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Abstract: The use of machine learning in medical decision support systems can improve diagnostic
accuracy and objectivity for clinical experts. In this study, we conducted a comparison of 16 different
fuzzy rule-based algorithms applied to 12 medical datasets and real-world data. The results of this
comparison showed that the best performing algorithms in terms of average results of Matthews
correlation coefficient (MCC), area under the curve (AUC), and accuracy (ACC) was a classifier based
on fuzzy logic and gene expression programming (GPR), repeated incremental pruning to produce
error reduction (Ripper), and ordered incremental genetic algorithm (OIGA), respectively. We also
analyzed the number and size of the rules generated by each algorithm and provided examples
to objectively evaluate the utility of each algorithm in clinical decision support. The shortest and
most interpretable rules were generated by 1R, GPR, and C45Rules-C. Our research suggests that
GPR is capable of generating concise and interpretable rules while maintaining good classification
performance, and it may be a valuable algorithm for generating rules from medical data.

Keywords: fuzzy rule-based system; interpretability; clinical decision support; medical diagnostic
systems

1. Introduction

Accurate diagnosis of patients with various illnesses and diseases is a challenging
area of medical research. The key is predicting an outbreak of a disease, preventing
the progression of chronic disease and saving lives if patients receive medical treatment
immediately after diagnosis [1]. However, even the most experienced physician can become
confused when a disease has several symptoms similar to another condition. A patient may
also have a set of symptoms that can indicate various diseases, and these symptoms may
not be easily quantifiable. When these symptoms occur, physicians at different professional
and clinical levels can differ in their diagnosis, potentially resulting in a misdiagnosis.
Moreover, patients are often uncertain of their symptoms, making the diagnosis more
difficult. Therefore, computers have become crucial for medical diagnosis and prognosis in
providing consistent results, especially with the growing amount of medical information [2].
However, machines cannot fully replace expert knowledge. Combining human expertise
and computational models for advanced data analysis helps narrow the gap between
acquiring and understanding data, which is vital for medical research. Experts need tools
to transform raw and complex data into easily interpretable information, but the output of
the algorithm alone is not sufficient for making an accurate diagnosis; expert knowledge
is also required [3]. As diagnostic decision-making becomes more complex, developing
highly effective and reliable medical decision support systems (MDSS) to support the
complex and evolving diagnostic process is challenging [1].

Although data analytics for healthcare is gaining recognition rapidly, there are still lim-
itations associated with machine learning algorithms that are black boxes. These algorithms
contain a complex mathematical function, e.g., support vector machines (SVMs), or require
an understanding of the distance function and the representation space, e.g., k-nearest
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neighbors (KNN), which are very challenging to explain and to be understood by experts
in practical applications. However, the application of black-box algorithms in medicine has
raised concerns in the academic community due to their opacity and lack of trustworthi-
ness [4]. To summarize the performance of a model, it is necessary to report several metrics,
since no single metric captures all the desired properties. Nevertheless, tools such as CACP
simplify this task by allowing the assessment of classification efficiency, reproducibility,
and statistical reliability while maintaining the objectivity of model comparisons [5].

Classification quality is crucial, but it is also essential to understand how a record is
classified. MDSS rely on knowledge management to obtain clinical advice based on multiple
factors in patient-related data. In these applications, models based on patterns, rules, or
decision trees are more useful and easier for experts to comprehend in practical applications.
In particular, rule-based systems (RBS) represent knowledge in the form of a set of rules
that suggest what to do in various situations. They consist of a set of “if-then” rules, a set of
facts, and interpreters that control the application of the rules. The idea of an expert system
is to use the experience and facts in a knowledge base and encode it into a set of rules. If
the expert system has access to the same data, it will behave similarly to the expert. RBS
are straightforward models that can be adapted and applied to numerous problems [6].
Rule-based systems are known as white-box models because they provide a model closer
to human language, making them easy for experts to understand [7]. The interpretability
of a classification model is particularly important for MDSS. When designing classifiers,
it is crucial to reach a compromise between interpretability and accuracy [8]. Accuracy is
a well-known method for validating machine learning models in classification problems
due to its popularity and relative simplicity. However, there is no widely accepted measure
of the interpretability of machine learning models [9]. As it depends on several factors,
mainly the structure of the model, the shape of the membership functions, the number of
rules, attributes, and linguistic terms, it can be difficult to measure [8].

After introducing fuzzy rule-based systems (FRBS), which are models based on fuzzy
sets proposed by Zadeh [10], many of their applications emerged in different areas such as
artificial intelligence, robotics, decision-making, expert systems, power engineering, and
medicine [11–14]. A fuzzy logic approach is an effective way to represent and understand
data containing both patient information and clinical reasoning used by physicians to
conclude patients’ health that is inherently uncertain and vague in medical problems. It has
proven to be a powerful tool in developing decision support systems, such as rule-based
medical decision support systems [3]. Many algorithms have been proposed for designing
FRBS, including one rule (1R), C4.5 and its extensions, the exemplar-aided constructor
of hyperrectangle (EACH), and repeated incremental pruning to produce error reduction
(Ripper). 1R is a simple algorithm that uses a single rule to make predictions [15]. C4.5 and
its extensions are decision tree learning algorithms that use fuzzy logic to make decisions
at each node of the tree [16]. EACH is a clustering algorithm that uses fuzzy logic to
group data into clusters [17], and Ripper is an algorithm that uses fuzzy logic to prune,
or remove, unnecessary rules from a fuzzy rule-based system [18]. Genetic algorithms
have been successfully applied to the generation of fuzzy rules and the adjustment of
the membership functions of fuzzy sets [19]. Examples of these algorithms include hy-
brid decision tree-genetic algorithm (DT_GA), which combines a decision tree learning
algorithm with a genetic algorithm [20], and the oblique decision tree with evolutionary
learning (DT_Oblique), which uses evolutionary learning to improve the performance of
an oblique decision tree [21]. Other examples include structural learning algorithm in a
vague environment (SLAVEv0) and its extensions, which use genetic algorithms to learn
the structure of a fuzzy rule-based system [22], the classifier based on fuzzy logic and gene
expression programming (GPR) that combines fuzzy logic with gene expression program-
ming to generate fuzzy rules for classification tasks [8], and hierarchical decision rules
(Hider), which use genetic algorithms to generate fuzzy rules for classification tasks [23].
Organizational co-evolutionary algorithm for classification (OCEC) is another example of a
genetic algorithm applied to fuzzy rule-based systems. This algorithm uses co-evolutionary
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learning, in which multiple populations of solutions are evolved simultaneously, to im-
prove the performance of a fuzzy classifier [24]. Ordered incremental genetic algorithm
(OIGA) [25] and Pittsburgh genetic interval rule learning algorithm (PGIRLA) [26] are
both examples of genetic algorithms that are specifically designed for learning fuzzy rules.
These algorithms use genetic operations to generate and refine a set of fuzzy rules that can
be used to make decisions.

2. Related Work

Fuzzy logic is used extensively for medical applications by researchers for diagnosis
and classification. For example, Aamir et al. used a fuzzy rule-based algorithm to predict
the severity of diabetes in patients [27]. Adeli and Neshat found that a fuzzy rule-based
algorithm was effective in diagnosing heart disease from electrocardiogram (ECG) data [28].
Improta et al. utilized a fuzzy rule-based algorithm for the evaluation of renal function
in posttransplant patients [29]. Rotshtein proposed an approach for building a fuzzy
expert system for the differential diagnosis of ischemia heart disease [30]. Mohammadpour
et al. determined the accuracy of fuzzy rule-based classification that could non-invasively
predict CAD based on the myocardial perfusion scan test and clinical-epidemiological
variables [31]. Al-Dmour et al. presented the usage of fuzzy logic techniques in a warning
system to categorize patients’ status or medical conditions [32]. RBS and FRBS have also
been used to develop many MDSS in recent decades [31,33–46]. These systems represent
the symptoms of MDSS patients and are based on an inference algorithm to process
the information using linguistic terms. Domain knowledge is embedded as rules in the
knowledge base.

Many studies demonstrate the potential of using different fuzzy rule-based algo-
rithms in medical applications while simultaneously comparing different fuzzy algorithms.
Steimann investigated the impact of fuzzy set theory on medical artificial intelligence
and pointed out its most appreciated features [47]. Gupta et al. reviewed various fuzzy
models that are being used in healthcare systems for making decisions. Mousavi et al. pro-
posed an intelligent classification algorithm using a fuzzy rule-based approach to classify
medical datasets and compared it with selected fuzzy rule-based algorithms [48]. Kluska
and Madera proposed a new design for a very simple data-driven binary classifier and
conducted an empirical study of its performance using other state-of-the-art algorithms
and datasets from multiple disciplines, including medicine [8]. There are also many re-
views in the literature on various fuzzy rule-based systems [49–52]. These works highlight
important contributions, current trends, and challenges in the field.

Among the different reviews in the literature, choosing the type of fuzzy rule-based
algorithm for particular medical applications remains a challenging task. The comparison of
available algorithms is not straightforward, as researchers use various datasets and criteria
for their evaluations. Another challenge is selecting an appropriate metric to evaluate the
calculated results. Available research has not yet comprehensively investigated the validity
of the outcomes of fuzzy rule-based algorithms using a wide range of available algorithms
and metrics. Therefore, this study has two main objectives. First, we compare all commonly
used, state-of-the-art algorithms and assess their performance. The comparison is made
against the results of all selected algorithms compared in every dataset, calculated using
10-fold cross-validation. Our findings demonstrate a ranking of the algorithms in terms of
the most popular performance metrics. Second, we analyze fuzzy rule-based classifiers in
terms of rules’ size metrics and provide examples of rules generated by every algorithm
to objectively determine which of these algorithms is worth using when applied to issues
in clinical decision support. The use of some of those algorithms in the field of medicine
is novel.

The remainder of the paper is structured as follows. Section 3 provides the details of
the experimental datasets. Section 4 describes the applied fuzzy rule-based classification
algorithms and their settings. Section 5 presents the classification assessment methods.
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Then in Section 6, the experimental results of the comparison are presented. Finally,
Section 7 contains a discussion, observations, and conclusions.

3. Experimental Datasets

This article focuses on the medical applications of fuzzy rule-based classifiers, so
only medical data are considered. Datasets were downloaded from the KEEL—dataset
repository [53], and actual medical data were collected during other scientific research, as
detailed below. We used standard classification datasets without missing values. Each
dataset defines a supervised classification problem, and each example has some nominal
and numerical attributes and a nominal output attribute. The datasets have different levels
of class imbalance. Table 1 presents a summary of the datasets, including the number of
records, attributes, classes, and class imbalance.

Table 1. Summary of datasets used in experiments.

Dataset Records Attributes Classes Class Imbalance Source

1 Appendicitis 106 7 2 0.2471 KEEL
2 Breast cancer 277 9 2 0.4133 KEEL
3 Haberman 306 3 2 0.3600 KEEL
4 Heart 270 13 2 0.8000 KEEL
5 Hepatitis 80 19 2 0.1940 KEEL
6 Mammographic 830 5 2 0.9438 KEEL
7 Saheart 462 9 2 0.5298 KEEL
8 Spectfheart 267 44 2 0.2594 KEEL
9 WDBC 569 30 2 0.5938 KEEL

10 Wisconsin 683 9 2 0.5383 KEEL
11 Complications 107 8 2 0.8136 Real
12 Diabetes 230 9 2 1.0000 Real

3.1. Appendicitis

The dataset includes 7 medical measures taken from 106 patients, along with a class
label that indicates whether the patient has appendicitis (label 1) or not (label 0) according
to the research by S. M. Weiss and C. A. Kulikowski [54].

3.2. Breast Cancer

The dataset of 277 instances with no missing values is characterized by 9 attributes
provided by the Institute of Ljubljana Oncology. These attributes include both linear and
nominal values, e.g., age, tumor nodes, and tumor size.

3.3. Haberman

The dataset contains 306 records described by 3 attributes of a study on the survival of
patients who had undergone breast cancer surgery at Billings Hospital at the University of
Chicago between 1958 and 1970. The task is to predict whether the patient survived for
five years or more after surgery (positive) or died within five years (negative).

3.4. Heart

The heart disease database includes 270 instances with 13 attributes, each labeled
with a class label indicating the absence (1) or presence (2) of heart disease. This dataset
can be used to analyze various factors and characteristics that may be associated with
heart disease.

3.5. Hepatitis

The dataset contains information on 80 patients affected by hepatitis, including a
mixture of 19 integer and real-valued attributes. The task is to predict whether these
patients will die (1) or survive (2).
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3.6. Mammographic

The dataset includes 5 attributes related to the severity (benign or malignant) of a
mammographic mass lesion in 830 patients, based on the characteristics of BI-RADS and
the patient’s age.

3.7. Saheart

The dataset contains information on 462 men living in a high-risk region for coronary
heart disease in the Western Cape, South Africa. It is characterized by 9 attributes. The class
label indicates whether the person has coronary heart disease: negative (0) or positive (1).

3.8. Spectfheart

The dataset contains information on the diagnosis of single proton emission computed
tomography (SPECT) images of the heart in 267 patients. Each record is described by
44 attributes, and each patient is classified into one of two categories: normal (0) or
abnormal (1).

3.9. Wisconsin Diagnosis Breast Cancer (WDBC)

The dataset contains 569 records with 30 features computed from a digitized image of
a breast mass. These attributes describe the characteristics of the cell nuclei present in the
image. The task is to predict whether the tumor found is benign or malignant.

3.10. Wisconsin Breast Cancer Original (Wisconsin)

The dataset contains 9 attributes with 683 cases from a study of patients who had
undergone breast cancer surgery. The task is to predict whether the detected tumor is
benign (2) or malignant (4).

3.11. Complications

The dataset contains 107 cases of perioperative complications of radical hysterectomy
in patients with cervical cancer described by 8 attributes. The task is to determine the
presence or absence of perioperative complications [13].

3.12. Diabetes

Data was collected from 230 schoolchildren between the ages of 6 and 18 under the
care of a pediatric diabetes clinic. It contains 9 parameters, including weekly physical
activity parameters. The task is to determine the presence or absence of type 1 diabetes [55].

4. Fuzzy Rule-Based Classification Algorithms

This section contains descriptions of the classification algorithms used in these ex-
periments. The algorithms implementations, except for GPR, come from KEEL Included
Algorithms [53] and belong to the Rule Learning for Classification family. We used a custom
implementation of GPR [56], and set the parameters to default values.

4.1. One Rule (1R-C)

1R is an algorithm that ranks attributes according to their error rate, with the attribute
with the lowest error rate chosen for the decision tree. The range of values for the selected
attribute is then divided into several disjoint intervals, with the number of intervals deter-
mined by the value of the SMALL parameter. Finally, the algorithm uses these intervals to
create a one-level decision tree, which is a tree with a single decision node that classifies
objects based on the chosen attribute [15]. The SMALL parameter was set to 6.

4.2. C4.5 (C4.5-C)

C4.5-C is probably the most widely used machine learning algorithm for generating a
decision tree [16]. It is an extension of Quinlan’s earlier ID3 algorithm [57]. The pruned
parameter that determines whether the algorithm will prune the decision tree was set
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to TRUE. The confidence parameter determines the minimum confidence required for a
rule to be considered significant, and in this case it was set to 0.25. The instances per leaf
parameter determines the minimum number of instances that must be present at a leaf
node and it was set to 2.

4.3. C4.5Rules (C45Rules-C)

C45Rules-C is an algorithm that reads the decision tree or trees produced by C4.5 and
generates a set of rules for each tree and all trees together [57,58]. The confidence factor,
item sets per leaf, and threshold parameters can be adjusted to fine-tune the generated
rules for optimal performance. In the current implementation, the confidence factor was
set to 0.25, the item sets per leaf parameter was set to 2, and the threshold was set to 10.

4.4. C4.5Rules Simulated Annealing Version (C45RulesSA-C)

C45RulesSA-C is a version of the C45Rules-C algorithm with a general-purpose local
search method called Simulated Annealing that generates an approximate solution within
a range close to the current solution and accepts the approximate solution if the objective
function improves [57,58]. The user-defined parameters such as confidence, item sets per
leaf, and threshold are used to fine-tune the generated rules, while the max coldings, max
trials, mu, phi, and alpha parameters are used to control the behavior of the Simulated
Annealing method. In the current implementation, these parameters were set to 0.25, 2, 10,
10, 0.5, 0.5, and 0.5 respectively.

4.5. Hybrid Decision Tree-Genetic Algorithm (DT_GA-C)

DT_GA-C is a hybrid decision tree/genetic algorithm method that allows discovering
knowledge from data expressed as easy-to-interpret high-level classification rules [20]. A
genetic algorithm aims to generate rules covering examples belonging to small disjuncts,
whereas a conventional decision tree algorithm aims to produce rules covering examples
of large disjuncts. The user-defined parameters of DT_GA-C, such as confidence was set
to 0.25, the instances per leaf parameter was set to 2, and the genetic algorithm approach
parameter was set to GA-LARGE-SN. The threshold S to consider a small disjunt parameter
was set to 10, the number of total generations for the GA parameter was set to 50, and the
number of chromosomes in the population parameter was set to 200. Crossover probability
was set to 0.8, and the mutation probability parameter was set to 0.01.

4.6. Oblique Decision Tree with Evolutionary Learning (DT_Oblique-C)

DT_Oblique-C uses evolutionary algorithms to optimize split criteria during construct-
ing oblique trees [21]. This allows the algorithm to quickly and efficiently find high-quality
split criteria that accurately classify the data. In the current implementation, the number of
total generations for the genetic algorithm was set to 25, indicating that the algorithm will
run for up to 25 generations before stopping.

4.7. Exemplar-Aided Constructor of Hyperrectangles (EACH-C)

EACH-C implements the nested generalized exemplar (NGE) theory. It makes pre-
dictions and classifications based on examples that it has seen in the past. The algorithm
compares new examples with those it has seen before and finds the closest example in
memory. Distance measure aims to determine what is closest [17]. The feature adjustment
rate was set to 0.2, and the use second chanse parameter was set to TRUE.

4.8. Classifier Based on Fuzzy Logic and Gene Expression Programming (GPR)

GPR is an extremely simple classifier that consists of highly interpretable fuzzy
metarules [8]. It uses only two fuzzy sets with linear and complementary membership
functions for every continuous feature. The number of populations was set to 500, the num-
ber of generations was set to 10, threshold was set to 0.5, and the probability of triggering
an operation on the chromosome was set to 0.1.
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4.9. Hierarchical Decision Rules (Hider-C)

Hider-C uses an approach based on evolutionary algorithms to learn rules in continu-
ous and discrete domains. The algorithm produces a hierarchical set of rules. It uses real
and binary coding for individuals in the population [23]. The population size, number
of generations, mutation probability and cross percent parameters are used to control the
behavior of the genetic algorithm component. In this case, these parameters are set to 0.25,
100, 100, 0.5, and 80 respectively. The extreme mutation probability, prune examples factor,
penalty factor, and error coefficient parameters are used to fine-tune the generated rules
and control the behavior of the decision tree component of DT_Oblique-C. In this case, the
extreme mutation probability is set to 0.05, the prune examples factor is set to 0.05, the
penalty factor is set to 1, and the error coefficient is set to 0.

4.10. New Structural Learning Algorithm in a Vague Environment (NSLV-C)

NSLV-C is an extention of the iterative scheme of SLAVE that aims to improve the
efficiency of the learning process by obtaining complete rules in each iteration and reducing
the learning time [59]. It modifies the iterative scheme and the genetic algorithm to remove
the bias of the class order and find the best rule in each iteration without fixing the class.
We set the study parameters in this study as follows: the population size was set to 100,
the maximum number of iterations allowed without change was set to 500, the binary
mutation probability was set to 0.01, the integer mutation probability was set to 0.01, the
real mutation probability was set to 1.0, and the crossover probability was set to 1.0.

4.11. Organizational Co-Evolutionary Algorithm for Classification (OCEC-C)

OCEC-C causes the evolution of sets of examples and, finally, extracts rules from
these sets at the end of the evolutionary process [24]. Due to the differences between
the individuals in traditional evolutionary algorithms and organizations formed from
these sets of examples, three evolutionary operators and a selection mechanism have
been developed for realizing the evolutionary operations performed on organizations. It
prevents evolutionary processes from producing meaningless rules. The number of total
generations was set to 500, and the number of migrating/exchanging members was set
to 1.0.

4.12. Ordered Incremental Genetic Algorithm (OIGA-C)

OIGA-C address incremental training of input attributes for classifiers [25]. OIGA
learns input attributes one after another, and the resulting classification rule sets are also
incrementally evolved to accommodate the new attributes. The attributes are arranged in
different orders when their discriminating abilities are evaluated. The parameters were set
as follows: the mutation probability was set to 0.01, the crossover rate was set to 1.0, the
population size was set to 200, the number of rules was set to 30, the stagnation limit was
set to 30, the generation limit was set to 200, the survivors percent was set to 0.5, and the
attribute order was set to descendent.

4.13. Pittsburgh Genetic Interval Rule Learning Algorithm (PGIRLA-C)

PGIRLA-C uses genetic algorithms with real genes to evolve the classification rule sets.
The rule sets are evolved by genetic algorithms using the Pittsburgh approach [26]. We set
the number of generations to 5000, the population size to 61, the crossover probability to
0.7, the mutation probability to 0.5, and the number of rules to 20.

4.14. Repeated Incremental Pruning to Produce Error Reduction (Ripper-C)

Ripper-C is a rule-based classification algorithm proposed by Cohen that derives
a set of rules from the training set that match or exceed the performance of decision
trees [18]. The three stages of RIPPER-C are growing, pruning, and optimizing. The
grow_pct parameter was set to 0.66, and k to 2.
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4.15. Structural Learning Algorithm in a Vague Environment v0 (SLAVEv0-C)

SLAVEv0-C is a classifier based on fuzzy rules that is generated evolutionarily. Fuzzy
rules are evolved for each two-class problem using a Michigan iterative learning approach
and integrated using the fuzzy round-robin class binarization scheme [22]. The parameters
were set as follows: the population size was set to 20, the number of iterations allowed
without change was set to 500, the mutation probability was set to 0.5, the crossover
probability was set to 0.1, and lambda was set to 0.8.

4.16. Structural Learning Algorithm in a Vague Environment 2 (SLAVE2-C)

SLAVE2-C is a modification of the original SLAVE learning algorithm, including new
genetic operators to reduce learning time, improve understanding of the rules obtained,
and a new way to penalize the rules in the iterative approach that allows the system’s
behavior to improve [60]. The following parameters were set: the population size was set
to 20, the number of iterations allowed without change was set to 500, the binary mutation
probability was set to 0.5, the binary crossover probability was set to 0.1, the real mutation
probability was set to 1.0, the real crossover probability was set to 0.2, and lambda was set
to 0.8.

5. Performance Metrics

The selection of metrics that measure the performance of algorithms is an essential
step in machine learning approaches. Each metric has specific characteristics and measures
properties that may be different from the predicted results. The metrics used to evaluate
the performance of the proposed work are listed below.

Accuracy (ACC) is calculated by dividing the number of correctly classified samples
by the total number of samples in the evaluation dataset. If the model’s predictions for a
sample exactly match the true labels for that sample, the subset accuracy is 1.0; otherwise, it
is 0.0. The fraction of correct predictions over nsamples is calculated using the accuracy_score
function from the sklearn.metrics module defined as follows:

ACC(y, ŷ) =
1

nsamples

nsamples −1

∑
i=0

1(ŷi = yi) (1)

where ŷi is the predicted value of the i-th sample, yi is the true value for that sample, and
1(x) is the indicator function.

Precision (Pre) is calculated as the ratio of correctly classified samples to all samples
assigned to a particular class. Pre is the ability of the classifier to not label a negative sample
as positive. It is bounded between 0 and 1, where 1 is the best possible value and 0 is the
worst possible value. The metrics for each label, and averages weighted by support, are
calculated. It is defined by:

Pre =
1

∑l∈L|yl | ∑l∈L
|yl |P(yl , ŷl) (2)

where y the set of true (sample, label) pairs, ŷ the set of predicted (sample, label) pairs,
L the set of labels, yl the subset of y with label l, ŷs and ŷl are subsets of ŷ, P(A, B) :=
|A∩B|
|B| for some sets A and B. It is calculated using the precision_score method from the

sklearn.metrics module.
Sensitivity (Sen) (also known as the Recall) is calculated as the ratio between correctly

classified positive samples and all samples assigned to the positive class. Sen is the ability
of the classifier to correctly classify all positive samples as positive. It is defined as follows:

Sen =
1

∑l∈L|yl | ∑l∈L
|yl |R(yl , ŷl) (3)
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where y the set of true (sample, label) pairs, ŷ the set of predicted (sample, label) pairs, L
the set of labels, yl the subset of y with label l, ŷs and ŷl are subsets of ŷ, R(A, B) := |A∩B|

|A| .
It is calculated using the recall_score method from the sklearn.metrics module.

Other performance metrics are calculated using the well-known confusion matrix
which consists of four entries: the true positives (TP), false negatives (FN), false positives
(FP), and true negatives (TN) [61], as follows:

M =

(
TP FN
FP TN

)
(4)

True Positives (TP) refer to the number of samples correctly classified as positive, e.g.,
the number of records that have breast cancer correctly predicted as having breast cancer.
True Negatives (TN) refer to the samples correctly classified as negative, e.g., the number
of records without breast cancer correctly predicted to be non-breast cancer. False Positives
(FP) refer to the samples incorrectly classified as positive, e.g., the number of samples
without breast cancer incorrectly predicted to have breast cancer. False Negatives (FN)
refer to the samples incorrectly classified as negative, e.g., the number of records containing
breast cancer is incorrectly predicted not to have breast cancer.

Specificity (Spe) is calculated as the ratio between correctly classified negative samples
and all samples classified as negative. Spe is bounded to [0, 1], where 1 represents perfect
predictions of the negative class and 0 represents incorrect predictions of all samples in the
negative class. It is defined by:

Spe =
TN

TN + FP
(5)

Area Under ROC Curve (AUC) measures the ability of a classifier to distinguish
between classes and is used to summarize the ROC curves. The higher AUC, the better
model’s performance in distinguishing between the positive and negative classes. The ROC
curve is plotted with Sen against the false positive rate (FPR, calculated as 1− Spe). Sen is
on the y-axis, and FPR is on the x-axis.

Matthews Correlation Coefficient (MCC) is a correlation coefficient between true and
predicted classes. It reaches a high value only if the classifier achieves good results in all
entries in the confusion matrix. MCC is bounded to [−1, 1], where 1 represents a perfect
prediction, 0 random guessing, and −1 represents total disagreement between prediction
and observation [62]. MCC has become popular research applied in machine learning due
to its favorable properties in the case of imbalanced classes. It is defined as follows:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

Weighted Metric (WM) is a single performance indicator for multiple metrics that
was proposed in this study to make it easier to compare algorithms and select the optimal
algorithm:

WM =
30× AUC + 50× Sen + 5× (ACC + Pre + Spe + MCC)

100
(7)

According to some studies [63], the AUC is one of the most significant measures of
a classifier’s performance, so that it was included with a weight of 0.3. The Sen term is
also often used in health care and medical research to describe the confidence in results
and utility of testing. Therefore, it was weighted with 0.5 when calculating WM, and other
metrics were weighted with 0.05.

6. Experimental Results

A fuzzy rule-based algorithms’ performance is evaluated in this section. Algorithms
compared include: AdaBoost.NC-C, CART-C, C45-C, C45Rules-C, C45RulesSA-C, Chi-
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RW-C, EACH-C, FH-GBML-C, FURIA-C, DT_GA-C, MPLCS-C, DT_Oblique-C, OIGA-C,
OCEC-C, 1R-C, and GPR. Table 2 shows the average results of ACC, AUC, Pre, Sen, and Spe
obtained on all datasets using 10-fold cross-validation. The results in Table 2 are sorted in
descending order based on MCC, and the three best results for each metric are highlighted
in bold.

Table 2. Results of a comparison of fuzzy rule-based algorithms.

No. Algorithm MCC ACC AUC Spe Pre Sen WM

1 GPR 0.459 ± 0.342 0.807 ± 0.281 0.720 ± 0.171 0.792 ± 0.125 0.772 ± 0.167 0.792 ± 0.125 0.753 ± 0.145
2 OIGA-C 0.457 ± 0.337 0.860 ± 0.253 0.714 ± 0.172 0.793 ± 0.114 0.782 ± 0.152 0.793 ± 0.114 0.755 ± 0.138
3 Ripper-C 0.452 ± 0.319 0.676 ± 0.243 0.730 ± 0.162 0.735 ± 0.158 0.780 ± 0.139 0.735 ± 0.158 0.718 ± 0.164
4 C45RulesSA-C 0.449 ± 0.343 0.752 ± 0.255 0.727 ± 0.172 0.769 ± 0.140 0.776 ± 0.147 0.769 ± 0.140 0.740 ± 0.157
5 OCEC-C 0.447 ± 0.323 0.753 ± 0.221 0.726 ± 0.164 0.753 ± 0.145 0.771 ± 0.145 0.753 ± 0.145 0.730 ± 0.156
6 NSLV-C 0.446 ± 0.338 0.791 ± 0.298 0.716 ± 0.171 0.795 ± 0.122 0.771 ± 0.148 0.795 ± 0.122 0.752 ± 0.141
7 C45Rules-C 0.446 ± 0.340 0.738 ± 0.273 0.724 ± 0.173 0.768 ± 0.142 0.777 ± 0.141 0.768 ± 0.142 0.737 ± 0.159
8 DT GA-C 0.442 ± 0.329 0.799 ± 0.267 0.712 ± 0.163 0.784 ± 0.116 0.775 ± 0.138 0.784 ± 0.116 0.746 ± 0.135
9 SLAVE2-C 0.438 ± 0.338 0.792 ± 0.296 0.712 ± 0.170 0.786 ± 0.123 0.769 ± 0.148 0.786 ± 0.123 0.746 ± 0.144

10 C45-C 0.438 ± 0.343 0.785 ± 0.264 0.710 ± 0.171 0.782 ± 0.128 0.772 ± 0.146 0.782 ± 0.128 0.743 ± 0.147
11 Hider-C 0.414 ± 0.336 0.797 ± 0.274 0.693 ± 0.167 0.767 ± 0.138 0.763 ± 0.144 0.767 ± 0.138 0.728 ± 0.150
12 DT Oblique-C 0.402 ± 0.346 0.741 ± 0.222 0.703 ± 0.173 0.745 ± 0.146 0.754 ± 0.149 0.745 ± 0.146 0.715 ± 0.160
13 SLAVEv0-C 0.394 ± 0.374 0.761 ± 0.315 0.691 ± 0.182 0.772 ± 0.137 0.749 ± 0.161 0.772 ± 0.137 0.727 ± 0.158
14 PGIRLA-C 0.327 ± 0.337 0.819 ± 0.269 0.655 ± 0.165 0.716 ± 0.193 0.668 ± 0.239 0.716 ± 0.193 0.681 ± 0.172
15 EACH-C 0.264 ± 0.340 0.621 ± 0.417 0.626 ± 0.165 0.662 ± 0.185 0.675 ± 0.238 0.662 ± 0.185 0.630 ± 0.180
16 1R-C 0.228 ± 0.331 0.652 ± 0.378 0.610 ± 0.160 0.703 ± 0.162 0.636 ± 0.211 0.703 ± 0.162 0.645 ± 0.160

GPR achieved the highest MCC of 0.459 ± 0.342, while 1R-C achieved the lowest MCC
of 0.228 ± 0.331. In terms of ACC, OIGA-C (0.860 ± 0.253), PGIRLA-C (0.819 ± 0.269),
and GPR (0.807 ± 0.281) obtained the best results. Ripper-C had the highest AUC score of
0.730 ± 0.162, followed by C45RulesSA-C and OCEC-C. The best Spe obtained NSLV-C
(0.795 ± 0.122), OIGA-C (0.793 ± 0.114), and GPR (0.792 ± 0.125). OIGA-C achieved
the highest Pre of 0.782 ± 0.152. According to Sen, NSLV-C achieved the highest results
(0.795 ± 0.122), followed by OIGA-C (0.793 ± 0.114) and GPR (0.792 ± 0.125), and EACH-C
achieved the worst performance (0.662 ± 0.185). OIGA-C, GPR, and NSLV-C had the
highest WM scores of 0.755 ± 0.138, 0.753 ± 0.145, and 0.752 ± 0.141, respectively. The
algorithms with the lowest WM were EACH-C (0.630 ± 0.180), 1R-C (0.645 ± 0.160), and
PGIRLA-C (0.681 ± 0.172).

The box plot in Figure 1 shows MCC of each algorithm in all datasets subjected to
10-fold cross-validation. The results are sorted in descending order by the median of the
MCC. OIGA-C had the highest MCC among all the fuzzy rule-based algorithms tested.
SLAVE2-C had the second-highest MCC, while GPR had the third-highest MCC. The plot
also shows several outliers that decrease the average results of the algorithms.

The box plot in Figure 2 shows the AUC of each algorithm in all datasets subjected to
10-fold cross-validation. The results are sorted in descending order by the median of the
AUC. The best results were obtained by the OCEC-C algorithm, followed by C45RulesSA-C,
OIGA-C, GPR, and Ripper-C. The plot also shows several outliers that decrease the average
results of the algorithms. The 1R-C and EACH-C algorithms are at the bottom of the list.

The box plot in Figure 3 shows the ACC of each algorithm in all datasets subjected to
a 10-fold cross-validation. The results are sorted in descending order by the median of the
ACC. GPR was found to be the most accurate among all the fuzzy rule-based algorithms
tested. Therefore, GPR is a good choice for general use. SLAVE2-C was ranked second
and NSLV-C was ranked third. The 1R-C and EACH-C algorithms again took the last two
places, similar to their positions in rankings for MCC and AUC.
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Figure 1. Distribution of the MCC values for each algorithm in all datasets.
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Table 3 presents the result of comparing the fuzzy rule-based classifier. They are
compared in terms of the following metrics, which are calculated as averages for every
algorithm in every dataset: ANC—the average number of characters per rule in the dataset,
ANR—the average number of rules in the dataset, ANA—the average number of attributes
per rule in dataset, ANUA—the average number of unique attributes per rule in dataset.
The results are sorted in ascending order by ANC. 1R-C generated an ANC of 106.54 with a
small average number of rules on the dataset (ANR of 3.31) and a small average number
of attributes on the dataset (ANA of 3.31). However, it achieved the worst results for
MCC, AUC, and other performance metrics, as shown in Table 2. The comparison result
places GPR near 1R-C also as an algorithm providing an extremely simple and concise
set of metarules. Its simplicity is expressed as an ANC of 156.23, which is over 208 times
smaller for GPR than for OIGA-C, which achieved the best results in terms of the WM
(Table 2). GPR generates an ANR of 4.0 and ANA of 6.69 while maintaining high MCC,
ACC, and other performance metrics, as shown in Table 2. DT Oblique-C generated the
most complicated rules (ANC of 32457.38, ANA of 1059.08).

Table 4 presents examples of linguistic “if-then” fuzzy rules generated by fuzzy rule-
based classifiers on the real Diabetes dataset. The results are sorted alphabetically. Parsing
the algorithms’ output files ensured that all the compared rules had the same format. The
number of digits in the ranges was not modified and depends on the KEEL implementation.
The table also provides information on the number and length of the generated rules.
In terms of syntax, GPR generated the shortest and most understandable rules, whereas
EACH-C generated the lowest number of rules. OCEC-C generated the largest number
of rules, while OIGA-C generated the largest number of characters. The study’s findings
suggest that a structure based on four features is at the limit of human processing capacity
and such a rule is very hard to understand [64]. Therefore, using algorithms containing
several or several dozen attributes is challenging.



Sensors 2023, 23, 992 13 of 20

Table 3. Comparison of fuzzy rule-based classifiers in terms of rules’ size metrics.

Algorithm ANC ANR ANA ANUA

1 1R-C 106.54 3.31 3.31 1.00
2 GPR 156.23 4.00 6.69 5.31
3 C45Rules-C 392.08 8.38 18.85 6.46
4 C45RulesSA-C 557.62 9.77 28.08 6.15
5 EACH-C 695.384 2.00 23.46 11.85
6 NSLV-C 824.08 8.92 28.46 8.23
7 Ripper-C 981.31 16.15 51.31 8.85
8 C45-C 1425.31 11.46 57.23 6.62
9 DT GA-C 2703.38 18.08 123.00 10.38

10 SLAVE2-C 4593.85 12.38 154.62 13.31
11 SLAVEv0-C 5101.92 14.69 168.08 13.38
12 PGIRLA-C 6330.54 18.69 115.31 12.31
13 Hider-C 11,468.85 18.08 425.15 11.08
14 OCEC-C 12,188.08 83.23 772.46 13.31
15 OIGA-C 20,958.08 30.00 399.23 15.85
16 DT Oblique-C 32,457.38 61.15 1059.08 11.69

Table 4. Example of “if-then” fuzzy rules generated by fuzzy rule-based classifiers on the real
Diabetes dataset.

Algorithm Rules Generated for the Diabetes Dataset Number
of Rules

Rules
Length

1R-C

IF step count = [13072.0 , 55333.0) THEN 0
IF step count = [55333.0 , 58288.0) THEN 1
IF step count = [58288.0 , 60294.0) THEN 0
IF step count = [60294.0 , 114655.0] THEN 1

4 172

C45-C

IF step count <= 60837.000000 AND vigorious <=
128.750000 AND weight <= 80.500000 THEN 0
IF step count <= 60837.000000 AND vigorious <=
128.750000 AND weight > 80.500000 THEN . . .

12 1828

C45Rules-C

IF height>1.61 AND age>14.0 AND weight<=52.0 THEN
1
IF vigorious>128.75 AND vigorious<=319.5 AND
age>8.0 AND moderate>214.916666666667 THEN 1
IF step count>60837.0 THEN 1
. . .

8 400

C45RulesSA-C

IF height>1.61 AND age>14.0 AND weight<=52.0 THEN
1
IF vigorious>128.75 AND vigorious<=319.5 AND
age>8.0 AND moderate>214.916666666667 THEN 1
IF step count>60837.0 THEN 1
. . .

8 400

DT GA-C

IF step count <= 60837.0 AND vigorious <= 128.75 AND
weight <= 80.5 THEN 0
IF step count <= 60837.0 AND vigorious <= 128.75 AND
weight > 80.5 THEN 1
IF step count <= 60837.0. . .

19 2856

DT Oblique-C

IF -1.0*step count + 60837.0 >= 0 AND -1.0*vigorious
+ 128.75 >= 0 AND -1.0*weight + 80.5 >= 0 AND -
1.0*height + 1.87 >= 0 AND 168.486174002403*sex + -
178.36864022034422*age + -. . .

30 8625

EACH-C

IF age in [6.0 , 18.0] AND weight in [19.3 , 98.8]
AND height in [1.15 , 1.88] AND step count in
[13072.0 , 60837.0] AND sedentary in [1343.16666666667 ,
7813.33333333333] AND l. . .

2 603

GPR
IF step count is High THEN 1
IF vigorious is High AND sedentary is High THEN 1
ELSE 0

3 87
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Table 4. Cont.

Algorithm Rules Generated for the Diabetes Dataset Number
of Rules

Rules
Length

Hider-C

IF age = [7.5, 17.5) AND weight = [29.15, 65.7)
AND step count = [ , 55096.5) AND sedentary =
[2270.083333333335, 4964.916666666664) AND light =
[356.875, 1330.833333333335) AND. . .

14 3595

NSLV-C

IF step count = { VeryLow Low} THEN 0
IF step count = { High VeryHigh} THEN 1
IF age = { Low High VeryHigh} AND moderate = { Low
VeryHigh} THEN 1

3 145

OCEC-C

IF step count = 3 THEN 1
IF age = 2 AND sedentary = 1 THEN 1
IF sex = 0 AND vigorious = 1 THEN 1
IF sex = 0 AND step count = 1 AND light = 1 THEN 0
IF height = 2 AND ste. . .

62 6763

OIGA-C

IF 1.6699878586619132 < sex < 1.1982191470913168
AND 9.4429624945491 < age < 16.56761035848586 AND
67.72250192298611 < weight < 85.23233850170679 AND
1.859257826523217 < height . . .

30 14312

PGIRLA-C

IF sedentary = [3801.8675692824663, 5006.615988626676]
AND light = [1162.1170959360238, 2362.4439084883884]
AND moderate = [414.0390532025578,
474.55751714327096] AND vigorious . . .

19 4340

Ripper-C

IF step count<=60837.0 AND height<=1.58 THEN 0
IF step count<=60837.0 AND moderate<=119.0 THEN 0
IF step count<=60837.0 AND vigorious<=127.5 AND
height>1.64 AND moderate>123. . .

9 467

SLAVE2-C

IF age = { VeryLow Medium} AND weight = { Medium}
AND height = { High VeryHigh} AND step count = {
VeryLow Low} AND sedentary = { Medium} AND light
= { Low} AND moderate = { Low. . .

8 2098

SLAVEv0-C

IF step count = { VeryLow Low} THEN 0
IF age = { VeryLow Low Medium VeryHigh} AND height
= { VeryLow Low Medium VeryHigh} AND step count =
{ Medium} AND sedentary = { Medium} . . .

11 2814

The results indicate that GPR generates the shortest and most interpretable rules while
still achieving good classification performance. As a result, we decided to use the Wilcoxon
signed-rank test to statistically compare the results of GPR with those of other fuzzy rule-
based algorithms. Table 5 presents the results of the Wilcoxon signed-rank test. The results
of GPR and fuzzy rule-based algorithms for the MCC, AUC, and ACC measurements were
compared. X denotes a vector containing the mean values of the MCC (or AUC and ACC)
measure for the GPR algorithm, as calculated from ten random stratified folds for each
dataset. Yi denotes a vector containing the corresponding values for the ith algorithm tested
on exactly the same folds. The index i represents the name of the algorithm, where i belongs
to the set: {1R-C, C45-C, C45Rules-C, C45RulesSA-C, DT_GA-C, DT_Oblique-C, EACH-
C, Hider-C, NSLV-C, OCEC-C, OIGA-C, PGIRLA-C, Ripper-C, SLAVE2-C, SLAVEv0-C}.
Table 5 shows the probability (p-value) of a two-sided paired Wilcoxon test for the null
hypothesis H0 that the difference (X−Yi) follows a distribution with a zero median. The
two-sided p-value is calculated by doubling the most significant one-sided value.

According to the results in Table 5, for the MCC measure, the Wilcoxon signed-rank
test fails to reject the null hypothesis of no significant difference in the mean values of
MCC at the significance level of α = 0.05 when comparing GPR to the following nine
algorithms: C45-C, C45Rules-C, C45RulesSA-C, DT_GA-C, NSLV-C, OCEC-C, OIGA-C,
Ripper-C, and SLAVE2-C. However, according to the results in Table 5, the null hypothesis
can be rejected at the 5% level when comparing GPR to the following six algorithms: 1R-
C, DT_Oblique-C, EACH-C, Hider-C, PGIRLA-C, and SLAVEv0-C. Thus, the alternative
hypothesis H1 is accepted: there is a significant difference in the mean values of MCC for
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GPR compared to the 1R-C, DT_Oblique-C, EACH-C, Hider-C, PGIRLA-C, and SLAVEv0-
C algorithms. According to Wilcoxon’s rank test (Table 5) and the distribution of MCC
values as shown in Figure 1, from the perspective of the MCC criterion, GPR is worse
at the significance level of α = 0.05 than OIGA-C, and SLAVE2-C. For the same reasons,
GPR is better than the following six algorithms: 1R-C, DT_Oblique-C, EACH-C, Hider-C,
PGIRLA-C, and SLAVEv0-C.

Table 5. Comparison of fuzzy rule-based classifiers and GPR with Wilcoxon’s signed-rank test.

No. Algorithm MCC p-Value AUC p-Value ACC p-Value

1 1R-C 0.0000 0.0000 0.0000
2 C45-C 0.8475 0.6052 0.2622
3 C45Rules-C 0.8690 0.0899 0.0027
4 C45RulesSA-C 0.6243 0.0583 0.0123
5 DT GA-C 0.9265 0.6479 0.3322
6 DT Oblique-C 0.0026 0.0592 0.0000
7 EACH-C 0.0000 0.0000 0.0000
8 Hider-C 0.0056 0.0016 0.0022
9 NSLV-C 0.5980 0.8152 0.7802

10 OCEC-C 0.0725 0.8430 0.0000
11 OIGA-C 0.6399 0.3130 0.8192
12 PGIRLA-C 0.0003 0.0004 0.0001
13 Ripper-C 0.5355 0.4273 0.0000
14 SLAVE2-C 0.2653 0.2346 0.4621
15 SLAVEv0-C 0.0012 0.0014 0.0023

According to the results in Table 5, for the AUC measure, the Wilcoxon signed-rank
test fails to reject the null hypothesis of no significant difference in the mean values of AUC
at the significance level of α = 0.05 when comparing GPR to the following algorithms:
C45-C, C45Rules-C, C45RulesSA-C, DT_GA-C, DT_Oblique-C, NSLV-C, OCEC-C, OIGA-
C, Ripper-C, and SLAVE2-C. Considering the p-values for the AUC measure in Table 5
and the distribution of AUC values for each algorithm across all datasets and 10 cross-
validation folds shown in Figure 2 it can be concluded that GPR is worse than OCEC-C,
C45RulesSA-C, and OIGA-C, but better than 1R-C, EACH-C, Hider-C, PGIRLA-C, Ripper-C,
and SLAVEv0-C.

According to the results in Table 5, for the ACC measure, the Wilcoxon signed-rank test
fails to reject the null hypothesis of no significant difference in the mean values of ACC at
the significance level of α = 0.05 when comparing GPR to the following algorithms: C45-C,
DT_GA-C, NSLV-C, OIGA-C, and SLAVE2-C. Based on the p-values for the ACC measure
in Table 5 and the distributions of ACC values shown in Figure 3, GPR is superior at the
significance level of α = 0.05 to the following algorithms: 1R-C, C45Rules-C, C45RulesSA-C,
DT_Oblique-C, EACH-C, Hider-C, OCEC-C, PGIRLA-C, Ripper-C, and SLAVEv0-C.

7. Discussion and Conclusions

Machine learning can be used to improve the accuracy and objectivity of clinical
experts in clinical decision-support systems. Generated rules can help identify the most
likely diagnosis and show how individual attributes contributed to the decision. However,
it can be difficult to select the most relevant rules from the many that are generated,
especially when they contain numerous attributes and are difficult to interpret. It is
important to choose the appropriate algorithm for the task at hand to ensure the best
results. This paper has proposed a comparative study of fuzzy rule-based algorithms that
were applied to issues in the field of clinical decision support. The proposed comparison
begins with applying 16 different rule-based fuzzy logic algorithms: 1R-C, C45-C, C45Rules-
C, C45RulesSA-C, DT_GA-C, DT_Oblique-C, EACH-C, GPR, Hider-C, NSLV-C, OCEC-
C, OIGA-C, PGIRLA-C, Ripper-C, SLAVE2-C, SLAVEv0-C to 12 clinical datasets and
generation of rules. We calculated performance metrics such as MCC, ACC, AUC, Spe,
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Pre, Sen, and WM based on the results obtained and compared them. Based on the WM
criterion, which takes into account the results obtained from all metrics, the best algorithms
are OIGA-C, GPR, and NSLV-C, and the worst are EACH-C, 1R-C, and PGIRLA-C. Then,
we presented the MCC, ACC, and AUC values distribution for each algorithm in all
datasets. The average length of the rules in the dataset, the average number of rules in
the dataset, and the average number of attributes and unique attributes per rule were
also included in the comparison. We also presented rules generated for a Diabetes dataset
considering the number of rules, their length, and their syntax. Most interpretable rules
were generated by 1R, GPR and C45Rules-C. The longest and most complicated rules
were generated by DT_Oblique-C, OIGA-C and OCEC-C. In conclusion, algorithms that
achieve high classification results tend to generate very complex and lengthy rules (such
as OIGA-C), while algorithms that produce simpler rules often have lower classification
results (like 1R-C).

The research indicates that GPR generates the shortest and most interpretable rules
while still achieving good classification performance. As a result, we decided to test GPR
statistically using the Wilcoxon signed-rank test. It was performed to compare the means
of every rule-based fuzzy logic classifier and GPR. According to the results of this test and
the distribution of ACC values for each rule-based fuzzy logic algorithm in all datasets, the
GPR algorithm outperformed at the significance level of α = 0.05 the 1R-C, C45Rules-C,
C45RulesSA-C, DT_Oblique-C, EACH-C, Hider-C, OCEC-C, PG1RLA-C, Ripper-C, and
SLAVEvO-C algorithms. Considering all the results, we can conclude that GPR can be used
successfully for generating rules from medical data.

However, theoretical results, particularly those related to the “no free lunch” theo-
rem [65], state that in the general case no algorithm can outperform every other algorithm
in all possible tasks. In other words, there is no one-size-fits-all solution to all problems. The
GPR algorithm also has some drawbacks. For example, it uses a genetic algorithm to gener-
ate metarules, which can be computationally intensive and slow to converge, especially for
large and complex problems. Furthermore, GPR requires the normalization of continuous
input data to the interval [0, 1], encoding of all data (continuous and categorical), and the
adoption of a threshold for the discriminant function (with a default value of 0.5). The
selection of a fitting function for the evolutionary algorithm (such as accuracy or sensitivity)
is also required.

This study has a few limitations that should be considered when interpreting the
results. First, we did not conduct a memory requirement test or measure run time. Second,
we use the default values for the hyperparameters, which could potentially be adjusted to
improve performance. Furthermore, the performance of the algorithms was tested only
on medical datasets with a relatively small number of records, so the results may not be
representative for larger datasets.

One potential area for future research is to conduct further research on the impact of
memory requirements and run time. Another idea for future research is to include a greater
number of algorithms and real-world datasets obtained through cooperation with various
medical organizations. To make our findings more accessible and user-friendly, we also
intend to develop a user interface based on our open-source code. This interface will enable
medical professionals to easily generate rules for specific medical problems and display
them in a unified way, using the most appropriate algorithm for the task at hand. Through
these efforts, we hope to enhance the utility and impact of our work in the field of medical
decision-making.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC accuracy
ANA average number of attributes per rule in dataset
ANC average number of characters per rule in dataset
ANR average number of rules on dataset
ANUA average number of unique attributes per rule in dataset
AUC area under ROC curve
C45RulesSA-C C4.5Rules simulated annealing version
DT_GA-C hybrid decision tree-genetic algorithm
DT_Oblique-C oblique decision tree with evolutionary learning
EACH-C exemplar-aided constructor of hyperrectangles
FN false negatives
FP false positives
FPR false positive rate
FRBS fuzzy rule-based systems
GPR classifier based on fuzzy logic and gene expression programming
Hider-C hierarchical decision rules
KNN k-nearest neighbors
MCC Matthews correlation coefficient
MDSS medical decision support systems
NSLV-C New SLAVE
OCEC-C organizational co-evolutionary algorithm for classification
OIGA-C ordered incremental genetic algorithm
PGIRLA-C Pittsburgh genetic interval rule learning algorithm
Pre precision
RBS rule-based systems
Ripper-C repeated incremental pruning to produce error reduction
Sen sensitivity
SLAVEv0-C structural learning algorithm in a vague environment
SVM support vector machine
TN true negatives
TP true positives
WDBC Wisconsin diagnosis breast cancer
WM weighted metric
Wisconsin Wisconsin breast cancer (original)
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