k)− β f vs f (k) (23)

As shown in Figure 1, the vibration’s bearing data were modeled using the combina-
tion of AE with the Laguerre filter and SVR technique, (AELS). Next, the hybrid robust
estimator was designed to estimate the bearing’s data under unknown conditions. Table 3
outlines the steps for designing the proposed data estimation using the fuzzy V-structure
fuzzy fault estimator technique. In the next part, SVM was is used for fault classification
and crack size identification.
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Table 3. Proposed hybrid data estimation using the fuzzy V-structure fuzzy fault estimator.

1: Data estimation using the V-structure algorithm; Equations (13)–(15)
Detail

1.1 Calculate evs(k)← βvs(k)− βvs(k− 1) , Equation (15)
1.2 Calculate ∅vs(k)← α7(Ii(k)− βvs(k)) + α2sgn (V(k)) + α1sgn (evs(k)) , Equation (15)
1.3 Calculate V ← α4evs(k) + α5 ∑ evs(k) + α6

.
evs(k) , Equation (14)

1.4 Calculate γvs(k + 1)←
[
αγγaels(k) + αiIi(k) + αββaels(k) + αsβSVR(k)

]
+∅vs(k) + α1evs(k)+α2sgn (V(k)),

Equation (13)
1.5 Calculate βvs(k)← (α3)

T
γvs(k), Equation (13)

2: Reduce high frequency oscillation: PID fuzzy V-structure algorithm; Equations (17)–(19)
Detail

2.1 Compute e f vs(k)← β f vs(k)− β f vs(k− 1) , Equation (19)
2.2 Calculate ∅ f vs(k)← α7

(
Ii(k)− β f vs(k)

)
+ α2sgn

(
Vf−PID(k)

)
+ α1sgn

(
e f vs(k)

)
, Equation (19)

2.3 Compute Vf−PID(k)← αPDVf−PD(k) + αPI ∑ Vf−PD(k) , Equation (18)

2.4 Compute γ f vs(k + 1)←
[
αγγaels(k) + αiIi(k) + αββaels(k) + αsβSVR(k)

]
+∅ f vs(k) + α1e f vs(k) + α2sgn

(
Vf−PID(k)

)
,

Equation (17)
2.5 Compute β f vs(k)← (α3)

T
γ f vs(k) , Equation (17)

3: Improve the fault estimation: PID fuzzy V-structure fuzzy algorithm; Equations (20)–(22)
Detail

3.1 Compute e f vs f (k) = β f vs f (k)− β f vs f (k− 1), Equation (21)
3.2 Compute ∅ f vs f (k) = α7

(
Ii(k)− β f vs f (k)

)
+ α2sgn

(
Vf−PID(k)

)
+ α1sgn

(
e f vs f (k)

)
+ αfβ f (k), Equation (21)

3.3 Compute γ f vs f (k + 1) =
[
αγγaels(k) + αiIi(k) + αββaels(k) + αsβSVR(k)

]
+∅ f vs f (k) + α1e f vs f (k) + α2sgn

(
Vf−PID(k)

)
,

Equation (20)
3.4 Compute β f vs f (k)← (α3)

T
γ f vs f (k), Equation (20)

3.3. Data Classification

After residual data generation using the proposed hybrid FVSF estimator, the resam-
pled RMS feature was extracted from the residual data using the following definition:

r f vsv−rms(k) =

√
1
X ∑X

j=1 r f vsv(k)2 (24)

Here, r f vsv−rms(k) and X denote the RMS value for the residual signal based on the
proposed FSVF estimator algorithm and the number of windows, respectively. The original
data in each condition and state have 120,000 samples. We generated 100 windows for
each condition; thus, each window included 1200 samples. SVM was recommended for the
RMS residual data classification and crack size identification. It was introduced using the
following definition:

Ia

(
βT

aρ(Ib) + βb

)
≥ Ia − Di. (25)

Here, (Ia, Ib) is the SVM input for classification and identification, (βa, βb) is the
SVM data classifier/identifier, ρ(Ib) is the SVM feature, and D is the maximum boundary
distance in SVM for data classification and identification. If ρ is introduced as a penalty, to
solve the above equation, we have

min 1
2 βT β + ρ ∑

j
Di

s.t. Ia
(

βT
aρ(Ib) + βb

)
≥ Ia − Di Di ≥ 0

(26)

The saddle point is defined using the following definition:

Sp =
1
2

βT β + ρ ∑
j

Di −∑
i

ai

[
Ia

(
βT

aρ(Ib) + βb

)
− Ia + Di

]
−∑

i
biDi (27)
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where Sp is the min-max value for the saddle point and (ai, bi) is the coefficient to solve
the saddle function. Moreover, the quadratic programming can be used to solve the
saddle point.

min 1
2 βTρβ + TT β

s.t.
∑
i

βIa = 0

0 ≤ β ≤ ρ ∀i

(28)

where T =


−1
−1

...
−1

. The SVM data classifier/identifier is represented as follows:

βa = ∑
i

Ia IbK(ui, u) (29)

βb =
1
|∆| ∑

a∈∆
(Ia −∑

i
Ia IbK(ui, u)) (30)

where K(ui, u) and ∆ are the kernel function and the support vector, respectively. The
support vector can be represented by the following definition:

∆ = {i|0 ≤ Di ≤ ρ} (31)

The SVM function is represented by the following definition:

Ia = sgn ∑
i

Ia IbK(ui, u) + Di (32)

Table 4 illustrates the training and testing dataset for the proposed FSVF estimator
with SVM for the bearing’s data classification and crack size identification.

Table 4. Training and testing RMS residual data.

Training
Samples

Testing
Samples

Data Classification

N 300 100

B 900 300

I 900 300

O 900 300

Data crack size
identification

B

0.007 inch 300 100

0.014 inch 300 100

0.021 inch 300 100

I

0.007 inch 300 100

0.014 inch 300 100

0.021 inch 300 100

O

0.007 inch 300 100

0.014 inch 300 100

0.021 inch 300 100

4. Results and Discussion

The proposed hybrid fuzzy V-structure fuzzy approach was used for bearing data
classification and crack size identification in this study. To test the power of the proposed
hybrid data classification and identification algorithm, this technique, FVSF, was compared
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with the fuzzy V-structure (FVS) algorithm and the V-structure (VS) algorithm. To test the
power of data modeling, the combination of AE with the Laguerre filter and SVR technique
(AELS) was compared with AE with the Laguerre filter technique (AEL) and the AE method
(AE). Figure 5 illustrates the error of bearing data modeling in a normal condition.
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Based on this figure, the error of bearing data modeling for the proposed AELS
technique is lower than that of the other two approaches. Thus, that technique was
employed for bearing data modeling in this study. In the next step, the bearing data were
estimated using the V-structure (VS) approach, fuzzy V-structure (FVS) technique, and
proposed hybrid fuzzy V-structure fuzzy (FVSF) technique. Figure 6 shows the residual
bearing data for the VS technique.
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As depicted in the figure, the VS technique has a problem classifying the inner and
outer data. To improve the performance of the VS technique, the FVS technique was
leveraged, as illustrated in Figure 7.
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Figure 8 demonstrates the bearing’s residual signal using the FVSF algorithm. Based
on the comparison between Figures 6–8, the data classification accuracy using the proposed
FVSF algorithm is better than that of the other two approaches. The RMS bearing’s residual
signals for the VS technique, the FVS method, and the proposed FVSF approaches are
illustrated in Figures 9–11, respectively. Based on Figure 9, the VS has a critical issue
in classifying the inner and outer faults. The FVS technique (Figure 8) improves the
classification accuracy compared with the VS algorithm; however, its limitations in the
classification of inner and outer faults remain. Based on these figures, the power of
discrimination provided by the proposed FVSF algorithm (Figure 11) is much better than
that of the other two methods, and the normal and abnormal signals can be easily classified.
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Figures 12–14 present confusion matrices of bearing data classification using the
combination of VS and SVM, that of FVS and SVM, and that of the proposed FVSF and SVM.
Based on Figures 12 and 13, the main misclassification parts for bearing data classification
using the combination of VS and SVM and that of FVS and SVM are between inner and
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outer faults. According to Figure 14, the combination of FVSF and SVM resolves the
problem of misclassification.
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Furthermore, the average accuracy of the bearing’s data classification based on the
combination of VS and SVM, the combination of FVS and SVM, and the combination of the
proposed FVSF and SVM is represented in Table 5. According to these figures and Table 4,
when the crack sizes are 0.007 in, 0.014 in, and 0.021 in, and the motor torque loads are
0 hp, 1 hp, 2 hp, and 3 hp, the proposed FVSF approach improves the accuracy of the VS
technique and FVS method by 10.75% and 5.5%, respectively. Thus, the performance of
bearing data classification using the combination of the proposed FVSF and SVM is much
better than that of the other two techniques.
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Table 5. Comparison of the combination of VS and SVM, the combination of FVS and SVM, and the
combination of the proposed FVSF and SVM for bearing data classification.

States Combination of VS
and SVM (%)

Combination of FVS
and SVM (%)

Combination of
FVSF and SVM (%)

N 100 100 100
B 90 94 99
I 82 89 98
O 80 90 98

Average classification
accuracy 88 93.25 98.75

Table 6 shows the performance of the bearing’s data identification using the com-
bination of VS and SVM, the combination of FVS and SVM, and the combination of the
proposed FVSF and SVM. According to this table, when the motor torque loads are changed
between 0 hp and 3 hp, the proposed FVSF approach improves the accuracy of the VS
technique and FVS method by 11.55% and 5.2%, respectively. Hence, the performance of
the bearing’s crack size identification using the combination of the proposed FVSF and
SVM is much better than that of the other two approaches.

Table 6. Comparison of the combination of VS and SVM, the combination of FVS and SVM, and the
combination of the proposed FVSF and SVM for bearing crack size identification.

State Crack
Sizes-Inch

Combination of
VS and SVM

(%)

Combination of
FVS and SVM

(%)

Combination of
FVSF and SVM

(%)

B
0.007 84 90 97
0.014 86 92 98
0.021 85 92 98

I
0.007 82 93 98
0.014 88 94 98
0.021 88 92 98

O
0.007 89 94 98
0.014 87 93 99
0.021 89 95 98

Average accuracy of bearing’s data
crack size identification 86.45 92.8 98

In the next part, to validate the effectiveness of the proposed FVSF algorithm, this ap-
proach is compared with the following three existing methods: smooth sliding mode digital
twin (SSDT) [29], strict feedback backstepping digital twin (SBDT) [35], and multivariable
fuzzy learning backstepping (MFLB) [36].

In ref. [29], the authors have used the combination of autoregressive with a Laguerre
filter, intelligent gaussian regression, and an intelligent smooth sliding observer for bearing
fault diagnosis. Apart from the accuracy and reliability of the proposed method, the smooth
algorithm uses a saturation function to reduce the effect of high-frequency oscillations; this
algorithm has a lack of robustness. In addition, in ref. [35], the combination of support
vector regression, Gaussian Process Regression, and an intelligent integral strict feedback
backstepping observer was suggested for fault diagnosis in the bearing. The main challenge
in this approach was robustness compare with robust algorithm such as V-structure ap-
proach. Furthermore, a multivariable fuzzy learning backstepping observer has been used
for fault diagnosis in ref. [36]. However, the nonlinear autoregression technique was used
for system modeling, but this technique suffers from low accuracy in crack size detection.
To validate the proposed approach further, we calculate the average diagnostic accuracy
for the proposed FVSF, SSDT [29], SBDT [35], and MFLB [36] under various operating
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conditions (see Table 7). Table 7 presents the diagnostic accuracy of the proposed FVSF,
SSDT [29], SBDT [35], and MFLB [36] for fault diagnosis in bearing. The diagnostic accuracy
is reported as the percentage of correct detection in all data.

Table 7. Comparison of the proposed FVSF, SSDT [29], SBDT [35], and MFLB [36] for bearing data
classification.

States FVSF (%) SSDT [28] (%) SBDT [34] (%) MFLB [35] (%)

N 100 100 100 100
B 99 94 96 95
I 98 98 96 98
O 98 97 98 95

Average classification
accuracy 98.75 97.25 97.5 97

As shown in Table 7, the proposed FVSF fault diagnosis method outperforms the
state-of-the-art SSDT method, SSDT technique, and SBDT approach, yielding average
performance improvements of 1.5%, 1.25%, and 1.75%, respectively. This performance
improvement can be further validated by the fact that our proposed FVSF scheme is highly
sufficient to identify the fault in the bearing.

5. Conclusions

In this study, the hybrid fuzzy V-structure fuzzy fault estimator algorithm was lever-
aged for bearing anomaly diagnosis. The design of the proposed hybrid technique consisted
of three main steps: data modeling, data estimation, and data classification. First, the bear-
ing’s data in normal conditions were modeled using the combination of autoregression
with error feedback, the Laguerre filter to improve robustness, and the SVR algorithm to
improve the accuracy of nonlinear signal modeling. Next, the bearing’s data were esti-
mated using the proposed hybrid fuzzy V-structure fuzzy fault estimator algorithm. The
V-structure observer was selected because of its reliability, robustness, and stability. The
fuzzy technique was employed to (1) reduce the high-frequency oscillation and improve ro-
bustness and (2) reduce the error of fault estimation and increase the rate of discrimination
in different classes. Finally, SVM was used to classify the RMS residual data, which are the
difference between the RMS original data and estimated ones. The Case Western Reserve
University bearing’s dataset was used to test the power of the proposed hybrid technique.
The proposed hybrid fuzzy V-structure fuzzy fault estimator algorithm for fault diagnosis
and crack size identification was compared with the fuzzy V-structure approach and the
V-structure method. The proposed hybrid approach improved the performance of the
bearing’s data fault classification by 5.5% and 10.75% compared with the fuzzy V-structure
technique and the V-structure method, respectively. In addition, for crack size identification,
the proposed hybrid method improved the performance of the fuzzy V-structure technique
and the V-structure method by 5.2% and 11.55%, respectively. In future work, the presented
parallel hybrid estimation technique will be enhanced for multi-crack fault diagnosis.
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