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Abstract: Data-driven pose estimation methods often assume equal distributions between training
and test data. However, in reality, this assumption does not always hold true, leading to significant
performance degradation due to distribution mismatches. In this study, our objective is to enhance
the cross-domain robustness of multi-view, multi-person 3D pose estimation. We tackle the domain
shift challenge through three key approaches: (1) A domain adaptation component is introduced to
improve estimation accuracy for specific target domains. (2) By incorporating a dropout mechanism,
we train a more reliable model tailored to the target domain. (3) Transferable Parameter Learning
is employed to retain crucial parameters for learning domain-invariant data. The foundation for
these approaches lies in the H-divergence theory and the lottery ticket hypothesis, which are realized
through adversarial training by learning domain classifiers. Our proposed methodology is evaluated
using three datasets: Panoptic, Shelf, and Campus, allowing us to assess its efficacy in address-
ing domain shifts in multi-view, multi-person pose estimation. Both qualitative and quantitative
experiments demonstrate that our algorithm performs well in two different domain shift scenarios.

Keywords: domain adaptation; 3D pose estimation; transfer learning

1. Introduction

Due to the numerous real-world applications of 3D multi-view multi-person human
pose estimation, such as human-computer interaction [1], virtual and augmented real-
ity [2,3], etc., the field of computer vision has seen significant research in this area [4–7],
which has been driven by deep neural networks and large-scale human-annotated
datasets [8,9]. These multi-view pose estimation methods have achieved excellent per-
formance on the benchmark datasets [8,9], but still face challenges because of the wide
variation in viewpoints, personal appearance, backgrounds, illumination, image quality,
and so on. Due to unavoidable domain shifts, pose estimators developed for one particular
domain (i.e., the source domain) may not generalize well to novel testing domains (i.e.,
the target domains). For example, a 3D pose estimator trained on the Panoptic [9] dataset
suffers a severe performance drop when evaluated on the Campus [10] and Shelf [10]
datasets. In Figure 1, which shows several datasets used for 3D human pose estimation, we
can see a considerable domain shift.

Even if more training data from various domains could solve this problem, it may be
impractical due to the complexity of real-world scenarios and the high cost of 3D annotation.
As a result, methods for successfully transferring a 3D pose estimator trained on a labeled
source domain to a new unlabeled target domain are in high demand.

Even if gathering more training data from diverse domains could solve this issue, it
may be impractical due to the complexity of real-world scenarios and the high expense
of 3D annotation. For this reason, there is a great need for methods that can successfully
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transfer a 3D pose estimator trained on a labeled source domain to a new unlabeled
target domain.

Figure 1. Depiction of various datasets utilized for multi-view, multi-person 3D pose estimation.
Image examples are sourced from Panoptic [9], Campus [10], and Shelf [10], respectively. While all
datasets feature scenes with clean backgrounds, they differ in aspects such as clothing, resolution,
lighting, body size, and more. These visual disparities among the datasets complicate the task of
applying pose estimation models across different domains.

Our research focuses on domain adaptation for multi-view, multi-person 3D pose
estimation with covariate shift. We develop an end-to-end deep learning model called
“Domain Adaptive VoxelPose” that is based on the cutting-edge VoxelPose model [11]. An
unsupervised domain adaptation case occurs when full supervision is available in the
source domain but none in the target domain. As a result, there should be no additional
annotation costs in the target domain to obtain better 3D pose estimation.

We add three elements to the VoxelPose model to minimize the domain divergence
between two domains in order to correct the domain shift. First, we train a domain clas-
sifier [12] using adversarial training to learn domain-invariant, reliable features. Second,
we apply dropout to multiple discriminators by missing or dropping out each discrimina-
tor’s feedback with a specific probability at the end of each batch. This makes the feature
extractor more domain-invariant by requiring its output to satisfy a dynamic ensemble
of discriminators as opposed to a singular discriminator. Thirdly, we present Transfer-
able Parameter Learning (TransPar) [13] to eliminate the side effects of domain-specific
information and enhance domain-invariant learning. TransPar divides all parameters into
two categories: transferable parameters and non-transferable parameters. Consequently,
TransPar provides distinct update rules for these two categories of parameters.

In conclusion, the following are the principal contributions of our work: (1) We provide
domain adaptation components to reduce domain disparity between the selected target
domain and the respective source domain. (2) To train a more domain-invariant feature
extractor, we propose a novel method that applies an ensemble of dynamic dropout domain
discriminators. (3) We employ Transferable Parameter Learning (TransPar) to reduce the
negative effects of domain-specific knowledge throughout the learning process as well as to
enhance the retention of domain-independent knowledge. (4) The suggested components
are incorporated into the VoxelPose model, and the resulting system is capable of end-to-
end training. Our method was evaluated on three datasets, and the results suggested that it
could enhance the accuracy of cross-domain multi-view multi-person 3D pose estimation.

The paper is organized as follows. Section 2 discusses related works of the methods,
including 3D human pose estimation and unsupervised domain adaptation. Section 3
introduces the main baseline, theory, hypothesis, and datasets used in the paper. Section 4
details the proposed methodology for unsupervised multi-view, multi-person 3D pose
estimation. Section 5 verifies the feasibility of the proposed model. Section 6 concludes the
paper, points out the limitations of the research, and proposes some future work.

2. Related Work
2.1. 3D Human Pose Estimation

3D pose estimation from monocular inputs [14–22] presents an ill-posed problem,
as multiple 3D predictions can correspond to the same 2D projection. Multi-view ap-
proaches have been developed to alleviate such projective ambiguity. Some methods
aggregate data from multiple cameras, utilizing camera settings to identify matching
epipolar lines between various views [23]. Additionally, existing camera parameters can
be leveraged to generalize new camera setups not present in the training data [24,25].
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However, the complexity increases significantly when approaching multi-person scenarios.
For multi-person tasks, current approaches mostly use a multi-stage pipeline, including
reconstruction-based [10,26–30], volumetric paradigms [11,31], and regression-based ap-
proaches [6]. Using a combination of geometric and appearance signals as well as the
cycle-consistency constraint, [26] matches 2D postures across several views. Ref. [11] pro-
poses a two-stage volumetric paradigm that circumvents the cross-view matching problem,
thereby decreasing the impact of erroneously created cross-view correspondences. Ref. [6]
shows skeleton joints as learnable query embeddings and lets them gradually attend to
and reason over the multi-view information from the input images to directly regress the
actual 3D joint location.

Nevertheless, those efforts focused on the traditional context without taking domain
adaptation into account. In this work, we adopt VoxelPose [11] as our foundational pose
estimator and augment its generalization capabilities for multi-view, multi-person 3D pose
estimation through domain adaptation.

2.2. Unsupervised Domain Adaptation

Deep learning algorithms are impacted by the domain-shift problem [32–34], which
manifests as networks trained on one distribution of data performing poorly on another
distribution. This issue typically arises when models are deployed in circumstances that
are marginally different from those in the training set. The data from various domains
is aligned so that the resulting models have strong generalization performance, which is
how unsupervised domain adaptation approaches are typically used to solve this problem.
Existing theoretical works can be broadly classified into two types: distance measurement
methods and adversarial learning methods. (1) Method based on distance measurement.
By reducing the Maximum Mean Discrepancy [35,36], investigate domain-invariant feature
learning. (2) Method based on adversarial learning. Inspired by GANs [37], adversarial
learning was used to align feature distributions across several domains on various 2D vision
tasks [12,38–41]. Applying dropout to each discriminator’s feedback [42] allows the genera-
tor to satisfy a dynamic ensemble of discriminators rather than a static single discriminator,
which motivates us to include dropout mechanisms in our domain adaptation component.

Additionally, [43,44] attempts to translate images to close the domain gap at the pixel
level. To lessen the H∆H discrepancy, [45] adopted a two-branch classifier. Refs. [46,47]
use curriculum learning [48] and sort cases based on how hard it is for them to realize
the local sample-level curriculum. Ref. [49] suggests a way of gradually extending the
feature norm to close the domain gap. Ref. [13] separates the parameters of a deep
unsupervised domain adaptive network into two sections to reduce the impact of domain-
specific information, as opposed to previous approaches that depended on learning domain-
invariant feature representations. Pose estimators based on volumetric paradigms suffer
from computation-intensive 3D convolutions, including many domain-specific parameters.
It is suitable to use this Transferable Parameter Learning technique to better utilize domain-
invariant parameters.

On par with the developments on domain adaptation for image recognition tasks,
some recent works also aim to address the domain shift in regression tasks [31,50–54].

However, despite extensive research on the multi-view, multi-person 3D pose esti-
mation task [6,26,55–59], there are very few jobs that focus on the domain shift problem
of multi-view multi-person 3D pose estimation. We propose a novel adversarial training
pipeline for domain-adaptive 3D human pose estimation that achieves superior perfor-
mance in evaluated settings.

3. Preliminaries
3.1. VoxelPose

We present a brief overview of the VoxelPose model, which serves as the baseline
for our research. VoxelPose projects 2D joint heatmaps from various viewpoints into a
voxelized 3D space, enabling the direct detection and prediction of 3D human poses. The
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process begins with the estimation of 2D heatmaps for each view, encoding the per-pixel
likelihood of all joints. Features from all camera views are aggregated in the 3D voxel space
and processed by the Cuboid Proposal Network to localize individuals. This projection
into a common 3D space results in a more comprehensive feature volume, allowing for an
accurate estimation of 3D joint positions. Furthermore, the Pose Regression Network is
used to estimate a full 3D pose for each proposal. All camera views’ noisy and incomplete
information is warped to a common 3D space to create a feature volume that may be used
for 3D estimation.

3.2. Fundamental Conceptual Framework

TheH∆H-Divergence is an influential construct within unsupervised domain adapta-
tion (UDA). In UDA scenarios, we are presented with a labeled source domain, Ŝ , and an
unlabeled target domain, T̂ . The overarching aim is to develop a hypothesis capable of
proficiently predicting within the target domain, notwithstanding the lack of its labels.

The groundwork for understanding this theory lies in the theorem titled “Bound
with Disparity” [34]. According to this theorem, given a symmetric loss function ` that
adheres to the triangle inequality, the disparity between any two hypotheses h and h′ on a
distribution D can be defined as:

εD(h, h′) = E(x,y)∼D [`(h(x), h′(x))] (1)

Subsequently, the target risk εT (h) can be constrained by:

εT (h) ≤ εS (h) + [εS (h∗) + εT (h∗)] + |εS (h, h∗)− εT (h, h∗)| (2)

Here, h∗ denotes the optimal joint hypothesis.
Building upon this premise, the essence of theH∆H-Divergence is to provide an upper

boundary for the disparity difference. The core merit of this divergence, as highlighted in
our work, is its capability to be estimated using finite, unlabeled samples from both the
source and target domains. However, the direct computation of this divergence is notably
intricate and challenging to optimize. Thus, it is approximated by training a domain
discriminator D that separates the source and target samples. To accomplish this, we
employ a dropout discriminator, which not only prevents mode collapse but also enhances
the robustness of our algorithm.

The lottery ticket hypothesis refers to a hypothesis in deep learning that suggests
finding sparse subnetworks, known as “winning tickets”, within over-parameterized
neural networks. These winning tickets can achieve comparable or even better performance
than the original large network when trained in isolation under suitable conditions.

In the context of domain adaptation, the lottery ticket hypothesis can be applied to
transfer learning scenarios. By identifying winning tickets or subnetworks that generalize
well to both the source and target domains, we can effectively adapt the model from the
source domain to the target domain. This can help in mitigating the issue of distribution
shift between the two domains and improving the performance of the model on the
target domain with limited labeled data. This is also the theoretical basis for transferable
parameter learning.

3.3. Dataset

As shown in Table 1, our evaluation employs three datasets:
Campus [10]: It is a dataset of three people conversing with one another in the

outdoor environment, recorded by three calibrated cameras. To assess the precision of
the 3D location of the body parts, we utilize the percentage of correctly estimated parts
(3D PCP) [10]. We adjust our pose estimator using the dataset’s unlabeled images as the
target domain.

Shelf [10]: The Shelf Dataset includes a scenario of ordinary social interactions. In
contrast to Campus, this is a more complex dataset, which consists of four individuals
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deconstructing a shelf at close range. Around them, there are five calibrated cameras, but
each view is severely obstructed. 3D PCP [10] is also used as the assessment metric. This
dataset’s unlabeled images serve as our target domain.

CMU Panoptic [9]: This dataset was recorded in a lab setting, which contains multiple
people engaging in social activities. With hundreds of cameras, it is able to obtain com-
pelling motion capture findings. It is a sizable dataset of social interactions with numerous
and various natural interactions. We use it as our source domain.

Table 1. Overview of the datasets used in our study, emphasizing their characteristics and intended
application domains.

Datasets Duration Views Characteristics Application

Campus 3–4 min 3 3 people on campus grounds. Target Domain
Shelf 6–7 min 5 4 people disassembling a shelf Target Domain
Panoptic 60 h 30 Lab-based multi-player interactions Source Domain

4. Method: Domain Adaptation for Multi-View Multi-Person 3D Pose Estimation

In this section, we detail our proposed methodology for supervised multi-view multi-
person 3D pose estimation. In supervised multi-view multi-person 3D pose estimation,
we have n labeled samples {(xi, yi)}

n
i=1 from X × YK , where X ∈ RH×W×3 represents

the input space, Y ∈ R3 the output space and K the number of keypoints for each input.
The samples randomly selected from distribution D are denoted as D̂. The objective is to
identify a regressor f ∈ F that yields the lowest error rate errD = E(x,y)∼DL( f (x), y) on
D, where L is a loss function we shall explain later. In unsupervised domain adaptation,
there exists a labeled source domain P̂ =

{(
xs

i , ys
i
)}n

i=1 and an unlabeled target domain
Q̂ =

{
xt

i
}m

i=1. The objective is to minimize errQ.

4.1. Domain Adaptation Component

In the VoxelPose model, the feature representation refers to the feature map outputs
of the base convolutional layers (as depicted by the green parallelogram in Figure 2).
Specifically, we train a domain classifier to mitigate the domain distribution discrepancy on
feature maps. The domain classifier predicts the domain label for each feature map, which
corresponds to input images Ii from the source or target domain.

This decision has two advantages: (1) Aligning representations at the image level often
reduces the shift caused by variations in the images, such as image style, human body scale,
illumination, etc. (2) The batch size is typically quite small while training a pose estimation
network due to the utilization of high-resolution input. This approach allows more data to
be employed in training the domain classifier.

Let’s represent the domain label of the i-th training image by Hi, where Hi = 0 for the
source domain and Hi = 1 for the target domain. The feature map of the i-th image after the
base 2D convolutional layers is denoted by Fi. Using the cross entropy loss and denoting
the output of the domain classifier D(Fi), the domain adaptation loss can be written as:

LD = −∑
i
[Hi log D(Fi) + (1− Hi) log(1− D(Fi))] (3)

To align the domain distributions, we need to simultaneously optimize the parameters
of the base 2D network to maximize the above domain classification loss and minimize
the keypoint regression loss. In order to optimize the base network used to maximize the
domain classifier, we adopt the gradient reverse layer [12], as opposed to regular gradient
descent. To maximize the domain classifier loss, the gradient must first pass through a
gradient reverse layer, where its sign is inverted.
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Figure 2. An overview of our Domain Adaptive VoxelPose model. An adversarial training method
is used to train the domain classifier. The selection of certain discriminators is determined by a
probability δk. The network performs a robust positive update for the transferable parameters and
performs a negative update for the untransferable parameters.

4.2. Dropout Domain Adaptation Component

In order to force the pose estimator to learn from a dynamic ensemble of discriminators,
we propose the integration of adversarial feedback dropout in adversarial networks. The
feedback of each discriminator is randomly excluded from the ensemble with a specific
probability d at the end of each batch. This indicates that the pose estimator considers only
the loss of the remaining discriminators when updating its parameters.

Figure 2 illustrates our proposed framework, including our initial modification to
the adversarial training loss function L, as shown in Equation (2). In this equation, δk
is a Bernoulli variable (δk ∼ Bern(1− d)), and {Dk} is the set of K total discriminators.
When δk = 1, with P(δk = 1) = 1− d, the gradients derived from the loss of the supplied
discriminator {Dk}, are exclusively employed to produce the final gradient updates for the
pose estimator. Otherwise, this discrimination-related information is ignored:

LD = −∑
i

K

∑
k=1

δk[Hi log Dk(Fi) + (1− Hi) log(1− Dk(Fi))] (4)

Each discriminator trains independently, i.e., is unaware of the others, since no changes
are made to their individual gradient updates. Figure 3 depicts the proposed solution’s
algorithm in detail.
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Figure 3. The original adversarial framework (a) is extended to incorporate multiple adversaries. In
this enhancement, certain discriminators are probabilistically omitted (b), resulting in only a random
subset of feedback (depicted by the arrows) being utilized by the feature extractor at the end of
each batch.

4.3. Transferable Parameter Learning Component

The Transferable Parameter Learning Component is designed to distinguish between
transferable and non-transferable parameters, enabling robust unsupervised domain adap-
tation. To minimize the model’s ability to retain domain-specific information, distinct
updating rules are used for different types of parameters [13]. Consider a parameter, de-
noted by wi(t) ∈ W∗(t), its gradient is ∇LD(wi(t)) at the t-th iteration. The identifying
criterion is defined by

Ti(t) = |∇LD(wi(t))×wi(t)|, i ∈ [m∗] (5)

where m∗ is the parameter number of a module in a deep unsupervised domain adaptation
network. If the value of Ti(t) is large, wi(t) is viewed as a transferable parameter. On the
contrary, if the value of Ti(t) is small, e.g., zero or very close to zero, wi(t) is regarded as an
untransferable parameter. It is not important for fitting domain-invariant information. If
we update it, it will tend to fit domain-specific information. By utilizing objective function
gradients and weight decay on the transferable parametersW tr, a robust positive update
is executed.

W tr(t + 1)→W r(t)− η

(
∂
(
LD
(
W tr(t)

))
∂W r∗(t)

− λW rr(t)

)
(6)

Furthermore, the non-transferable parameters Wutr, which tend to over-adapt to
domain-specific details, are negatively updated.

Wutr(t + 1)→Wutr(t)− η
(
λWutr

∗ (t)
)

(7)

where η > 0 refers to the learning rate andW(t) stands for the set of parameters at the
t-th iteration. The term λW(t) refers to the common weight decay method, which can
avoid overfitting by keeping the parameters from being too big. λ is the weight decay
coefficient. This method for domain adaptation is straightforward and independent of
other approaches.

4.4. Network Overview

Figure 2 offers a detailed portrayal of our Domain Adaptive VoxelPose model, an en-
hancement of the baseline VoxelPose framework with three added components. Primarily,
we have incorporated a domain classifier subsequent to the final 2D base convolution layer.
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Additionally, we have integrated a dropout mechanism that probabilistically neglects the
feedback from each discriminator at the end of every batch. Finally, we apply transferable
parameter learning to enforce distinct update rules for transferable and non-transferable
parameters. The cumulative loss incurred during the training of our proposed network
encompasses both the human pose estimation segment as well as the domain adaptation
segment. Algorithm 1 provides a comprehensive overview of our approach, which opti-
mizes two kinds of parameters using distinct update rules. It is important to note that our
method preserves the architecture of the existing multi-view, multi-person 3D estimation
networks. Consequently, both the time complexity and space complexity remain consistent
with those of the original networks.

L = Lhm + λ(LD) (8)

Algorithm 1: Voxelpose with dropout discriminator and transfer parameter
learning

Input: Camera Views of source domain, Camera views of target domain
Output: 3D human poses for all cuboids
begin

Initialize a 3D voxel space, V
foreach camera view in Camera Views do

Estimate 2D heatmap, Hs, for the source domain
Estimate 2D heatmap, Ht, for the target domain
Domain loss = Dropout Discriminator (Hs or Ht)
Project Hs into the 3D voxel space, V

Aggregate features from all views in V
Cuboids = Cuboid Proposal Network(V)
foreach cuboid in Cuboids do

Get 3D pose using the Pose Regression Network
Detection loss = mpjpe(3D human poses for all cuboids, ground truth)
/*identify transferable parameters*/
Divide W into Wtr and Wutr with Equation (5)
Update Wtrf, Wtrc, and Wtrd with Equation (6)
Update Wutr, Wutr, and Wutrd with Equation (7)
Return 3D human poses for all cuboids

5. Experiments

In this section, we verify the feasibility of the proposed Domain Adaptive VoxelPose
model. Utilizing the Panoptic [9] dataset as the source domain, the performance of the tech-
nique is examined in two distinct scenarios of domain shift: (1) An outdoor environment,
where the Campus [10] test dataset captures three individuals interacting outdoors through
three calibrated cameras. (2) An indoor social interaction setting, where the Shelf [10] test
dataset, which is more complex, features four individuals closely deconstructing a shelf.
There are five calibrated cameras surrounding them, but each view has severe occlusion.
Due to differences in annotation formats between the source and target domains, a conver-
sion measure is employed to align the model’s output with the target domain annotations
(e.g., in a model trained on Panoptic outputs, the position of the nose can be viewed as the
head-center position of the Campus dataset).

5.1. Experiment Setup

In our experiments, we use the unsupervised domain adaptation approach. The
training set is divided into two parts: the source training set, which includes photos and
their pose annotations, and the target training set, which only includes unlabeled images.
In order to demonstrate the efficacy of the proposed approach, we present not only the
conclusive results of our model but also the findings obtained by using each component.
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This is done for two common domain shift scenarios. We use the original VoxelPose model
as a baseline. It was trained using training data from the source domain without taking
domain adaptation into account. To assess the accuracy of the estimated 3D poses, we
present the Percentage of Correct Parts (PCP3D) across all tests. We use Mean Per Joint
Position Error (MPJPE) on the training set.

We conducted our experiments on a computer equipped with an NVIDIA Tesla V100
GPU and implemented our algorithm using PyTorch. For the task of multi-view image
feature extraction, we employed a pose estimation model built upon ResNet-50 [11]. The
backbone of this model was specifically initialized using weights pre-trained on the COCO
dataset. During the model training phase, we utilized the AdamW optimizer [60] with an
initial learning rate of 0.001, a batch size of 4, and a total of 20 training epochs. The 2D
backbone and the remaining components of the model were trained jointly. Each training
batch consisted of two images: one from the source domain and another from the target
domain. For training on the Panoptic dataset, which serves as our source domain, we
employed three camera views (03, 12, and 23).

5.2. Outdoor Environment Experimental Results

With the rapid advancement of 3D human pose estimation, the motion capture (mo-
cap) system is emerging as an effective means to augment datasets. However, the Mocap
system, originally designed for laboratory use, poses challenges for implementation in
natural settings. A discernible visual disparity exists between laboratory data and outdoor
scenarios, often leading to a performance gap between models trained in these different
environments. Our initial experiment seeks to ascertain the applicability of the proposed
method in this context.

Results: The results of the different methods are summarized in Table 2. Specifically,
using the dropout domain adaptation component alone, we achieve a +5.9% performance
gain over VoxelPose. Using the dropout domain adaptation component embedded with
transfer parameter learning yields an improvement of 6.9%, validating our hypothesis
regarding the necessity of reducing domain shifts. This demonstrates that the domain shift
between a lab and an outdoor environment can be effectively reduced by the components
we proposed.

Table 2. Quantitative analysis of adaptation results on Campus as a validation set, models are trained
on the Panoptic training set. Ours(a) represents the VoxelPose method solely augmented with the
domain adaptation module. Ours(b) builds upon the Ours(a) approach by incorporating a dropout
mechanism into the discriminator. Ours(c) extends the Ours(a) method by integrating the Transferable
Parameter Learning mechanism. Ours(d) represents the optimal approach that amalgamates both the
dropout discriminator method and the Transferable Parameter Learning mechanism.

P → C DA Dropout DA TranPar Actor 1 Actor 2 Actor 3 Average

VoxelPose 78.8 82.8 67.4 76.3
Ours(a) √ 78.6 86.8 79.6 81.7
Ours(b) √ √ 79.3 85.5 78.2 82.2
Ours(c) √ √ 84.3 86.0 78.0 82.8
Ours(d) √ √ √ 85.1 86.3 78.4 83.2

Note: All values are in PCP3D.

As illustrated in Figure 4, the qualitative metrics reveal that our method effectively
minimizes false detections. Table 3 demonstrates a significant improvement in performance
for joint locations with substantial variations, such as the lower arms and lower legs. We
evaluated the generalization performance of our method in comparison to other domain
adaptation techniques applied to this scenario, and the results are detailed in Table 4. Based
on the results presented in Figure 5, a qualitative comparison is provided between our
proposed method and other state-of-the-art algorithms. The results clearly demonstrate
that our algorithm exhibits enhanced robustness in cross-domain scenarios.
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Figure 4. Estimated 3D poses and their corresponding images in an outdoor environment (Campus
Dataset). Different colors represent different people detected. The penultimate column is the output
result of the original voxelpose, which has misestimated the person. The last column shows the
estimated 3D poses by our algorithm.

Table 3. Quantitative analysis of the algorithm’s performance improvement on different keypoints,
using Campus as a validation set.

Methods Voxelpose Ours(d)
Bone Group Actor 1 Actor 2 Actor 3 Average Actor 1 Actor 2 Actor 3 Average

Head 90.8 68.5 71.4 76.9 91.8 69.7 83.8 81.8
Torso 89.7 95.1 74.7 86.5 90.5 96.2 89.7 92.1

Upper arms 73.5 92.3 71.2 79 82.5 93.1 73.8 83.1
Lower arms 65.9 73.4 58.7 66 78.5 82.3 73.7 78.2
Upper legs 86 92.3 65.1 81.1 85.3 93.4 75.8 84.8
Lower legs 66.9 75.1 63.3 68.4 81.8 83.1 73.3 79.4

Total 78.8 82.8 67.4 76.3 85.1 86.3 78.4 83.2
Note: All values are in PCP3D.

Table 4. The Average Percentage of Correct Parts(PCP3D) of Campus and Shelf dataset. Ours(a,b,c,d)
represents the different settings of our algorithm, which is explained in Table 2.

Methods P → C P → S

VoxelPose [11] 76.3 93.4
VoxelPose-DDC [61] 76.4 90.1
VoxelPose-JAN [62] 81.1 91.2
VoxelPose-DAN [36] 78.7 88.9

VoxelPose-DeepCoral [63] 80.3 87.8
VoxelPose-MMD [61] 74.6 82.5
VoxelPose-RSD [52] 82.2 95.3

Ours(a) 81.7 95.0
Ours(b) 82.8 95.5
Ours(c) 82.5 94.9
Ours(d) 83.2 96.1

Note: All values are in PCP3D.

Figure 5. Cross-domain qualitative comparison between our method and other state-of-the-art
multi-view multi-person 3D pose estimation algorithms. The evaluated methods were trained on the
Panoptic dataset and validated on the Campus dataset. Different colors represent different people
detected, with red indicating the ground truth.

5.3. Indoor Social Interaction Environment Experimental Results

Despite considerable advancements in multi-person 3D human pose estimation, nu-
merous challenging scenarios persist, including obscured keypoints, invisible keypoints,
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and crowded backgrounds that hinder accurate keypoint localization. For a generalized 3D
human position estimation system, precise operation in diverse social interaction environ-
ments is vital. This subsection examines the efficacy of 3D pose estimation in the context of
group interactions.

Results: Our findings, as well as those of other baselines, are included in Table 5.
Similar observations apply in the outdoor environment. When all the parts are put together,
our complete adaptive Voxelpose model is 2.7% better than the baseline Voxelpose model.
In addition, we can see that the improvement generalizes well across different actors, indi-
cating that the proposed method can also reduce domain discrepancies between different
individuals.

Table 5. Quantitative analysis of adaptation results on Shelf as a validation set, models are trained
on the Panoptic training set.

P→ S DA Dropout DA TranPar Actor 1 Actor 2 Actor 3 Average

VoxelPose 93.2 90.5 96.5 93.4
Ours(a) √ 95.1 92.4 97.4 95.0
Ours(b) √ √ 95.2 94.5 96.2 95.6
Ours(c) √ √ 96.0 93.8 97.1 95.1
Ours(d) √ √ √ 96.5 94.1 97.7 96.1

Note: All values are in PCP3D.

Figure 6 illustrates the qualitative results of our algorithm, highlighting its capability
to not only avoid false detection but also to yield more realistic and natural pose estimation
outcomes. In Table 6, notable improvements are evident in joint localizations, particularly
for the lower arms and lower legs. In Table 4, we present the results, comparing the
generalization performance of our method with other unsupervised domain adaptation
techniques applied to this scenario. In Figure 7, we compared our proposed method with
other advanced algorithms and found that our approach performs better in cross-domain
scenarios. These results indicate that our algorithm is more robust than others.

In Table 7, we evaluate the generalization performance of several state-of-the-art
algorithms, including MvP [6], Faster VoxelPose [31], and TesseTrack [57], as detailed in
Section 2.2 of the article. Our results demonstrate that in cross-domain scenarios, our
method outperforms these other approaches while maintaining the model’s performance
on the original dataset.

Figure 6. Estimated 3D poses and their corresponding images in an indoor social interaction environ-
ment (Shelf Dataset). The penultimate column is the output result of the original voxelpose, which
has misestimated person. The last column shows the estimated 3D poses by our algorithm.

Table 6. Quantitative analysis of the algorithm’s performance improvement on different keypoints,
using Shelf as a validation set.

Methods Voxelpose Ours(d)
Bone Group Actor 1 Actor 2 Actor 3 Average Actor 1 Actor 2 Actor 3 Average

Head 78.2 94.6 92.1 88.3 87.2 95.3 94.3 92.3
Torso 98.5 96.1 99 97.9 99.5 96.6 99 98.4

Upper arms 94.3 93.2 96.3 94.6 95.6 93.9 96.8 95.4
Lower arms 93.5 64.9 94 84.1 98.5 81.3 97.2 92.3
Upper legs 96.7 97.4 98.7 97.6 98.3 97.4 98.7 98.1
Lower legs 97.9 96.6 98.5 97.7 99.9 100 100 100

Total 93.2 90.5 96.4 93.4 96.5 94.1 97.7 96.1
Note: All values are in PCP3D.
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Figure 7. Cross-domain qualitative comparison between our method and other state-of-the-art
multi-view multi-person 3D pose estimation algorithms in the Shelf dataset. the evaluated methods
were trained on the Panoptic dataset and validated on the Shelf dataset.

Table 7. Quantitative Comparative Experiments with other State-of-the-Art Methods in Cross-
Domain Scenarios. P represents the original performance of Other State-of-the-Art Methods on the
panoptic dataset. For our approach, the performance metric of P signifies the retained performance on
the original panoptic dataset after undergoing domain adaptation processes. The unit of measurement
for P is MPJPE, while others are measured in PCP3D.

Methods P → C P → S P

MvP [6] 80.3 92.6 15.8
Faster Voxelpose [31] 77.1 94.0 18.26

TesseTrack [57] 79.8 92.6 18.7
Ours(a) 81.7 95.0 20.61
Ours(b) 82.8 95.5 19.88
Ours(c) 82.5 94.9 19.56
Ours(d) 83.2 96.1 19.37

5.4. Ablation Studies and Discussions
5.4.1. Domain Adaptation Component

The training process of the adversarial domain adaptation component is characterized
as a zero-sum, non-cooperative contest between the base feature extractor and the domain
discriminator. As the domain discriminator learns to distinguish between source and target
domain features, the feature extractor simultaneously learns domain-invariant feature
representation to confound the domain discriminator, thereby enhancing cross-domain
adaptation capability.

Due to the single-adversarial method’s limited distribution alignment ability, the
improvement is small and erratic. Mode collapse, as a consequence of overfitting to the
feedback of a single discriminator, shows up as difficulties with convergence.

5.4.2. Dropout Domain Adaptation Component

The multi-adversarial domain adaptation method has been empirically validated as
an efficacious technique for improving domain adaptation capabilities [41,64]. This method
involves dynamically altering the adversarial ensemble at each batch, stimulating the
generator to cultivate domain-invariant representations that can deceive the remaining
discriminators. The dynamic alteration not only encourages the generator to master domain-
invariant representation but also amplifies the probability of successfully misleading any
residual discriminators. By aligning the feature representation across diverse feature
dimensions, complementary features are learned. This alignment facilitates a more efficient
reduction of domain discrepancies with unlabeled target data, thereby bolstering the
model’s generalization prowess. The efficacy of the dropout domain adaptive component
is further illustrated in Figure 8.
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Figure 8. An illustration of the Average Percentage of Correct Parts (PCP3D) on the Campus and
Shelf datasets, with the Dropout Rate (d) plotted on the horizontal axis and PCP3D on the vertical
axis. The methods are distinguished by color: the red line for the DA baseline method, the yellow
line for the dropout DA method, and the blue line for our proposed full method with TransPar.

Figure 8 illustrates the relationship between the dropout rate and the generalization
ability of the feature representation. This figure emphasizes that selecting an excessively
large or small ratio for Parameter d can complicate training. By striving to enhance the
generalizability of the feature representations created by the base feature extractor, this
type of dropout can be seen as a form of regularization. We found that employing any
dropout rate within the range (0 < d ≤ 1) consistently outperformed a static ensemble of
adversaries (d = 0). Specifically, utilizing a moderate dropout rate often led to superior
results, as previously noted in [42,65].

5.4.3. Transferable Parameter Learning Component

The central concept of the aforementioned components is to acquire transferable
feature representations by confusing a domain discriminator in a two-player game, leading
to state-of-the-art results in various visual tasks [12,41,64]. Deep Unsupervised Domain
Adaptation (UDA) research expects precise feature representations, and insights derived
from the source domain can be effectively applied to the target domain. However, during
the learning process of domain-invariant features and source hypotheses, unnecessary
domain-specific information is inevitably incorporated, hindering generalization to the
target domain. The lottery ticket hypothesis [66] reveals that only certain parameters are
crucial for generalization. Thus, by eliminating the adverse effects of domain-specific
information prior to testing, deep UDA networks can become more resilient and adaptable.

Voxelpose utilizes a 3D-CNN to estimate the 3D locations of the body joints based on
the feature volume. This method suffers from a large number of domain-specific parameters.
We believe that only partial “transferable parameters” are essential for learning domain-
invariant information and generalizing well in UDA; on the other hand, “untransferable
parameters” tend to suit domain-specific information and rarely generalize.

In order to lessen the negative impacts of domain-specific knowledge during the learn-
ing process, we introduce Transferable Parameter Learning (TransPar) into our network,
providing unique update rules for these two categories of parameters.

While Tables 2 and 5 have shown the benefits of the introduced Learning Transferable
Parameters, Figure 9 demonstrates that the performance achieved by medium-to-high
ratios is relatively important.
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Figure 9. The Average Percentage of Correct Parts (PCP3D), based on Wider Ratios of Transferable
Parameters, on Campus and Shelf dataset.

6. Conclusions and Outlook

In this research, we present the Domain Adaptive VoxelPose model, which is an ef-
ficient method for cross-domain multi-view multi-person 3D pose estimation. Without
needing any extra labeled data, one can build a robust pose estimator for a new domain
using our method. Our strategy is based on the state-of-the-art VoxelPose model. We intro-
duced a domain adaptation component and the dropout mechanism for our network based
on the theoretical analysis that we did for cross-domain pose estimation. A collection of
dropout discriminators is used to learn a robust model for the domain. We also introduced
transfer parameter learning into our network, which used distinct updating rules for two
types of parameters. These components are meant to alleviate the performance drop that is
caused by domain shifting. Our methodology is validated on several different domain shift
scenarios, and the adaptive method relatively outperforms the baseline VoxelPose method.
This demonstrates the approach’s efficiency for cross-domain, multi-view, multi-person 3D
pose estimation. In summary, our approach offers industrial advantages by strengthening
the robustness of multi-view, multi-person estimation models in real-world conditions,
minimizing errors and false positives, increasing operational efficiency, enhancing safety,
and alleviating the burden of manual data labeling. However, it’s important to address
some inherent limitations in the methodology that could potentially affect its precision
and scalability.

6.1. Limitations

Primarily, our model confronts the challenge of quantization errors during the tran-
sition from 2D to 3D representations. This issue is particularly crucial as it may lead to
discernible inaccuracies, undermining the algorithm’s efficacy. Secondly, the computational
expenses for training our algorithm escalate with an increasing number of views. This
scalability issue limits its applicability in contexts requiring large-scale, high-throughput
processing. Moreover, our model currently lacks the incorporation of spatial-temporal
data, despite the inherent correlation of human body postures over time. This limitation is
especially poignant when the model needs to discern closely intertwined joints or intricate
inter-human interactions.

6.2. Future Directions

The limitations of the current model naturally guide our future research. One promis-
ing direction is the development of an end-to-end framework aiming to mitigate the
cumulative effects of quantization errors. Furthermore, we recognize the urgent need
for the seamless integration of spatial-temporal data to improve the model’s precision in
capturing human interactions and movements over time.

Author Contributions: Conceptualization, J.D.; Methodology, J.D.; Software, H.Y.; Validation, J.D.,
H.Y. and P.S.; Formal analysis, J.D. and H.Y.; Investigation, J.D.; Resources, H.Y.; Data curation, H.Y.;
Writing—original draft preparation, J.D.; Writing—review and editing, H.Y.; Visualization, J.D. and



Sensors 2023, 23, 8406 15 of 17

H.Y.; Supervision, P.S.; Project administration, P.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Shelf and Campus datasets are available at https://campar.in.tum.
de/Chair/MultiHumanPose (accessed on 28 September 2022). The Panoptic datasets are available at
http://domedb.perception.cs.cmu.edu (accessed on 28 September 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Song, L.; Yu, G.; Yuan, J.; Liu, Z. Human pose estimation and its application to action recognition: A survey. J. Vis. Commun. Image

Represent. 2021, 76, 103055. [CrossRef]
2. Bagautdinov, T.; Wu, C.; Simon, T.; Prada, F.; Shiratori, T.; Wei, S.; Xu, W.; Sheikh, Y.; Saragih, J. Driving-signal aware full-body

avatars. ACM Trans. Graph. 2021, 40, 1–17. [CrossRef]
3. Wang, J.; Yan, S.; Dai, B.; Lin, D. Scene-aware generative network for human motion synthesis. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12206–12215.
4. Moon, G.; Chang, J.Y.; Lee, K.M. Camera distance-aware top-down approach for 3d multi-person pose estimation from a single

rgb image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019; pp. 10133–10142.

5. Zeng, A.; Ju, X.; Yang, L.; Gao, R.; Zhu, X.; Dai, B.; Xu, Q. Deciwatch: A simple baseline for 10x efficient 2d and 3d pose estimation.
arXiv 2022, arXiv:2203.08713.

6. Zhang, J.; Cai, Y.; Yan, S.; Feng, J. Direct multi-view multi-person 3d pose estimation. Adv. Neural Inf. Process. Syst. 2021,
34, 13153–13164.

7. Cheng, Y.; Wang, B.; Tan, R. Dual networks based 3d multi-person pose estimation from monocular video. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 42, 1636–1651. [CrossRef]

8. Belagiannis, V.; Amin, S.; Andriluka, M.; Schiele, B.; Navab, N.; Ilic, S. 3d pictorial structures for multiple human pose
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June
2014; pp. 1669–1676.

9. Joo, H.; Liu, H.; Tan, L.; Gui, L.; Nabbe, B.; Matthews, I.; Kanade, T.; Nobuhara, S.; Sheikh, Y. Panoptic studio: A massively
multiview system for social motion capture. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 3334–3342.

10. Belagiannis, V.; Amin, S.; Andriluka, M.; Schiele, B.; Navab, N.; Ilic, S. 3d pictorial structures revisited: Multiple human pose
estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 1929–1942. [CrossRef]

11. Tu, H.; Wang, C.; Zeng, W. Voxelpose: Towards multi-camera 3d human pose estimation in wild environment. In Computer
Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020;
pp. 197–212.

12. Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference on
Machine Learning, Lille, France, 6–11 July 2015; pp. 1180–1189.

13. Han, Z.; Sun, H.; Yin, Y. Learning transferable parameters for unsupervised domain adaptation. IEEE Trans. Image Process. 2022,
31, 6424–6439. [CrossRef]

14. Wang, Z.; Nie, X.; Qu, X.; Chen, Y.; Liu, S. Distribution-aware single-stage models for multi-person 3d pose estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022;
pp. 13096–13105.

15. Hua, G.; Liu, H.; Li, W.; Zhang, Q.; Ding, R.; Xu, X. Weakly-supervised 3d human pose estimation with cross-view u-shaped graph
convolutional network. IEEE Trans. Multimed. 2022, 25, 1832–1843. [CrossRef]

16. Zhang, J.; Tu, Z.; Yang, J.; Chen, Y.; Yuan, J. Mixste: Seq2seq mixed spatio-temporal encoder for 3d human pose estimation in
video. arXiv 2022, arXiv:2203.00859.

17. Sun, Y.; Liu, W.; Bao, Q.; Fu, Y.; Mei, T.; Black, M.J. Putting people in their place: Monocular regression of 3d people in depth.
arXiv 2021, arXiv:2112.08274.

18. Mahmood, B.; Han, S.; Seo, J. Implementation experiments on convolutional neural network training using synthetic images for
3d pose estimation of an excavator on real images. Autom. Constr. 2022, 133, 103996. [CrossRef]

19. Wu, Y.; Kong, D.; Wang, S.; Li, J.; Yin, B. Hpgcn: Hierarchical poselet-guided graph convolutional network for 3d pose estimation.
Neurocomputing 2022, 487, 243–256. [CrossRef]

https://campar.in.tum.de/Chair/MultiHumanPose
https://campar.in.tum.de/Chair/MultiHumanPose
http://domedb.perception.cs.cmu.edu
http://doi.org/10.1016/j.jvcir.2021.103055
http://dx.doi.org/10.1145/3450626.3459850
http://dx.doi.org/10.1109/TPAMI.2022.3170353
http://dx.doi.org/10.1109/TPAMI.2015.2509986
http://dx.doi.org/10.1109/TIP.2022.3184848
http://dx.doi.org/10.1109/TMM.2022.3171102
http://dx.doi.org/10.1016/j.autcon.2021.103996
http://dx.doi.org/10.1016/j.neucom.2021.11.007


Sensors 2023, 23, 8406 16 of 17

20. Jin, L.; Xu, C.; Wang, X.; Xiao, Y.; Guo, Y.; Nie, X.; Zhao, J. Single-stage is enough: Multi-person absolute 3d pose estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 13086–13095.

21. Park, C.; Lee, H.S.; Kim, W.J.; Bae, H.B.; Lee, J.; Lee, S. An Efficient Approach Using Knowledge Distillation Methods to Stabilize
Performance in a Lightweight Top-Down Posture Estimation Network. Sensors 2021, 21, 7640. [CrossRef]

22. Nguyen, H.-C.; Nguyen, T.-H.; Scherer, R.; Le, V.-H. Unified End-to-End YOLOv5-HR-TCM Framework for Automatic 2D/3D
Human Pose Estimation for Real-Time Applications. Sensors 2022, 22, 5419. [CrossRef]

23. Qiu, H.; Wang, C.; Wang, J.; Wang, N.; Zeng, W. Cross view fusion for 3d human pose estimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4342–4351.

24. He, Y.; Yan, R.; Fragkiadaki, K.; Yu, S. Epipolar transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7779–7788.

25. Chen, X.; Lin, K.-Y.; Liu, W.; Qian, C.; Lin, L. Weakly-supervised discovery of geometry-aware representation for 3d human pose
estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Republic of Korea,
27 October–2 November 2019; pp. 10895–10904.

26. Dong, J.; Fang, Q.; Jiang, W.; Yang, Y.; Huang, Q.; Bao, H.; Zhou, X. Fast and robust multi-person 3d pose estimation and tracking
from multiple views. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6981–6992. [CrossRef] [PubMed]

27. Burenius, M.; Sullivan, J.; Carlsson, S. 3d pictorial structures for multiple view articulated pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3618–3625.

28. Chu, H.; Lee, J.H.; Lee, Y.G.; Hsu, C.H.; Li, J.D.; Chen, C.S. Part-aware measurement for robust multi-view multi-human 3d pose
estimation and tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville,
TN, USA, 20–25 June 2021; pp. 1472–1481.

29. Habermann, M.; Xu, W.; Zollhofer, M.; Pons-Moll, G.; Theobalt, C. Deepcap: Monocular human performance capture using weak
supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 5052–5063.

30. Hu, W.; Zhang, C.; Zhan, F.; Zhang, L.; Wong, T.T. Conditional directed graph convolution for 3d human pose estimation. In
Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 602–611.

31. Ye, H.; Zhu, W.; Wang, C.; Wu, R.; Wang, Y. Faster voxelpose: Real-time 3d human pose estimation by orthographic projection. In
Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 25–27 October 2022.

32. Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153. [CrossRef]
33. Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Zeng, W.; Qin, T. Generalizing to unseen domains: A survey on domain generalization.

arXiv 2021, arXiv:2103.03097.
34. Jiang, J.; Shu, Y.; Wang, J.; Long, M. Transferability in deep learning: A survey. arXiv 2022, arXiv:2201.05867.
35. David, S.B.; Lu, T.; Luu, T.; Pál, D. Impossibility theorems for domain adaptation. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 129–136.
36. Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the

International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 97–105.
37. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. arXiv 2014, arXiv:1406.2661.
38. Chen, Y.; Li, W.; Sakaridis, C.; Dai, D.; Gool, L.V. Domain adaptive faster r-cnn for object detection in the wild. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3339–3348.
39. Saito, K.; Ushiku, Y.; Harada, T.; Saenko, K. Strong-weak distribution alignment for adaptive object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6956–6965.
40. Zhu, L.; She, Q.; Chen, Q.; You, Y.; Wang, B.; Lu, Y. Weakly supervised object localization as domain adaption. arXiv

2022, arXiv:2203.01714.
41. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7167–7176.
42. Mordido, G.; Yang, H.; Meinel, C. Dropout-gan: Learning from a dynamic ensemble of discriminators. arXiv 2018, arXiv:1807.11346.
43. Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.-Y.; Isola, P.; Saenko, K.; Efros, A.; Darrell, T. Cycada: Cycle-consistent adversarial

domain adaptation. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July
2018; pp. 1989–1998.

44. Zhang, Y.; Qiu, Z.; Yao, T.; Liu, D.; Mei, T. Fully convolutional adaptation networks for semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6810–6818.

45. Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 17–23 June 2018; pp. 3723–3732.

46. Supancic, J.S.; Ramanan, D. Self-paced learning for long-term tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2379–2386.

47. Choi, J.; Jeong, M.; Kim, T.; Kim, C. Pseudo-labeling curriculum for unsupervised domain adaptation. arXiv 2019, arXiv:1908.00262.
48. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International Conference

on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48.

http://dx.doi.org/10.3390/s21227640
http://dx.doi.org/10.3390/s22145419
http://dx.doi.org/10.1109/TPAMI.2021.3098052
http://www.ncbi.nlm.nih.gov/pubmed/34283712
http://dx.doi.org/10.1016/j.neucom.2018.05.083


Sensors 2023, 23, 8406 17 of 17

49. Xu, R.; Li, G.; Yang, J.; Lin, L. Larger norm more transferable: An adaptive feature norm approach for unsupervised domain
adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2
November 2019; pp. 1426–1435.

50. Cao, J.; Tang, H.; Fang, H.-S.; Shen, X.; Lu, C.; Tai, Y.-W. Cross-domain adaptation for animal pose estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9498–9507.

51. Li, C.; Lee, G.H. From synthetic to real: Unsupervised domain adaptation for animal pose estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1482–1491.

52. Jiang, J.; Ji, Y.; Wang, X.; Liu, Y.; Wang, J.; Long, M. Regressive domain adaptation for unsupervised keypoint detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June
2021; pp. 6780–6789.

53. Zhou, X.; Karpur, A.; Gan, C.; Luo, L.; Huang, Q. Unsupervised domain adaptation for 3d keypoint estimation via view consistency.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 137–153.

54. Zhang, X.; Wong, Y.; Kankanhalli, M.S.; Geng, W. Unsupervised domain adaptation for 3d human pose estimation. In Proceedings
of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 926–934.

55. Chen, H.; Guo, P.; Li, P.; Lee, G.H.; Chirikjian, G. Multi-person 3d pose estimation in crowded scenes based on multi-view
geometry. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer:
Cham, Switzerland, 2020.

56. Huang, C.; Jiang, S.; Li, Y.; Zhang, Z.; Traish, J.; Deng, C.; Ferguson, S.; Xu, R.Y.D. End-to-end dynamic matching network for
multi-view multi-person 3d pose estimation. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow,
UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 477–493.

57. Reddy, N.D.; Guigues, L.; Pishchulin, L.; Eledath, J.; Narasimhan, S.G. Tessetrack: End-to-end learnable multi-person articulated
3d pose tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 15190–15200.

58. Saini, N.; Bonetto, E.; Price, E.; Ahmad, A.; Black, M.J. Airpose: Multi-view fusion network for aerial 3d human pose and shape
estimation. IEEE Robot. Autom. Lett. 2022, 7, 4805–4812. [CrossRef]

59. Chen, Y.; Gu, R.; Huang, O.; Jia, G. Vtp: Volumetric transformer for multi-view multi-person 3d pose estimation. arXiv 2022,
arXiv:2205.12602.

60. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
61. Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014,

arXiv:1412.3474.
62. Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2208–2217.
63. Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Computer Vision, Proceedings of the ECCV

2016 Workshops, Amsterdam, The Netherlands, 8–10. 15–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 443–450.
64. Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional Adversarial Domain Adaptation. arXiv 2017, arXiv:1705.10667.
65. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.
66. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2022.3145494

	Introduction
	Related Work
	3D Human Pose Estimation
	Unsupervised Domain Adaptation

	Preliminaries
	VoxelPose
	Fundamental Conceptual Framework
	Dataset

	Method: Domain Adaptation for Multi-View Multi-Person 3D Pose Estimation
	Domain Adaptation Component
	Dropout Domain Adaptation Component
	Transferable Parameter Learning Component
	Network Overview

	Experiments
	Experiment Setup
	Outdoor Environment Experimental Results
	Indoor Social Interaction Environment Experimental Results
	Ablation Studies and Discussions
	Domain Adaptation Component
	Dropout Domain Adaptation Component
	Transferable Parameter Learning Component


	Conclusions and Outlook
	Limitations
	Future Directions

	References

