
Citation: Shamim, N.; Asim, M.;

Baker, T.; Awad, A.I. Efficient

Approach for Anomaly Detection in

IoT Using System Calls. Sensors 2023,

23, 652. https://doi.org/10.3390/

s23020652

Academic Editor: Jemal Abawajy

Received: 9 November 2022

Revised: 26 December 2022

Accepted: 3 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Efficient Approach for Anomaly Detection in IoT Using
System Calls
Nouman Shamim 1, Muhammad Asim 1 , Thar Baker 2 and Ali Ismail Awad 3,4,*

1 Department of Computer Science, National University of Computer and Emerging Sciences,
Islamabad 44000, Pakistan

2 School of Architecture, Technology and Engineering, The University of Brighton, Brighton BN2 4GJ, UK
3 College of Information Technology, United Arab Emirates University,

Al Ain P.O. Box 17551, United Arab Emirates
4 Centre for Security, Communications and Network Research, University of Plymouth,

Plymouth PL4 8AA, UK
* Correspondence: ali.awad@uaeu.ac.ae; Tel.: +971-37135531

Abstract: The Internet of Things (IoT) has shown rapid growth and wide adoption in recent years.
However, IoT devices are not designed to address modern security challenges. The weak security
of these devices has been exploited by malicious actors and has led to several serious cyber-attacks.
In this context, anomaly detection approaches are considered very effective owing to their ability to
detect existing and novel attacks while requiring data only from normal execution. Because of the
limited resources of IoT devices, conventional security solutions are not feasible. This emphasizes
the need to develop new approaches that are specifically tailored to IoT devices. In this study, we
propose a host-based anomaly detection approach that uses system call data and a Markov chain
to represent normal behavior. This approach addresses the challenges that existing approaches face
in this area, mainly the segmentation of the syscall trace into suitable smaller units and the use of
a fixed threshold to differentiate between normal and malicious syscall sequences. Our proposed
approach provides a mechanism for segmenting syscall traces into the program’s execution paths
and dynamically determines the threshold for anomaly detection. The proposed approach was
evaluated against various attacks using two well-known public datasets provided by the University
of New South Mexico (UNM) and one custom dataset (PiData) developed in the laboratory. We
also compared the performance and characteristics of our proposed approach with those of recently
published related work. The proposed approach has a very low false positive rate (0.86%), high
accuracy (100%), and a high F1 score (100%) that is, a combined performance measure of precision
and recall.

Keywords: Internet of Things; security; anomaly detection; system calls; dynamic threshold

1. Introduction

The Internet of Things (IoT) is a vast network of smart devices or “things” capable of
exchanging data with other devices and systems over the internet. From its very outset,
the IoT has been envisioned as an integration of people, technology, and processes for
remote monitoring, evaluation, and manipulation of systems. Over time, it has evolved
with progress in related technologies such as wireless communication and ubiquitous
computing. At present, the IoT is a confluence of 5G, cloud computing, machine learning,
and artificial intelligence, and has offered improved and cost-effective ways to control,
monitor, and evaluate systems [1]. This potential of IoT is quickly realized and leads
to the rapid growth and adoption of smart devices in conventional systems. The field
found many innovative and futuristic use cases, such as Industry 4.0 [2], the Internet of
Medical Things [3,4], smart cities [5], smart transportation systems [6], and predictive
maintenance [7]. IoT is evolving and is expanding at a fast pace, currently, there are around

Sensors 2023, 23, 652. https://doi.org/10.3390/s23020652 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020652
https://doi.org/10.3390/s23020652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2894-7891
https://orcid.org/0000-0002-5166-4873
https://orcid.org/0000-0002-3800-0757
https://doi.org/10.3390/s23020652
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020652?type=check_update&version=2


Sensors 2023, 23, 652 2 of 24

14 billion IoT devices globally [8–10]; this number is expected to reach 30 billion [11] by the
year 2025. The situation indicates that IoT is an important and effective technology having
a key role in modern and future systems.

As a disruptive technology, the IoT is swiftly adopted at a large scale before the
testing, evaluation, and quality assurance standards can be in place. This has resulted
in a large number of IoT devices being installed with a number of potentially obscure
software and hardware flaws, such as weak security mechanisms, vulnerable application
programming interfaces, and logical programming errors [12]. Consequences of these flaws
and weaknesses are realized as malicious actors using these devices as entry points to
connected systems, as part of larger attacks. There have been incidents where an insecure
IoT device acted as a weak link in the chain of a relatively secure setup and compromised
its security, such as a fish-tank attack [13]. In most of these attacks, commodity devices,
such as smart cameras, printers, fax machines, and digital locks have been exploited [14,15].
However, in some cases, industrial systems of critical nature have been successfully at-
tacked, resulting in significant impacts [16]. Another serious security concern related to
IoT devices is that malicious actors can form large botnets from these devices and launch
a large-scale distributed attack, such as the Mirai botnet attack [17,18]. This has raised
serious concerns regarding the security and privacy of IoT-enabled systems and requires
effective countermeasures.

To safeguard smart devices against cyber threats, IoT security has been actively re-
searched from various perspectives and various approaches have been proposed [19,20].
The developed approaches can be broadly grouped into two categories: signature-based
and anomaly-based approaches [21–23]. Signature-based approaches use the characteristics
of existing attacks to build detection models that are typically robust against known attacks.
However, they lack the ability to handle novel attacks and must be updated consistently.
Anomaly detection approaches model the normal behavior of the target system and detect
deviations from it; these deviations are considered anomalies or malicious activities. These
approaches have some advantages over signature-based approaches, as they can detect
novel and unknown attacks and require only normal data for training. Anomaly detection
approaches, however, have their own limitations; the chief among them is learning all
benign behaviors and a high false-positive rate.

The efficacy and efficiency of an anomaly detection approach are largely influenced
by the data used to represent the system’s normalcy; for example, using network traffic
data will affect anomaly detection accuracy owing to inherent communication-related
problems. Several anomaly detection approaches have demonstrated that a device’s system
call (syscall) data can be very effective for attack and anomaly detection. Syscall data are
ordered sequences of system calls from one or more processes acquired during execution
using special tools, such as ptrace and strace [24]. The data must be broken down into
smaller units before being passed to the anomaly detection system to learn normal behavior
and anomaly detection. The length of these smaller units (referred to as segments) plays an
important role in representing the system features and consequently affects its performance.
For example, the well-known n-gram [25] approach is usually employed in language-
model-based anomaly detection approaches for feature representation. Here, the value of n
represents the number of words or syscalls to be treated as a training example, which plays
a critical role in the performance of the model. A very small value of n, such as 1, does not
capture any useful patterns, whereas a large value of n increases the space complexity of
the model by many folds.

Anomaly detection approaches usually measure the deviation from normal behavior
and require a way to determine how much deviation should be considered an anomaly.
Considering a slight change in normal behavior as an anomaly will lead to a high false
positive rate, whereas allowing too much deviation will result in poor detection of anoma-
lies. A common approach to handle these issues is to determine suitable parameter values
through trials and tests, such as a fixed threshold or segment length, in our case. However,
this makes the model specific to the system and data, and cannot be generalized. A better



Sensors 2023, 23, 652 3 of 24

method is to dynamically determine the parameter values according to the underlying
system and data so that the model can be generalized.

To address these issues, we propose a simple and lightweight anomaly detection
approach that dynamically determines the threshold for anomaly detection and present a
mechanism for segmenting syscall sequences. The proposed approach considers syscall
data as a long sequence of program iterations and attempts to estimate and extract indi-
vidual iterations. The execution of the underlying program is modeled as a Markov chain,
and the iterations are considered paths in this chain. We used the probabilities of individual
iterations or paths to learning the thresholds for anomaly detection. The approach was
devised considering the following assumptions: (a) the host application in an IoT device is
active all the time, and (b) all execution paths of a program have some degree of similarity,
which are fundamental features of common IoT devices.

The main contributions of the proposed approach are summarized as follows.

1. We propose a new method to dynamically segment the syscall data into constituent
program execution paths. The method is based on the novel idea of treating the syscall
sequence as a sequence of program execution paths (Section 4). It finds a start-of-
execution pattern for these execution paths and segments the syscall sequence using
this pattern. Hence, it presents a solution to the issue of using a fixed segment length,
which makes model data specific. Related discussions are in Sections 2.1, 3.1 and 4.1.

2. We propose a novel method to address the issue of using a predetermined threshold
in probabilistic anomaly detection approaches for the IoT (Section 4). The devised
method is based on the idea of presenting syscall segments as paths of a Markov chain.
The threshold is dynamically determined using the probabilities and lengths of these
paths, Sections 2.1 and 3.2 provide the related discussion.

3. An anomaly detection approach for IoT devices that is computationally efficient and that
has accuracy and false positive rates better than existing approaches (Sections 4 and 6).

4. We propose a syscall dataset that consists of long traces of normal activities of a custom
IoT device captured under a variety of standard conditions along with multiple attack
traces (Section 5.1.2). There are only a few syscall datasets available in this domain,
and the proposed dataset can be helpful for further research in this area.

The remainder of this paper is divided into the following sections: Section 2 cov-
ers related work and highlights related challenges in the IoT anomaly detection domain,
and discusses their relevance to the proposed approach. Section 3 provides related back-
ground knowledge. Section 4 presents a conceptual design of the proposed approach.
Section 5 describes the testing and evaluation of the proposed approach. Section 6 presents
the results of the testing and evaluation processes, along with performance comparisons and
a discussion. Finally, the concluding remarks and future work are presented in Section 7.

2. Related Work

Anomaly detection is considered an effective approach for detecting attacks and mali-
cious activity in IoT devices. Research in this area has considered various tools and tech-
niques from various domains, such as machine learning, statistics, probability, model check-
ing, rule checking, deep learning, and finite state automaton. Popular data sources used in
existing approaches include network traffic, syscalls, program code, and, in some cases,
device utilization data. This section discusses various aspects of the existing IoT anomaly
detection approaches that have some degree of relevance to the proposed approach.

We first discuss anomaly detection approaches that follow the security models devised
by conventional networks. Most of these approaches utilize IoT network traffic data to
learn normal behaviors or benign communication patterns. A good example is the work of
Sivanathan et al. [26], which is based on the network flows of IoT devices under normal
and attack conditions. An extension of this study is [27], which uses packet-level network
traffic data for the same objective. In these approaches, anomaly detection is accomplished
using a one-class support vector machine (SVM) and K-means clustering. The work of
Eskandari et al. [28] is also based on the network flows of IoT devices, where two standard



Sensors 2023, 23, 652 4 of 24

machine learning models, i.e., isolation forest (IF) and local outlier factor (LOF), are used for
anomaly detection. Similarly, Maniriho et al. [29] used machine learning, i.e., random forest
(RF), on IoT network traffic for anomaly-based attack detection, analyzed the relatedness
of data features using information gain and set theory, and proposed a hybrid feature
selection engine.

Network traffic-based anomaly detection falls into the category of network-based
intrusion detection systems and is deployed in a central entity, typically a router or an IoT
gateway. Commonly associated challenges with these approaches are the single point of
failure and the inability to scale well and detect novel attacks. In addition, many other
factors are difficult to avoid and can lead to a high false-positive rate. For example, traffic
noise, network congestion, device failure, and changes in network conditions. Approaches
that handle some of these challenges simultaneously, such as [29] provide a method for han-
dling changes in network conditions. These challenges are better addressed by distributed,
collaborative, and host-based anomaly detection approaches.

Mirsky et al. [30] is an example of a collaborative anomaly detection approach for
IoT. Participating IoT devices first learn a local anomaly detection model, and then share
it over a blockchain to produce a single agreed-upon version. This final version is used
by IoT devices to detect anomalies locally. The approach uses the jump sequence of the
program instruction and a Markov chain to model normal behavior; for anomaly detection,
a minimum probability threshold is used. However, the approach has many limitations,
for example, the threshold is fixed and data-specific, and participating devices need to have
specific hardware architecture and application software.

The lack of heterogeneity in the aforementioned approach was handled well by
Nguyen et al. [31]; they proposed a distributed learning approach that first identifies
the device model and allows only similar devices to learn collaboratively. In this approach,
network traffic data are first transformed to a specific format using a language model
and then fed to a gated recurrent unit (GRU) to estimate the probability of data being
anomalous. The approach is novel, can scale well, and can be generalized, with limitations
on device-type identification, fixed detection, triggering thresholds, and fixed look-back
window size.

Many of the approaches discussed above use machine learning models, which are
relatively resource-intensive and, in some cases, are not feasible for resource-constrained IoT
devices. In view of this, many non-machine learning-based anomaly detection approaches
have been proposed. Notable among them is the work of Wang et al. [32], who proposed a
novel approach to capturing the normal behavior of IoT devices using device usage rules
(DUR). The proposed approach automatically extracts DURs from the manufacturer usage
description (MUD) [33] files and device interaction rules from the triggering platform
IFTTT [34] used by the devices. The DURs are passed to a rule engine (Drools [35] in
this case) for the real-time monitoring of IoT devices. The approach is novel; however,
the concept of MUD has limited support from vendors and is not mature. Similar to this is
the work of Sharma et al., in their work [36] they proposed a lightweight formal verification
method of the device’s operational specification, the developed approach not only captures
the normal behavior but also determines a complete set of prohibited states of devices.
Despite being lightweight and effective (as claimed), the approach is not scalable and
generalizable owing to very specific requirements, such as operational specifications.

Considering anomaly detection approaches based on syscall data, Forrest et al. [37]
pioneered the use of system calls for anomaly detection and showed that short sequences
of system calls of a process generate a stable signature of its normal behavior. They
experimented with various Unix processes and proposed an effective anomaly detection
approach. The approach has two major issues: first, the segment length is selected using
experimental results, and second, it requires a repository of segments that can lead to
high space complexity for long syscall datasets. The authors in [38] adopted the same
approach; however, they used a fixed-length sub-sequence, and Eskin et al. [39] improved



Sensors 2023, 23, 652 5 of 24

this work by using a dynamic sub-sequence length and also showed that the length of the
sub-sequence impacts the anomaly detection accuracy.

Similar to this is the work of Hoang et al. [40] in which two long short-term memory
(LSTM) networks are trained using normal data and attack syscall data. For a given syscall
sequence, both models estimate a probability value, and a higher probability is considered
the final result. The authors reported an important observation that the length of the syscall
sequence directly affects the performance of their model, i.e., their approach performed
best for a particular length of the syscall sequence (150 in this case) and performed poorly
otherwise. The approach proposed by Liao et al. [41] attempts to find suitably long sub-
sequences of syscall data; however, anomaly detection is performed using an SVM. This
approach also supports the fact that the sub-sequence length is an important parameter for
differentiating between normal and abnormal syscall sequences. Their proposed approach
used a mix of fixed and variable length sub-sequences to train an SVM classifier and
achieved a very high accuracy with a very low false positive rate. Similarly, [40,42] used an
n-gram of syscall with machine learning approaches, specifically LSTM, one-class SVM,
and clustering for detecting malicious syscall sequences. These approaches empirically
find a suitable length for n-grams to build the model; thus, they face generalization issues.

Statistical feature analysis is also an important area in syscall-based anomaly detection
for IoT devices. A common strategy among these approaches is to segment long syscall
sequences into short sub-sequences of fixed or variable lengths, extract statistical features
of these sub-sequences, and use the extracted features to build an anomaly detection model.
The sliding window, n-gram model, and suffix tree are generally used to obtain fixed- and
variable-length sub-sequences, respectively. Language models and one-class classification
are commonly applied for anomaly detection. Liu et al. [43] proposed a cross-platform
anomaly detection model using the statistical features of syscall sequences. A similar cross-
platform anomaly detection approach was proposed by Zhang et al. [44], who proposed
a framework that first enhances the behavioral semantic information contained in syscall
sequences and produces generalized features, which are passed to TextCNN, which is a
convolutional neural network (CNN) for text classification. The approach has much better
accuracy than that of Zhang et al. [44]; however, it has a high computation cost for training
and updating.

Breitenbacher et al. [45] proposed a unique anomaly detection approach that monitored
process spawning and allowed only legitimate processes to be executed. The model uses a
’whitelisting’ of the legitimate processes built during the training phase and the real-time
anomaly detection model must be loaded as a kernel module. The approach is novel,
effective, and efficient, and requires low computational resources; however, whitelisting
processes for a variety of IoT devices and embedding the module into the kernel is a
challenging task. Similarly, Carter et al. [46] considered that reducing the feature dimension
affects the performance of anomaly detection approaches, which is crucial for resource-
constrained IoT devices.

Syscall anomaly detection approaches employ a variety of tools and techniques rang-
ing from simple statistical analysis to complex deep learning models. We can summarize
the common system-based IoT anomaly detection approaches as (a) statistical feature anal-
ysis, (b) language modeling, (c) model checking, (d) formal specification, and (e) sequence
analysis. Overall, syscall-based anomaly and attack detection approaches are very effective
for IoT devices because of their role in program execution.

2.1. Research Gap Analysis

Based on our study of existing approaches, we found that host-based anomaly detec-
tion approaches are more effective than network-based approaches and that host-based
approaches can be further extended to collaborative or distributed anomaly detection
systems. By analyzing existing IoT anomaly detection approaches, we discovered that
syscall data can be very effective for anomaly detection in IoT and can provide an excellent
trade-off between generalization and accuracy. Table 1 represents a summary of the related



Sensors 2023, 23, 652 6 of 24

studies focusing on the used approaches, methods, and datasets. Regarding the existing
syscall-based IoT anomaly detection approaches, we found that these approaches lack (a)
an automated and dynamic mechanism for the conversion of long syscall sequences into
individual training/test examples, and usually, this is done empirically, and a suitable
length is selected for which model performs best; (b) a method to automatically determine
the extent to which the system can deviate from normal, usually a threshold is used for this
purpose, which is empirically determined. These two issues impose great restrictions on
the generalization of anomaly detection approaches in this area.

Table 1. Summary of the related work that highlights the used approaches, methods, and datasets.

Article Approach Method Dataset

Sivanathan et al. [26] IoT network flow analysis Model checking Custom
Sivanathan et al. [27] Network packet analysis Classification, K-Means Custom
Eskandari et al. [28] Network flow analysis Classification, LOF & IF Custom
Maniriho et al. [29] Network traffic analysis Classification, RF IoTID20
Mirsky et al. [30] Memory jump sequence analysis Markov Chain Real Data
Nguyen et al. [31] Federated Learning Classification, GRU Custom
Wang et al. [32] Device usage rules analysis Custom framework From [47]
Sharma et al. [36] Specification analysis Formal Verification None
Forrest et al. [37] Syscall sequence analysis Sequence matching Custom
Toan et al. [48] Syscall sequence analysis Classification, LSTM Custom
Liao et al. [41] Syscall sequence analysis Classification, SVM UNM
Shobana et al. [42] Syscall n-gram analysis Classification, LSTM Custom
Hoang et al. [40] Syscall n-gram analysis Classification, SVM Custom
Liu,Z et al. [43] Syscall statistical pattern analysis IF, LOF, KNN, SVM ADFA
Zhang, Y. et al [44] Syscall behavioral semantics Classification, TextCNN ADFA-LD
Breitenbacher et al. [45] Process whitelisting Hash tables, SHA256 Real Devices
Carter, J et al. [46] Feature engineering Feature pruning, PCA Custom

3. Background

This section provides a brief description of the concepts related to system calls and
the Markov chain (MC) and discusses the relationship between syscalls and the execution
behavior of an IoT device.

3.1. System Calls and Program Execution Path

The core of an operating system (OS) consists of a kernel, which is a special program
that assists other parts of the OS to perform their tasks. Specifically, it controls and manages
access to system resources, such as CPU and disks, and acts as an interface between user
programs and OS services. For security and control management, the OS uses two different
modes for program execution: the user mode and kernel mode. A program is usually
executed in the user mode; however, certain critical operations, such as disk read/write and
process creation, can only be executed in the kernel mode. For such operations, the program
requests kernel services employing special functions called system calls, which are then
carried out by the kernel in kernel or privileged mode. An abstract view of the entire
process is shown in Figure 1.

System calls made by a program can reveal important information about its activities.
Usually, when a program executes, it makes a number of system calls in a particular
sequence, and each execution sequence defines the execution path of the program. There
can be only a limited number of execution paths for a program, some of which might occur
more frequently than others, such as in the case of the main and optional functionalities of
a program.

The execution cycle of a program consists of call sequences from the start of the
program to its end; it can be a unique execution path or consist of many constituent
execution paths. A program that, once loaded and remains active, usually executes a part
of the program repeatedly and does not execute the start and end of the program in each
execution cycle. Usually, IoT application programs, once started, will remain alive and
execute their main functionality in a repeated manner, such as in the case of temperature-



Sensors 2023, 23, 652 7 of 24

sensing IoT devices. In some cases, the application program can be impetus-based, such
as a smart smoke detector, and some functionality of the program will only be executed
when the triggering condition is met. Even in such cases, a repeated execution pattern is
exhibited owing to the limited functionality of the application program. IoT devices are
usually designed for a few specific tasks, and the application programs for these tasks are
relatively small and simple. It can be expected that the underlying execution paths will be
very few and of short lengths.

Host Application

OS-Kernel (call Execution)

Process-1


System Calls

open(), Write() . . .


Kernet Mod


Hardware Resources

Process-2
 . . . Process-n


Syscall Interface Wrapper Library

User Mod


Response

IoT Devices

IoT Devices

Internet

Cloud Server

MQTT and Broker

Comm-
interface

Inside IoT Device

Figure 1. Abstract view of the IoT and system calls (syscalls).

The behavior of an application program can be defined in terms of its execution
paths, and many existing approaches attempt to accomplish this in various ways, such as
defining control-flow graphs [49], building finite-state automata, or formally modeling the
application [50]. These approaches utilize the fact that any modification in the program’s
execution path is due to the modification in the program’s code or related device conditions,
such as the allocation of memory or the creation of a socket. The aforementioned conditions,
however, can also be caused by a number of malicious actions, such as code injection, code
reuse, buffer overflow, and a denial-of-service attack, or can be due to benign reasons, such
as a faulty network. The proposed approach utilizes this characteristic, attempts to identify
any change in the program’s execution path, and determines whether the change was due
to benign or malicious activity.

3.2. Markov Chain

A Markov chain (MC) models the transition probability from a given state to the
next state. It is a memoryless process, i.e., transition probability to a state depends only
upon the last state and not upon all previous states. More formally, MC is a stochastic
process{X0, X1, X2 . . .} where Xt represents the state of the system at time t that satisfies
the Markov property, i.e., the state Xt+1 depends only upon the previous state Xt.

P(Xt+1 = s|Xt = st) ∀t = 1, 2, 3, . . . and ∀ states ∈ S = s0, s1, s2, . . . st, s (1)

where S denotes the system state space.
This is also called the first-order Markov chain, the order of the MC is the number of

preceding states required for the next state, in an n− degree MC, the next state depends
upon n previous states. Typically, MC is described by a transition matrix and an n-state
MC chain is represented by the nxn transition matrix. Rows in the transition matrix define
now or Xt while columns represent then or Xt+1. An entry (i, j) in the transition matrix is
the conditional probability (p) of going from state i to state j.

pij = P(Xt+1 = j|Xt = i) (2)



Sensors 2023, 23, 652 8 of 24

A trajectory in the MC chain is a sequence of states or a path followed by the system.
The probability of a trajectory is determined by multiplying the conditional probabilities of
the states in the trajectory, i.e., the probability of the trajectory s0, s1, s2, . . . , st is given by

P(X0 = s0, X1 = s1, . . . , Xt = st) = pst−1,st × pst−2,st−1 × . . .× ps0,s1 × πs0 (3)

where πs0 is the initial probability of states s0 and π is the initial probability distribution.
A transition matrix is typically constructed by first finding an N × N frequency matrix

Ni,j, where N is the number of system states. For each transition from state i to state j,
entries i and j into N are incremented. The transition matrix M and initial probability
distribution can then be obtained by the following equations [51,52]:

M =
Nij

Ni
(4)

π =
Ni
N

(5)

We find MC suitable for our desired framework as follows: (a) constructing M from
the syscall sequence is computationally inexpensive and requires a very small amount of
memory, (b) the size of M is independent of the length of the syscall sequence, and (c) M
can be updated easily by simply incrementing the frequency of encountered states in the
frequency matrix and updating the respective probabilities in the transition matrix (4).
Our proposed approach is based on the novel idea of using program execution paths
as trajectories in the respective MC. We used the probabilities of these trajectories (3)
to dynamically determine a threshold for distinguishing between normal and abnormal
executions. Syscalls appearing frequently will have a higher probability than less frequent
ones, and it is likely that a sequence of normal syscalls will have a higher probability than
an attack or anomalous syscall sequence.

One way to capture all possible normal syscalls is to observe the host for a very long
time; however, this only reduces the chances that a new normal call will appear during
testing. For example, in our case, if normal data consist of more than 106 syscalls, the initial
probability of a normal call will be 1× 10−6, and any normal call having a true probability
less than this will not appear in the training data. To address this situation, new syscalls
are added to the transition matrix with a very low probability, such as 1× 10−7 in the
example being discussed, which will have a small effect on the probabilities of normal
sequences from (3), and anomalous sequences will still be distinguishable from normal
sequences. A normal call will eventually be repeated, and its probability will continue to
improve; however, an anomalous call might never repeat, and its probability will remain
the lowest. Another way to handle new normal calls is to simply assign them a zero
probability, in which case the MC model does not need to be updated, and any of the two
approaches can be used depending on the behavior of the host device.

4. Proposed Approach

The core idea of our proposed approach is to transform the long syscall sequence into
program iterations, determine the probability of each iteration, group these probabilities
according to the length of the iteration, define a minimum threshold for each group, and use
these thresholds to differentiate between normal and anomalous program executions.
For this transformation, we propose a segmentation approach; for probabilities, we use
the Markov chain model. This section provides details of these steps, related challenges,
and the rationale of the proposed solutions.

There are two phases and three major components of the proposed approach. Figure 2
provides a block-level description of the overall approach. We named the two-phase
training and anomaly detection, where the components are (a) segmentation mechanism,
(b) transition matrix, and (c) a set of thresholds.



Sensors 2023, 23, 652 9 of 24

Syscall 

Sequence

Build/Update
Frequency

Matrix
fnxn

Build/update 
Transition

Matrix
Mnxn

SoE Pattern
Detection

IoT Device

SoE Pattern

Segmentation 
Module

Set of Probability
Thresholds

Training Phase

Probabilities
of Segments

Segments

Transition
Matrix

(a) Training phase.

Syscall 

Data

Mnxn

IoT Device

Segment

Set of Probability
Thresholds

Anomaly Detection Phase

Transition Matrix

Comparison

Segment

Probability

Final Result
(Anomaly/Normal)

SoE Pattern

Matching

SoE Pattern

Next Iteration

Dashed line indicates entities from the training phase

(b) Anomaly detection phase.

Figure 2. Block diagram of (a) training and (b) anomaly detection phases of the proposed approach.

4.1. Segmentation Mechanism

As explained earlier, the syscall sequence is usually a long sequence comprising
data from the repeated execution of the program, as shown in Figure 3. We consider
these repeating patterns as program iterations; the high degree of similarity among these
iterations indicates the presence of syscall subsequences common to all iterations. We
take the longest of these subsequences and segment the syscall sequence at the starting
position of this subsequence, which we consider as the start of execution (SoE) pattern of
an iteration, although it can be any part of it.

0 50 100 150 200
20

40

60

80

100

(a) UNM-Sendmail

0 500 1000 1500
0

50

100

150

(b) UNM-LPR

0 50 100 150 200
0

100

200

300

(c) PiData 

0 50 100 150 200
0

100

200

300
(d) Systemd-Timesyncd

Syscall Sequence Length

Sy
sc

al
l N

um
er

ic 
Va

lu
e

Figure 3. Line plot of syscall sequences taken from three datasets (a–c) and a standard Linux process
(d). Each syscall sequence exhibits a repeated pattern of varying length, for example, the UNM
Sendmail plot shows that the syscall pattern is repeated after 15 calls, whereas in the UNM-LPR plot,
the syscall pattern is repeated after approximately 166 syscalls.

To find the SoE pattern, we performed an initial segmentation using the autocorrela-
tion function (ACF) and then obtained the longest common subsequence (LCS) from the
resultant segments. The reason for this initial segmentation becomes clear as we proceed
with this section.

Autocorrelation is the correlation between a sequence or time series with a delayed or
lagged version. The value of correlation is high when the two sequences match, negative



Sensors 2023, 23, 652 10 of 24

for complete mismatch, and varies between partial matches. ACF has the property that
autocorrelation of a periodic function is also periodic, which means that if our syscall
sequence has a repeated pattern, ACF will produce relatively high values or peaks at
regular intervals. We computed these peaks and performed our initial segmentation using
the positions of these peaks in the syscall sequence, the entire process of finding the SoE
pattern is shown in Figure 4.

Syscall Sequence

Suffix Tree
Construction

Frequent
Segments 

Common 
Sub-sequence 




Initial Segments

Initial Segmentation

Normalization &

Auto-correlation

Filtering &
Smoothing

Peaks

 Detection Segmentation

1 2 3 4

Finding Start of
Execution (SoE)
Pattern

SoE

567

Figure 4. Block diagram showing the process of finding the start of execution pattern: Steps 1 to 4
show the initial segmentation, step 5 uses these initial segments to find the most common segments,
step 6 is the construction of the suffix tree, which returns the sub-sequences common among these
initial segments.

The initial segmentation described above works perfectly well as the final segmenta-
tion if there is only one pattern with perfect repetition. During this initial segmentation,
we discovered that (a) there are variations in the periodicity of the syscall sequence, and
(b) there can be several random peaks between two large peaks, which leads to poor seg-
mentation. The change in periodicity seems natural, as program execution can be altered
by errors, exceptions, and logical conditions. The second issue is caused by a change
in periodicity, autocorrelation of a variable length repeating pattern causes many partial
matches and results in these random peaks between, which need to be removed or ignored
before segmentation. We handled the peak-related challenge by applying the Savitzky
Golay smoothing filter [53] with a window size of 31, the said filter is well known for
smoothing noisy peaks and sharpening large peaks, Figure 5 shows the results of this
smoothing operation.

We grouped these initial segments according to their length, and the group with the
largest number of segments was used to find the LCS. A suffix tree was built from the
selected group of initial segments to obtain the LCS among these segments. The LCS
obtained was considered an SoE pattern and was later used for the final segmentation.
At this point, it is important to explain why the initial segmentation is not as good as the
final solution and why the suffix tree is built from initial segments instead of the entire
syscall sequence. The initial had two main issues (a) it was noisy, (b) the autocorrelation
peaks can be caused by partial or perfect match, (c) it is challenging to determine the exact
parts of the two sequences that actually matched, Figure 5 shows the results of segmentation
using ACF and SoE.

Finding an LCS is a challenging problem, and a trivial solution, such as dynamic
programming, would take quadratic time; however, a generalized suffix tree algorithm,
specifically Ukkonen’s algorithm [54], which is used here, solves this in θ(n) in the time
and space domains, where n is the length of the sequence.



Sensors 2023, 23, 652 11 of 24

Syscall Sequence Length

175

150

125

100

75

50

25

0

Sy
sc

al
l N

um
er

ic
 V

al
ue

(f) Poor Segmentation

0 	     500        1000      1500       2000      2500
Syscall Sequence Length

Sy
sc

al
l N

um
er

ic
 V

al
ue

175

150

125

100

75

50

25

0

(d) Syscall Sequence with random patterns

0 	     500        1000      1500       2000      2500

Syscall Sequence Length

Sy
sc

al
l N

um
er

ic
 V

al
ue

175

150

125

100

75

50

25

0

(c) Good Segmentation

0 	     500        1000      1500       2000      2500
Lag

2.5

2.0

1.5

1.0

0.5

0

Au
to

co
rre

la
tio

n

(b) Regular Peaks1e6

0 	     500        1000      1500       2000      2500

(a) Syscall Sequence with Repeated Pattern

Syscall Sequence Length

175

150

125

100

75

50

25

0

Sy
sc

al
l N

um
er

ic
 V

al
ue

0 	     500        1000      1500       2000      2500

175

150

125

100

75

50

25

0
0 	     500        1000      1500       2000      2500

(g) Segmentation with SoE

Sy
sc

al
l N

um
er

ic
 V

al
ue

Syscall Sequence Length

Lag

2.5

2.0

1.5

1.0

0.5

0

Au
to

co
rre

la
tio

n

1e6 (e) Irregular Peaks

0 	     500        1000      1500       2000      2500

Red color indicates
SoE Pattern

SoE Pattern 

107, 106, 105, 105, 107,
106, 105, 105, 107, 106,
105, 105, 107,106, 105,
105, 107

Random Peaks

Figure 5. (a–c) show a sample of the UNM-LPR syscall sequence, its autocorrelation, and segmenta-
tion, respectively. The dotted red lines in (c,f) show the segmentation boundaries determined using
positions of peaks from autocorrelation; (d–f) show the same stages for a noisy UNM-LPR syscall
sequence sample, while (g) shows boundaries determined using the SoE pattern shown in red; (g)
shows that the SoE pattern provides better segment boundaries for a noisy syscall sequence for which
the autocorrelation method did not perform well.

4.2. Transition Matrix

As explained in Section 3.2, for each dataset, we first determined the frequency matrix
fnxn and then derived a transition matrix Mnxn from it. The transition matrix was later
used to determine the probabilities of segments during the training and anomaly detection
phases. The size of Mnxn in each case was small, as the number of unique syscalls in any
dataset did not exceed 60.

4.3. Set of Thresholds

After segmentation, a Markov chain was used to determine the probabilities of the
segments. The probabilities are then grouped according to the length of the segments,
and the collection thus formed consists of several small groups, each containing one or
more members. For each group, we considered the minimum probability and used it as
a threshold for segments with lengths close to this. The final outcome of this step is a
dictionary T consisting of key-value pairs (l, p) where the key l represents the segment
length, and the value p is the threshold at this length.

4.4. Training Phase

Figure 2a provides an overview of the training phase, and the two initial steps, i.e.,
construction of the Markov chain and discovery of SoE, can be performed in any order
after finding the SoE. Segmentation is performed, and the set of thresholds T is determined
using the transition matrix M. To be able to use M, we needed it to reach a state where



Sensors 2023, 23, 652 12 of 24

the state transition probabilities reach a fixed value or an equilibrium state. One way to
achieve this is to use a large training dataset. To determine whether M reached a stable
condition, the following equation is used, which simply measures the difference between
two consecutive states Si, Si+1 of M.

Di f fi = Si − Si−1 0 < i ≤ n (Sequence Length) (6)

Figure 6 shows the convergence of M for each dataset used, showing that in each case,
M converged within the training data.

Figure 6. Markov chain convergence.

4.5. Anomaly Detection

During the anomaly detection phase, the given syscall data are sequentially read and
scanned for the SoE pattern. Syscall sequence from the start of an SoE pattern to its next
occurrence is extracted and taken as an iteration of program execution, which we call the
candidate segment sc. The probability pc of each sc is determined using the transition
matrix M learned during the training phase and the length lc of the candidate segment
is used to determine the correct threshold threshl from the set of thresholds T obtained
during the training phase. The anomaly detection is then computed as

f (lc, pc) =


1 if lc ∈ T and pc ≥ threshl

0 if lc /∈ T
0 if lc ∈ T and pc < threshl

(7)

where f represents the anomaly detection function, 1 represents a normal segment, and 0
represents an anomaly.

To allow room for small variations in length, we relaxed the length-matching criteria
to some percentage of the candidate segment length. If there is no matching group against
lc, we allowed using a group of lengths up to 5% smaller than lc. We allowed a smaller
group as the probability of segments decreases with an increase in length, which makes it
difficult to meet the probability criteria of a smaller length group.



Sensors 2023, 23, 652 13 of 24

5. Testing and Evaluation

Seven sets of attack traces from two datasets were used to determine the performance
of the proposed approach. Several performance metrics were computed for each normal
and attack trace, and compared with existing work. This section provides details on the
datasets, attacks, performance metrics, and work selected for comparison.

5.1. Datasets Characteristics

We used a total of four sets of syscall traces, three of which are from the UNM public
dataset [55] and one is our custom dataset, which we named PiData. First, we discuss
the UNM dataset and provide a description of PiData. A summary of these datasets is
provided in Table 2.

Table 2. Syscall datasets details: Custom-PiData is our laboratory-generated dataset, and UNM
Sendmail and UNM-LPR are public datasets. Column normal data provides details of traces and
the number of instructions in each dataset, the column attack provides names of the attacks and the
number of traces for each attack.

Normal Data Attack Data

Dataset Traces Instructions Attack Description Traces

Privilege Escalation 03
UNM Sendmail-decode 02
Forwarding Loops 05

PiData (Custom) 05 1,322,032 Emulated DoS 02
Code Execution 02

UNM-LPR 4500 2,027,468 Code Injection 1000
MIT-LPR 2700 2,926,304 Code Injection 1000

Total 4 7211 7,847,387 7 different attacks 1018

5.1.1. UNM Dataset

We selected the UNM dataset for two reasons: (a) it provides systematic data of
iterated program execution over a long duration, which is needed to learn all execution
paths of a program, and (b) it is a well-known public dataset and has been used in recent IoT
anomaly detection approaches, such as [41], which allows for a better comparative analysis.
The dataset consists of normal and attack system traces for several programs, and we used
the syscall traces of Sendmail and line print remote (LPR) programs. These are Unix utility
programs used to route email and send print jobs to the printer. Comprehensive details
of the dataset are provided in [56], and we briefly discuss the dataset in the context of the
proposed approach.

A syscall trace is a long sequence of numeric values substituted against the original
syscalls according to a mapping file. A program’s syscall trace contains syscalls from its
main and child processes; for example, the Sendmail program’s syscall traces contain data
from 25 processes overall. An initial study of the dataset revealed that some longer syscall
traces contained multiple copies of smaller traces, and we discovered and removed these
copies from the main trace. We also analyzed the consistency of the datasets by measuring
the change in the frequency distribution of the system calls in different parts of the dataset.
This was done by creating 10 equal segments of each dataset and computing the standard
deviation of the frequency of each system call over 10 segments. The analysis results
presented in Figure 7 indicate that the frequency of many system calls is inconsistent among
the different segments of the UNM-LPR dataset. This analysis shows that the program
behind the UNM-LPR syscall sequence has a relatively diverse execution behavior.



Sensors 2023, 23, 652 14 of 24

0 25 50 75 100 125 150 175
0

2

4
1e2 (a) UNM-Sendmail

0 25 50 75 100 125 150 175
0

5

1e3 (b) UNM-LPR

0 50 100 150 200 250 300
0

2

4
1e3 (c) PiData 

Syscall Numeric Value

St
an

da
rd

 D
ev

ia
tio

n

Figure 7. Dataset consistency analysis: Variation in frequency of syscalls of: (a) UNM Sendmail,
(b) UNM-LPR, and (c) PiData datasets observed in 10 equal-sized segments. The plot shows the
standard deviation in frequencies of three datasets’ syscalls. It can be seen that the frequencies of
syscalls in the UNM Sendmail dataset do not vary much in different segments of the dataset, while
syscalls in the UNM-LPR dataset show varied syscall frequencies.

5.1.2. Custom Dataset

The custom dataset, PiData, consists of five normal and four attack traces captured
under different normal and attack conditions. All traces were captured from our custom
IoT device built using a raspberry pi, a temperature & humidity sensor, and a remote broker
(now called the server); both the client and server used the message queuing telemetry
transport (MQTT) protocol [57] for communication, the details of which are provided in
Table 3. The device application has two main modules: (a) an MQTT module for exchanging
data with a remote server and (b) a sensing module to read data from a digital humidity
and temperature sensor (DHT) DHT11.

Table 3. Characteristics of the IoT device.

Feature Value

Raspberry Pi model 4B
Raspberry Pi memory 4 GB
Messaging protocol MQTT 5.0
Temperature and humidity sensor DHT11
Server/Broker Eclipse Mosquitto [58]
Programming language Python 3

Normal Execution Conditions

We maintained the following conditions for normal syscall data: (1) client-sending and
server-only acknowledging, (2) client-sending while server-acknowledging and publishing
periodically, and (3) similar to the previous case, with the exception that the server is
publishing data randomly, for which we used another client that randomly published data
on a server that consequently reached our IoT device. Five traces were collected under the
aforementioned conditions and all five traces were used during training.



Sensors 2023, 23, 652 15 of 24

Attack Scenarios

For attack traces, we created an experimental setup for two attacks: (a) a code execution
(CE) attack and (b) a packet drop attack. For the CE attack, we created an exploit condition
and linked it with malicious code, which could be triggered by a remote client by publishing
a specific message for our custom IoT device. Upon execution, the malicious code creates a
reverse shell for a remote machine that uses it to execute shell commands on the devices.

Packet drop attacks [59], a type of denial of service (DoS) attack, were emulated in a
laboratory environment, as shown in Figure 8. The setup consists of MQTT clients d1 and
c1, where d1 is our custom device and two MQTT brokers, b1 and b2, are bridged together
so that data published on b1 is delivered to all the devices connected to b2 and vice versa;
the black and green lines show the normal communication prior to the attack, while red
labels and arrows indicate the situation during the attack. We launched the attack on b1
by executing a traffic policy that drops 80% of the outgoing traffic, this is done by using a
well-known Linux utility Netem [60]. An 80% drop was selected to keep the connections
alive, as dropping all traffic would make the broker unavailable, and all connections were
terminated. During this attack, data from our IoT device (d1) were dropped at b1 and were
delivered to b2 and consequently to c1; however, the data from b1 did not reach d1, which
caused long wait and resend queues at d1, and its normal operation was greatly disrupted.
We captured several syscall traces during this attack, and selected the longest and shortest
traces for diversity.

MQTT Bridge

MQTT
Brokder b1

Custom IoT Device

d1

MQTT Client

c1

pub/topic1 sub/topic1

MQTT
Brokder b2

sub/topic2 pub/topic1

Tc-Netem

Ack Dropeed

Data Dropped


Ack Dropeed

Data Dropped
 Waiting for Ack


No data from d1 

X X

Waiting for Ack

No data from c1 

Figure 8. Laboratory setup for emulated denial of service (EDoS) attack on the custom IoT device.
The black lines indicate the message settings, the green lines show normal MQTT traffic, and the red
lines show the situations during the attack broker, b1, dropping traffic intended for d1 and c1.

5.2. Evaluation Metrics

We first evaluated our proposed approach on the test data; from each dataset, we used
80% of the data for training and kept aside 20% for testing. We analyzed the performance
using precision (9), recall (10), accuracy (8), and F1 score (11), for comparison with related
work we also computed true and false positive rates (TPR, FPR). We provide a brief de-
scription of these performance metrics and their suitability for measuring the performance
of the proposed approach.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)



Sensors 2023, 23, 652 16 of 24

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(11)

A syscall trace evaluated by our proposed approach can consist of all normal, all
malicious, or a mix of both segments; a normal segment detected as normal is counted
as true positive TP, otherwise considered as false negative FN, and a malicious segment
detected as an anomaly or attack is counted as true negative TN otherwise taken as false
positive FP. Equations (8)–(11) provide definitions of precision, recall, accuracy, and F1
score, all of which measure the important characteristics of the model under evaluation.
Precision is a good measure of the model’s false positive rate, and high precision indicates
that the model is good at detecting normal as normal; however, it misses false negatives, i.e.,
how many times a normal segment is counted as an anomalous segment. Similarly, recall
is a measure of false negatives that ignores the number of times an anomalous segment
is detected as a normal segment. Both accuracy and F1 score provide a holistic view of
the system’s performance according to the cost of FN and FP; however, accuracy is more
suitable for situations where the costs of FN and FP are the same, i.e., it is equally important
or damaging to detect a normal segment as an attack or vice versa.

6. Results and Comparison

We first discuss the performance of our proposed approach on test data. The combined
testing results of all datasets are shown in Figure 9, and the four performance metrics of
each dataset are grouped together for better comparison. The results indicate that our
proposed approach performed excellently over the test data with a perfect score (100%)
on the UNM Sendmail dataset and near-perfect scores (99.9% and 99.9%) on PiData and
UNM-LPR datasets, respectively. This difference between the performances is because the
UNM Sendmail dataset is relatively cleaner and consistent compared with the other two
datasets, as indicated in Figure 7.

Accuracy F1-Score Precision Recall
Performance Metrics

95

96

97

98

99

100

Pe
rc

en
ta

ge
 S

co
re

99
.9

0

99
.9

5

10
0.

00

99
.9

0

99
.9

3

99
.9

7

10
0.

00

99
.9

3

10
0.

00

10
0.

00

10
0.

00

10
0.

00

Data set PiData UNM-LPR UNM-Sendmail

Figure 9. Results of the executing proposed anomaly detection approach over test data of all
three datasets.

The anomaly detection results are combined in a similar manner, and Figures 10–12
show the accuracy, F1 score, precision, and recall for attacks related to PiData and UNM



Sensors 2023, 23, 652 17 of 24

Sendmail dataset attacks. The results of multiple attack traces from the same category
have been averaged, for example, the results for four traces of buffer overflow attacks are
individually computed and averaged.

Accuracy F1-Score Precision Recall
Performance Metrics

95

96

97

98

99

100
Pe

rc
en

ta
ge

 S
co

re

98
.9

9 99
.3

2

99
.3

2

99
.3

2

99
.5

6

99
.7

8

10
0.

00

99
.5

6

99
.2

3 99
.5

8 10
0.

00

99
.1

7

10
0.

00

10
0.

00

10
0.

00

10
0.

00

Attacks ED-1 ED-2 CE-1 CE-2

Figure 10. Anomaly detection results of PiData dataset, the attack abbreviations are; ED: emulated
DoS, CE: code execution.

Accuracy F1-Score Precision Recall
Performance Metric

95

96

97

98

99

100

Pe
rc

en
ta

ge
 S

co
re

99
.9

0

99
.7

9

99
.7

9

99
.7

9

99
.8

7

99
.8

6

10
0.

00

99
.7

2

10
0.

00

10
0.

00

10
0.

00

10
0.

00

99
.9

1

99
.9

0

99
.8

0

10
0.

00

Attacks BOF PE CI FL

Figure 11. Anomaly detection results of UNM Sendmail dataset, the attack abbreviations are;
BF: Buffer overflow, PE: Privilege Escalation, CI: Code Injection, FL: Forwarding Loop.



Sensors 2023, 23, 652 18 of 24

Accuracy F1-Score Precision Recall
Performance Metric

95

96

97

98

99

100

Pe
rc

en
ta

ge
 S

co
re

10
0.

00

10
0.

00

10
0.

00

10
0.

00

Figure 12. Anomaly detection results of UNM-LPR dataset.

For comparison, we selected closely related works published recently, Table 4 provides
the comparison details. Each of the selected studies is closely related to the proposed
approach. The approach suggested by Mirsky et al. [30], lightweight collaborative anomaly
detection for the IoT using blockchain (CIoTA), has these commonalities with our approach
(a) sequence-based anomaly detection (b) Markov chain for transition probabilities (c) target
domain, i.e., IoT. Similarly, the approach proposed by Liao et al. [41] , anomaly detection of
system call sequence based on dynamic features and relaxed-SVM (ADSC-DFRS), has many
similarities with our study: (a) both are system-based IoT anomaly detection approaches,
(b) both use the UNM dataset for evaluation, and (c) both consider the segmentation
of the syscall sequence. Finally, the approach introduced by Toan et al. [48], a novel
approach to detect IoT malware by system calls and long short-term memory model (IMD-
SLSTM), is based on syscalls sequence analysis and attempts to find the optimum syscall
subsequence length.

Table 4. Comparison of characteristics of related anomaly detection approaches with the proposed approach.

Parameter CIoTA [30] IMD-SLSTM [48] ADSC-DFRS [41] Proposed

Domain IoT IoT Generic IoT
Anomaly Detection Y N Y Y
Syscall Based N Y Y Y
Dataset Custom Custom UNM, ADFA-LD Y
Threshold Fixed Dynamic Dynamic Dynamic
Segmentation None Fixed Mixed Dynamic
Sequence-Based Y Y Y Y
Markov chain Y N N Y

Table 5 provides a performance comparison of the proposed approach with related
works in terms of the reported performance metrics. The comparison table shows that the
overall performance of the proposed approach is better than those of the other approaches
considered for comparison. The minimum FPR of CIoTA matches the FPR of the proposed
approach’s FPR, however, CIoTA has relatively low accuracy and a high maximum FPR
value. IMD-SLSTM and ADSC-DFRS have accuracies that are relatively closer to the



Sensors 2023, 23, 652 19 of 24

proposed approach’s accuracy however, they have low F1 scores. IMD-SLSTM does not
report FPR, whereas ADSC-DFRS has a relatively high FPR.

Table 5. Comparison of the performance with existing approaches, some performance metrics are
not reported by all selected approaches and are therefore left blank.

Approach Year Accuracy F1 Score FPR

Max Min Max Min Max Min

CIoTA [30] 2019 96.9 91.60 - - 2.14 0.0
IMD-SLSTM [48] 2021 98.37 - 98.38 - - -
ADSC-DFRS [41] 2022 99.00 - 93.00 - 2.40 -
Proposed 2022 100.00 99.87 100.00 99.86 0.86 0.0

6.1. Computation Cost

To determine the computational performance of the proposed approach, we measured
the utilization of the central processing unit (CPU), memory consumption, and execution
duration under different conditions. The performance parameters were measured using
Psrecord [61] and custom Python scripts. Psrecord is an open-source command line utility
for monitoring and recording the memory and CPU-related metrics of a given program or
process. We emphasized measuring the performance of the anomaly detection module of
the proposed approach, as this module is specifically designed for IoT devices. The perfor-
mance experiments were executed on two different devices, one of which is a custom IoT
device and the other one is a laptop. The details of the custom IoT device are provided in
Table 3, the laptop consists of a 120 GHz processor with four cores and 8 GB of memory.
Data used during execution on both devices comprised a normal syscall trace consisting of
64,000 syscalls and 14 attack traces comprising approximately 13,000 syscalls taken from
the UNM Sendmail test and attack dataset.

To analyze the execution performance of IoT devices, we deployed the trained anomaly
detection model on our custom IoT device and executed it in two different modes: (a) as
a script using an integrated development environment (IDE) and (b) as a standalone exe-
cutable. In both cases, the device maintained its routine tasks, i.e., sensing the temperature
and humidity, and sent it to the remote MQTT broker. Table 6 provides the percentage of
CPU utilization, mean memory, and total time consumed by the anomaly detection module
on both devices, i.e., custom IoT and laptop in both scenarios. During execution, 2006 and
410 syscall segments were detected by the anomaly detection module in the test and attack
data, respectively. The last column of Table 6 shows the CPU time required to process a
syscall segment of average length, which in this case is approximately 32 syscalls for both
the test and attack syscall data. The execution of the proposed anomaly detection module
finished much sooner on a laptop in all scenarios than on the custom IoT device because
of the differences in the computation resources of the two devices. In both devices, the
execution was much more efficient in the IDE because of the efficient handling of resources
by the IDE such as loading libraries and managing memory.

Table 6. Performance analysis of the proposed approach.

Device Data Execution CPU (%) Memory Time (s) Total Time/TS (s)
Scenario (MB) Segments (TS)

Custom IoT Test Standalone 28.43 37.86 16.91 2006 0.008
Custom IoT Test Using IDE 24.9 16.8 13.12 2006 0.006
Custom IoT Attack Standalone 22.25 20.5 2.23 410 0.005
Custom IoT Attack Using IDE 6.55 12.8 9.2 410 0.022
Laptop Test Standalone 31.46 14.8 0.98 2006 0.002
Laptop Test Using IDE 23.2 20.25 0.33 2006 0.0001
Laptop Attack Standalone 30.49 5.02 0.73 410 0.001
Laptop Attack Using IDE 1.45 17.2 0.23 410 0.0005



Sensors 2023, 23, 652 20 of 24

Standalone executions turned out to be costly, as a standalone executable is embedded
with the required libraries that it has to load and manage at the time of execution. The code
that we deployed on both devices is of an experimental nature, which is neither optimized
for efficiency nor implemented for any specific platform. The proposed anomaly detection
approach uses simple arrays, matrices, and basic mathematical operations, which allow
efficient implementation in low-level programming languages, such as C/C++.

6.2. Discussion

The reason for this high performance is that, for a syscall sequence to be normal, first,
its length should closely fall into the length group derived from normal segments; second,
it should have a probability greater than or equal to the minimum probability in its length
group. This justifies our reason for segmenting using SoE, i.e., it allows us to determine the
correct length of normal syscall sequences. The length of a given syscall sequence directly
affects its probability, as each syscall sequence is considered a trajectory of the Markov
chain, and the probability is a product of state transition probabilities in the trajectory,
as shown in Equation (3). This justifies the role of Markov chains in the proposed anomaly
detection scheme.

Next, we discuss the reasons for the high precision and recall scores. A syscall sequence
can be anomalous for many reasons, including, but not limited to, (a) it has a length greater
or smaller than the length of normal sequences, (b) it has syscalls not observed in normal
syscall sequences, and (c) the order of syscalls is different from that exhibited by normal
syscall sequences. We have already discussed the role of length for being normal or
anomalous, unobserved syscalls lead to unknown state transitions, i.e., from observed to
new syscall and from new syscall to observed syscall, an unknown state transition is the
one that has no entry in the transition matrix, and its value is considered either zero or
very low Section 3.2, as discussed in Section 3.2 the overall probability of such a syscall
sequence will be way lower than the normal threshold. In the case of anomalous syscall
sequences that do not contain any unseen syscall and whose lengths are closer to the lengths
of normal syscall sequences, it is highly probable that the proposed approach considers
them as normal syscall sequences. This issue is addressed by assigning weights to syscalls
in a syscall sequence according to their position in the sequence. In the proposed approach,
we use the position of syscalls in the syscall sequence as its weight.

After the training process, we evaluated the proposed approach using test and attack
data. For each case, we measured the precision and recall of the number of segments that
were processed and correctly identified as normal or malicious. For the test data, we did
not need to actually verify how many segments were actually present in the test data, but to
expect that none of the segments were identified as malicious as there were no malicious
segments in the test data. Each attack trace has some part of the normal execution of the
program, as each attack is executed after the program starts normally. For attack traces,
the proposed method correctly identifies both the normal and malicious or anomalous
parts of the traces. We verified the anomaly detection results for attack traces in two ways:
(a) by manually identifying parts of the trace as normal and malicious and (b) by removing
the normal part from the attack trace.

Although the method we propose to find the start of the execution pattern SoE is
efficient, it requires training data that restricts this approach to learn directly from the
device data in real time. A possible future direction is to develop an online approach
that can learn the start of the execution of a target application directly from device data.
Linked to this is the problem of acquiring syscall data directly from the device in an online
manner. During this study, we also realized that acquiring syscall traces using external
tools is tedious, which hinders the performance of the overall approach. An improvement
to this shortcoming can be embedding a non-blocking syscall acquisition mechanism into
the anomaly detection approach itself. This can be done in many ways, from developing
custom syscall trace modules to using open-source utilities. In the present approach, we
used numeric values of syscall only and ignored the call parameters. In the future, will



Sensors 2023, 23, 652 21 of 24

investigate the possibility of using call parameters to learn normal execution behavior. One
final thought for our future work is to avoid full deployment of the anomaly detection
approach on the device itself to avoid deployment and device resource issues. We believe
that the approach should be developed in such a way that only a minimal part is placed on
the target device, such as the device data acquisition module, and the complex anomaly
detection part should be kept in an external machine. Such an approach would be highly
flexible and extensible as a change or update in an anomaly detection module would not
require re-deployment on IoT devices.

7. Conclusions and Future Work

In this study, we propose a lightweight and efficient host-based anomaly detection
approach for IoT devices. The proposed approach addresses two key limitations of the
existing approaches in this area: a predetermined probability threshold and fixed-length
segmentation. Addressing these two issues allows for better generalization of anomaly
detection approaches in this domain. The proposed approach has been evaluated using a
variety of datasets against several well-known attacks. The performance has been reported
in terms of standard performance metrics and compared with recently published work.
The proposed approach provides a novel and effective method for handling syscall data for
anomaly detection in IoT devices. This study can serve as a basis for future syscall-based
anomaly detection approaches.

Author Contributions: The work presented here was performed in a collaboration involving all of
the authors. Conceptualization, N.S. and M.A.; Investigation, M.A., T.B. and A.I.A.; Formal analysis,
N.S. and M.A.; Writing—original draft, N.S., M.A., T.B. and A.I.A.; Writing—review and editing, N.S.,
M.A., T.B. and A.I.A.; Visualization, N.S.; Research supervision, M.A., T.B. and A.I.A. All authors
have read and agreed to the published version of the manuscript

Funding: This study was supported by a joint United Arab Emirates University and Zayed University
(UAEU-ZU) research grant (grant number: 12R141).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations and Notations

5G fifth generation mobile network
ACF autocorrelation function
CE code execution
CNN convolutional neural network
DHT digital humidity and temperature
DoS denial-of-service
DUR device usage description
f anomaly detection function
FN false negative
FP false positive
FPR false positive rate
GRU gated recurrent unit
IDE integrated development environment
IF isolation forest
Industry 4.0 fourth industrial revolution
IoT Internet of Things
lc length of candidate segment
LCS longest common subsequence
LPR line printer remote protocol



Sensors 2023, 23, 652 22 of 24

LOF local outlier factor
LSTM long short-term memory
M transition matrix
MC Markov chain
MQTT message queuing telemetry transport
MUD manufacturer usage description
Netem network emulation
OS operating system
pc probability of candidate segment
p transition probability
PiData custom dataset
RF random forest
sc candidate segment
SoE start of execution
SVM support vector machine
Syscall system call
T set of thresholds
TN true negative
TP true positive
TPR true positive rate
UNM The University of New Mexico

References
1. Sodhro, A.H.; Awad, A.I.; van de Beek, J.; Nikolakopoulos, G. Intelligent authentication of 5G healthcare devices: A survey.

Internet Things 2022, 20, 100610. [CrossRef]
2. Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [CrossRef]
3. Al-Turjman, F.; Nawaz, M.H.; Ulusar, U.D. Intelligence in the Internet of Medical Things era: A systematic review of current and

future trends. Comput. Commun. 2020, 150, 644–660. [CrossRef]
4. Mamdouh, M.; Awad, A.I.; Khalaf, A.A.; Hamed, H.F. Authentication and Identity Management of IoHT Devices: Achievements,

Challenges, and Future Directions. Comput. Secur. 2021, 111, 102491. [CrossRef]
5. Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In

Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy,
7–10 June 2016; pp. 1–6. [CrossRef]

6. Muthuramalingam, S.; Bharathi, A.; Gayathri, N.; Sathiyaraj, R.; Balamurugan, B. IoT based intelligent transportation system
(IoT-ITS) for global perspective: A case study. In Internet of Things and Big Data Analytics for Smart Generation; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 279–300.

7. Civerchia, F.; Bocchino, S.; Salvadori, C.; Rossi, E.; Maggiani, L.; Petracca, M. Industrial Internet of Things monitoring solution for
advanced predictive maintenance applications. J. Ind. Inf. Integr. 2017, 7, 4–12. [CrossRef]

8. Collela, P. Ushering in a Better Connected Future. Available online: https://www.ericsson.com/en/about-us/company-facts/
ericsson-worldwide/india/authored-articles/ushering-in-a-better-connected-future (accessed on 23 May 2022).

9. Hassan, M. State of IoT 2022: Number of Connected IoT Devices Growing 18% to 14.4 Billion Globally. Available online:
https://iot-analytics.com/number-connected-iot-devices/ (accessed on 23 May 2022).

10. Marr, B. The 5 Biggest Internet of Things (IoT) Trends in 2022. Available online: https://www.forbes.com/sites/bernardmarr/20
21/12/13/the-5-biggest-internet-of-things-iot-trends-in-2022/?sh=568730785aba (accessed on 23 May 2022).

11. Lionel, Sujay, V. Internet of Things (IoT)-Statistics and Facts. 2021. Available online: https://www.statista.com/topics/2637
/internet-of-things (accessed on 2 June 2022).

12. Awad, A.I.; Abawajy, J. Security and Privacy in the Internet of Things: Architectures, Techniques, and Applications, 1st ed.; John Wiley &
Sons: New Jersey, NJ, USA, 2021.

13. Dave. Las Vegas Casino Hacked via Fish Tank. Available online: https://www.casinous.com/las-vegas-casino-hacked-via-fish-
tank/ (accessed on 26 May 2022).

14. Chiu, A. Ring Camera Hacker Harasses Mississippi 8-Year-Old in Her Bedroom—The Washington Post. Available online:
https://www.washingtonpost.com/nation/2019/12/12/she-installed-ring-camera-her-childrens-room-peace-mind-hacker-
accessed-it-harassed-her-year-old-daughter/ (accessed on 26 May 2022).

15. Point, C. Faxploit: Breaking the Unthinkable. Available online: https://blog.checkpoint.com/2018/08/12/faxploit-hp-printer-
fax-exploit/ (accessed on 26 May 2022).

16. Schiller, E.; Aidoo, A.; Fuhrer, J.; Stahl, J.; Ziörjen, M.; Stiller, B. Landscape of IoT security. Comput. Sci. Rev. 2022, 44, 100467.
[CrossRef]

17. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [CrossRef]
18. Bertino, E.; Islam, N. Botnets and internet of things security. Computer 2017, 50, 76–79. [CrossRef]

http://doi.org/10.1016/j.iot.2022.100610
http://dx.doi.org/10.1016/j.jclepro.2019.119869
http://dx.doi.org/10.1016/j.comcom.2019.12.030
http://dx.doi.org/10.1016/j.cose.2021.102491
http://dx.doi.org/10.1109/EEEIC.2016.7555867
http://dx.doi.org/10.1016/j.jii.2017.02.003
https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/india/authored-articles/ushering-in-a-better-connected-future
https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/india/authored-articles/ushering-in-a-better-connected-future
https://iot-analytics.com/number-connected-iot-devices/
https://www.forbes.com/sites/bernardmarr/2021/12/13/the-5-biggest-internet-of-things-iot-trends-in-2022/?sh=568730785aba
https://www.forbes.com/sites/bernardmarr/2021/12/13/the-5-biggest-internet-of-things-iot-trends-in-2022/?sh=568730785aba
https://www.statista.com/topics/2637/internet-of-things
https://www.statista.com/topics/2637/internet-of-things
https://www.casinous.com/las-vegas-casino-hacked-via-fish-tank/
https://www.casinous.com/las-vegas-casino-hacked-via-fish-tank/
https://www.washingtonpost.com/nation/2019/12/12/she-installed-ring-camera-her-childrens-room-peace-mind-hacker-accessed-it-harassed-her-year-old-daughter/
https://www.washingtonpost.com/nation/2019/12/12/she-installed-ring-camera-her-childrens-room-peace-mind-hacker-accessed-it-harassed-her-year-old-daughter/
https://blog.checkpoint.com/2018/08/12/faxploit-hp-printer-fax-exploit/
https://blog.checkpoint.com/2018/08/12/faxploit-hp-printer-fax-exploit/
http://dx.doi.org/10.1016/j.cosrev.2022.100467
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.1109/MC.2017.62


Sensors 2023, 23, 652 23 of 24

19. Ali, B.; Awad, A.I. Cyber and Physical Security Vulnerability Assessment for IoT-Based Smart Homes. Sensors 2018, 18, 817.
[CrossRef]

20. Hassaballah, M.; Hameed, M.A.; Awad, A.I.; Muhammad, K. A Novel Image Steganography Method for Industrial Internet of
Things Security. IEEE Trans. Ind. Inform. 2021, 17, 7743–7751. [CrossRef]

21. Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly detection for IoT time-series data: A survey. IEEE Internet Things J. 2019, 7, 6481–6494.
[CrossRef]

22. Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput.
Netw. 2007, 51, 3448–3470. [CrossRef]

23. Behniafar, M.; Nowroozi, A.; Shahriari, H.R. A survey of anomaly detection approaches in internet of things. ISeCure 2018, 10,
79–92 .

24. Keniston, J.; Mavinakayanahalli, A.; Panchamukhi, P.; Prasad, V. Ptrace, utrace, uprobes: Lightweight, dynamic tracing of user
apps. In Proceedings of the 2007 Linux Symposium, Ottawa, ON, Canada, 27–30 June 2007; pp. 215–224.

25. Hubballi, N.; Biswas, S.; Nandi, S. Sequencegram: N-gram modeling of system calls for program based anomaly detection. In
Proceedings of the 2011 Third International Conference on Communication Systems and Networks (COMSNETS 2011), Bangalore,
India, 4–8 January 2011; pp. 1–10. [CrossRef]

26. Sivanathan, A.; Sherratt, D.; Gharakheili, H.H.; Sivaraman, V.; Vishwanath, A. Low-cost flow-based security solutions for smart-
home IoT devices. In Proceedings of the 2016 IEEE International Conference on Advanced Networks and Telecommunications
Systems (ANTS), Bangalore, India, 6–9 November 2016; pp. 1–6.

27. Sivanathan, A.; Gharakheili, H.H.; Sivaraman, V. Detecting behavioral change of IoT devices using clustering-based network
traffic modeling. IEEE Internet Things J. 2020, 7, 7295–7309. [CrossRef]

28. Eskandari, M.; Janjua, Z.H.; Vecchio, M.; Antonelli, F. Passban IDS: An intelligent anomaly-based intrusion detection system for
IoT edge devices. IEEE Internet Things J. 2020, 7, 6882–6897. [CrossRef]

29. Maniriho, P.; Niyigaba, E.; Bizimana, Z.; Twiringiyimana, V.; Mahoro, L.J.; Ahmad, T. Anomaly-based intrusion detection approach
for IoT networks using machine learning. In Proceedings of the 2020 International Conference on Computer Engineering, Network,
and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 17–18 November 2020; pp. 303–308.

30. Mirsky, Y.; Golomb, T.; Elovici, Y. Lightweight collaborative anomaly detection for the IoT using blockchain. J. Parallel Distrib.
Comput. 2020, 145, 75–97. [CrossRef]

31. Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A.R. DÏoT: A federated self-learning anomaly
detection system for IoT. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 756–767.

32. Wang, J.; Hao, S.; Wen, R.; Zhang, B.; Zhang, L.; Hu, H.; Lu, R. IoT-praetor: Undesired behaviors detection for IoT devices. IEEE
Internet Things J. 2020, 8, 927–940. [CrossRef]

33. Lear, E.; Droms, R.; Romascanu, D. RFC 8520: Manufacturer Usage Description Specification; Internet Engineering Task Force (IETF):
Fremont, CA, USA, 2019. [CrossRef]

34. Hoy, M.B. If this then that: An introduction to automated task services. Med. Ref. Serv. Q. 2015, 34, 98–103. [CrossRef]
35. Proctor, M. Drools: A rule engine for complex event processing. In Proceedings of the International Symposium on Applications

of Graph Transformations with Industrial Relevance, Budapest, Hungary, 4–7 October 2011; p. 2
36. Sharma, V.; You, I.; Yim, K.; Chen, R.; Cho, J.H. BRIoT: Behavior rule specification-based misbehavior detection for IoT-embedded

cyber-physical systems. IEEE Access 2019, 7, 118556–118580. [CrossRef]
37. Forrest, S.; Hofmeyr, S.A.; Somayaji, A.; Longstaff, T.A. A sense of self for Unix processes. In Proceedings of the 1996 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, 6–8 May 1996; pp. 120–128.
38. Hofmeyr, S.A.; Forrest, S.; Somayaji, A. Intrusion detection using sequences of system calls. J. Comput. Secur. 1998, 6, 151–180.

[CrossRef]
39. Eskin, E.; Lee, W.; Stolfo, S.J. Modeling system calls for intrusion detection with dynamic window sizes. In Proceedings of the

DARPA Information Survivability Conference and Exposition II. DISCEX’01, Anaheim, CA, USA, 12–14 June 2001; Volume 1,
pp. 165–175.

40. Hoang, D.K.; Vu, D.L. IoT Malware Classification Based on System Calls. In Proceedings of the 2020 RIVF International
Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh, Vietnam, 14–15 October, 2020; pp. 1–6.

41. Liao, X.; Wang, C.; Chen, W. Anomaly Detection of System Call Sequence Based on Dynamic Features and Relaxed-SVM. Secur.
Commun. Netw. 2022, 2022, 6401316. [CrossRef]

42. Shobana, M.; Poonkuzhali, S. A novel approach to detect IoT malware by system calls using Deep learning techniques. In
Proceedings of the 2020 International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India,
13–14 February 2020; pp. 1–5.

43. Liu, Z.; Japkowicz, N.; Wang, R.; Cai, Y.; Tang, D.; Cai, X. A statistical pattern based feature extraction method on system call
traces for anomaly detection. Inf. Softw. Technol. 2020, 126, 106348. [CrossRef]

44. Zhang, Y.; Luo, S.; Pan, L.; Zhang, H. Syscall-BSEM: Behavioral semantics enhancement method of system call sequence for high
accurate and robust host intrusion detection. Future Gener. Comput. Syst. 2021, 125, 112–126. [CrossRef]

http://dx.doi.org/10.3390/s18030817
http://dx.doi.org/10.1109/TII.2021.3053595
http://dx.doi.org/10.1109/JIOT.2019.2958185
http://dx.doi.org/10.1016/j.comnet.2007.02.001
http://dx.doi.org/10.1109/COMSNETS.2011.5716416
http://dx.doi.org/10.1109/JIOT.2020.2984030
http://dx.doi.org/10.1109/JIOT.2020.2970501
http://dx.doi.org/10.1016/j.jpdc.2020.06.008
http://dx.doi.org/10.1109/JIOT.2020.3010023
http://dx.doi.org/10.17487/RFC8520
http://dx.doi.org/10.1080/02763869.2015.986796
http://dx.doi.org/10.1109/ACCESS.2019.2917135
http://dx.doi.org/10.3233/JCS-980109
http://dx.doi.org/10.1155/2022/6401316
http://dx.doi.org/10.1016/j.infsof.2020.106348
http://dx.doi.org/10.1016/j.future.2021.06.030


Sensors 2023, 23, 652 24 of 24

45. Breitenbacher, D.; Homoliak, I.; Aung, Y.L.; Tippenhauer, N.O.; Elovici, Y. HADES-IoT: A practical host-based anomaly detection
system for IoT devices. In Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, Auckland,
New Zealand, 9–12 July 2019; pp. 479–484.

46. Carter, J.; Mancoridis, S.; Galinkin, E. Fast, lightweight IoT anomaly detection using feature pruning and PCA. In Proceedings of
the 37th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, 25–29 April 2022; pp. 133–138.

47. Sivanathan, A.; Sherratt, D.; Gharakheili, H.H.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Characterizing and
classifying IoT traffic in smart cities and campuses. In Proceedings of the 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 559–564.

48. Toan, Nguyen, N.; Dung, Luong, T.; Phu, Tran, N. A Novel Approach to Detect IoT Malware by System Calls and Long Short-Term
Memory Model. J. Theor. Appl. Inf. Technol. 2021, 99, 469–480.

49. Grimmer, M.; Röhling, M.M.; Kricke, M.; Franczyk, B.; Rahm, E. Intrusion detection on system call graphs. In Proceedings of the
25th DFN-Konferenz, Sicherheit in vernetzten Systemen, Hamburg, Germany, 27–28 February 2018; pp. G1–G18.

50. Khan, M.T.; Serpanos, D.; Shrobe, H. A rigorous and efficient run-time security monitor for real-time critical embedded system
applications. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December
2016; pp. 100–105.

51. Ye, N.; Zhang, Y.; Borror, C.M. Robustness of the Markov-chain model for cyber-attack detection. IEEE Trans. Reliab. 2004,
53, 116–123. [CrossRef]

52. Ye, N.; et al. A markov chain model of temporal behavior for anomaly detection. In Proceedings of the 2000 IEEE Systems, Man,
and Cybernetics Information Assurance and Security Workshop, West Point, NY, USA, 6 June 2000; Volume 166, p. 169.

53. Schafer, R.W. What is a Savitzky-Golay filter? [lecture notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [CrossRef]
54. Ozcan, G.; Alpkocak, A. Online Suffix Tree Construction for Streaming Sequences. In Proceedings of the Computer Society of

Iran Computer Conference, 2008; Berlin/Heidelberg, Germany, Kish Island, Iran, 9–11 July 2008; pp. 69–81.
55. HIDS/Datasets/UNM. Available online: https://github.com/anandsagarthumati9848/HIDS/tree/main/Datasets/UNM

(accessed on 10 December 2022).
56. Warrender, C.; Forrest, S.; Pearlmutter, B. Detecting intrusions using system calls: Alternative data models. In Proceedings of the

Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No. 99CB36344), Oakland, CA, USA, 9–12 May 1999;
pp. 133–145.

57. Soni, D.; Makwana, A. A survey on MQTT: A protocol of internet of things (IoT). In Proceedings of the International Conference
on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), Chennai, India, 6–8 April 2017; Volume 20,
pp. 173–177.

58. Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 22 September 2022).
59. Zhang, X.; Wu, S.F.; Fu, Z.; Wu, T.L. Malicious packet dropping: How it might impact the TCP performance and how we can

detect it. In Proceedings of the 2000 International Conference on Network Protocols, Osaka, Japan, 14–17 November 2000;
pp. 263–272.

60. Jurgelionis, A.; Laulajainen, J.P.; Hirvonen, M.; Wang, A.I. An empirical study of netem network emulation functionalities. In
Proceedings of the 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN),
Maui, HI, USA, 31 July–4 August, 2011; pp. 1–6.

61. Robitaille, T. GitHub—Astrofrog/Psrecord: Record the CPU and Memory Activity of a Process. Available online: https:
//github.com/astrofrog/psrecord (accessed on 9 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TR.2004.823851
http://dx.doi.org/10.1109/MSP.2011.941097
https://github.com/anandsagarthumati9848/HIDS/tree/main/Datasets/UNM
https://mosquitto.org/
https://github.com/astrofrog/psrecord
https://github.com/astrofrog/psrecord

	Introduction
	Related Work
	Research Gap Analysis

	Background
	System Calls and Program Execution Path
	Markov Chain

	Proposed Approach
	Segmentation Mechanism
	Transition Matrix
	Set of Thresholds
	Training Phase
	Anomaly Detection

	Testing and Evaluation
	Datasets Characteristics
	UNM Dataset
	Custom Dataset

	Evaluation Metrics

	Results and Comparison
	Computation Cost
	Discussion

	Conclusions and Future Work
	References

