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Abstract: The technical capabilities of modern Industry 4.0 and Industry 5.0 are vast and growing ex-
ponentially daily. The present-day Industrial Internet of Things (IloT) combines manifold underlying
technologies that require real-time interconnection and communication among heterogeneous devices.
Smart cities are established with sophisticated designs and control of seamless machine-to-machine
(M2M) communication, to optimize resources, costs, performance, and energy distributions. All the
sensory devices within a building interact to maintain a sustainable climate for residents and intu-
itively optimize the energy distribution to optimize energy production. However, this encompasses
quite a few challenges for devices that lack a compatible and interoperable design. The conventional
solutions are restricted to limited domains or rely on engineers designing and deploying translators
for each pair of ontologies. This is a costly process in terms of engineering effort and computational
resources. An issue persists that a new device with a different ontology must be integrated into an
existing IoT network. We propose a self-learning model that can determine the taxonomy of devices
given their ontological meta-data and structural information. The model finds matches between two
distinct ontologies using a natural language processing (NLP) approach to learn linguistic contexts.
Then, by visualizing the ontological network as a knowledge graph, it is possible to learn the structure
of the meta-data and understand the device’s message formulation. Finally, the model can align
entities of ontological graphs that are similar in context and structure.Furthermore, the model performs
dynamic M2M translation without requiring extra engineering or hardware resources.

Keywords: ontology alignment; M2M translation; self-attention; deep learning; Industry 4.0; Industry
5.0 IloT; knowledge graph; industrial internet of things; smart city

1. Introduction

The speed of technological development is changing with automation and digitiza-
tion, bringing several challenges [1]. The backbone of Industry 4.0 and 5.0 was industrial
automation systems that enabled sustainable development [1] and gave innovative func-
tionalities access to the cyber world [2], known as cyber-physical systems (CPS). CPS is
a conjunction between physical systems and digital micro-systems that features a tight
integration of modeling, computation, and communication. Cyber-physical systems and
the IoT have begun merging in the industrial digitization process, further known as the
industrial internet of things (IIoT). The focus of such mergers has been reshaping society [2]
by bridging physical divides via digital connectivity using IloT and digitization appli-
cations. Applications include automation of manufacturing processes [3,4], agriculture
for precision fertilization programs [5], smart farming, condition monitoring of wind tur-
bines [6] and farms, smart factories [7], smart buildings and cities [8], and many others. By
digitizing physical processes, these applications have lowered the overheads associated
with human dependency, as well as the cost, time, and computation required. While these
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solutions aim to achieve connectivity across their respective service-oriented architectures
(SOA), when it comes to developing a dynamically scalable and enhanced software-as-
a-service (SaaS) architecture that can incorporate machine learning models as a service
(MLaaS) [9], such systems are still in their infancy. Additionally, this problem becomes
more challenging and crucial in the environmental settings of Industry 5.0. This application
domain involves a hub of devices with different responsibilities working together for the
same business objective. Despite these devices having homogeneous or heterogeneous
underlying structures, the devices need to comprehend, translate, and interact with each
other, to converge toward the business goal. Thus, IloT automation cannot be confined
to the digitization of connections, and this development is subject to interoperability chal-
lenges. In particular, machine learning (ML) approaches are considered, to automate costly
engineering processes. For example, challenges related to the automatic translation of
messages transmitted between heterogeneous devices are investigated using supervised
and unsupervised machine learning approaches [10].

We conceive IloT device ontology as a device’s language, corresponding to the lan-
guage encoder component. The schema of the ontology graph contains all the information
about classes and the sub-class hierarchy and their connections, which we convert into a
structural encoder. Then, the names of classes and relations are considered labels mapped
as side information in the ontology graph and as sentence tokens in the NLP paradigm.
Finally, relations indicate which classes are interconnected, and these constitute a structural
question set. To the best of our knowledge, no other work in the literature has proposed this
mapping, and so there is a knowledge gap regarding the efficient use of such synergies. The
existing techniques of entity alignment are based on different approaches for integrating
structural information, which overlook that, even if a node pair have similar entity labels,
they may not belong to the same ontological context, and vice versa. To address these
challenges, a model based on modifying the BERT-interaction model on graph triples was
developed. The developed model is an iterative model for the alignment of heterogeneous
IIoT ontologies, enabling alignments within nodes and relations. When compared to the
state-of-the-art BERT INT, on the DBPK15 language dataset, the developed model exceeded
the baseline model by an error rate of 2.1%. This work can be considered a step towards
enabling translation between heterogeneous IoT sensor devices; therefore, the proposed
model could be extended to a translation module in which, based on the ontology graphs
of a device, the model can interpret the messages transmitted from that device.

We focus on designing an ontology alignment model as a first step toward developing
automatic dynamic translation between IloT heterogeneous devices. The proposed model
could be embedded into dynamic automated IloT applications with multiple interconnected
and heterogeneous devices, for IloT applications that require intercommunication for
performing a mutual task, such as condition monitoring of wind turbines [6] or access
control systems [3]. Our model can utilize online M2M translation across devices with varying
ontologies, to allow seamless operations. The following summarizes our main contributions:

*  Thoroughly investigate how to enable automatic alignment across heterogeneous
IIoT sensor devices using an NLP-based learning model, in conjunction with entity
alignment for the ontology graph;

e  Explore the use of an ontology graph as the main metric in a representation learning
problem, for interpreting the metadata of sensory devices;

¢ The first significant novelty herein is highlighting three knowledge gaps: (1) the lack of
research attention on modeling ontology alignment approaches for IloT heterogeneous
devices, (2) the scarcity of literature on fusing NLP methodologies with the IIoT
domain, and limitations of datasets for IloT ontology alignment;

¢ The second prime novelty of this work is synthesizing a model as a solution for the
IIoT ontology alignment task. The model significantly exceeds the state-of-the-art
results on the DBP15K languages dataset by a wide margin. This work is the first
of many to conceptualize a mapping between NLP and IIoT domains by utilizing
knowledge graph modeling for the device ontology.
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This paper is outlined in eight sections: first, a brief background is given in Section 2.1
of the various domains used in constituting the proposed solution. Section 2 presents
the important state-of-the-art works in each domain. Then, a detailed discussion on the
highlighted knowledge gaps is given in Section 2.4. Section 3 elaborates on the problem
formulation, followed by Section 4 with the complete architecture of the proposed solution,
followed by a use-case explanation for the proposed system discussed in Section 5. Then,
Section 6 states the used experimental setup and a proof of concept with results is presented
in Section 7. Lastly, reflections and concluding remarks are discussed in Section 8.

2. Related Work

The work presented herein is primarily in the context of the industrial Internet of
Things paradigm. We address the translation problem amongst heterogeneous sensory
devices, with respect to the ontology followed when installing the network in a smart
building. Here, all devices are interconnected to regulate and optimize energy consumption,
such as temperature control (heating or cooling), humidity, or climate. Each subsection
presents the important state-of-the-art works in the various domains that have contributed
to hypothesizing the research question and its solution.

2.1. Background

Numerous models, with various strengths and weaknesses, have been established
for cross-language translation, but none have been designed for the IloT automatic ontol-
ogy paradigm. This section outlines the different dimensions involved in synthesizing the
proposed solution. The first dimension involves the IIoT ontology’s constitution and role
from an industrial perspective. The next dimension addresses the importance of interoper-
ability in the context of ontologies and the popularity of ML for modernizing Industry 4.0
applications and leading toward Industry 5.0 smart-society applications.

2.1.1. Interoperability in the Context of IloT Ontologies

With the development of embedded CPSs and vast computational resources, the IloT
has grown significantly, resulting in a massive increase in IoT devices. According to recent
figures, the number of linked IoT devices globally reached 15.14 billion in 2023. This forecast
is expected to quadruple to around 50 billion IoT devices by 2030 [11]. The IIoT is a hub for
heterogeneous and homogeneous devices that require seamless integration and connectivity.
The interoperability issue involves the challenge of enabling communication, despite
varying assumptions about the data model, message format, and device ontology [12].
Figure 1 presents an example scenario of ontology interoperability. In the past decade,
researchers have shown a keen interest in developing ML-based automatic translation
models to solve interoperability problems, but a lack of datasets and the complexity
constraints on real-world applications have hindered this synergy so far.
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Figure 1. Explanation of heterogeneity in device ontology. The figure illustrates an example scenario
of a smart building with multiple interconnected sensors installed outside and inside. Few devices fol-
low the Semantic Sensor Network (SSN) ontology; the rest follow the Sensor-Observation-Sampling-
Actuator (SOSA) ontology. All the devices that follow SSN ontology can intercommunication, and
similarly, devices that follow SOSA ontology can successfully intercommunicate. However, a device
following SSN ontology can not communicate with the device following SOSA [13].

2.1.2. Representation Learning for Sensor Devices

The performance of ML algorithms is highly dependent on the type of data represen-
tation used. As a result, a major percentage of the effort is spent on feature engineering
to execute ML algorithms and build data transformations that result in a representation
of the data suited for effective learning [14]. Data of sensor devices is conceptualized
in several technical layers of SOAs. It includes the device’s ontology and protocol, data
format, message payload schema, message transmission protocol, and more. However, this
work emphasizes the importance of device ontology for identifying and disentangling the
messages received from a heterogeneous device. Given any device’s messages and its ontol-
ogy, the representation learning model can map vector representation of low-dimensional
space for each entity in the ontology. The vectors of every unique entity are also unique,
called embedding vectors. There are three major methods in which the model can perform
representation learning: (1) supervised in which input labels and mapping of input X to
output Y are given; (2) semi-supervised in which a mix of labeled data and unlabeled data
are used; and (3) unsupervised in which no prior information of labels or mapping onto
output is given. The present IoT sensor ontology domain literature has examples of super-
vised and semi-supervised approaches as discussed in Section 2 but lacks unsupervised
learning-based methods.

2.1.3. Sensor Ontologies

Sensors are a major source of data available on the Web today. While sensor data may
be published as mere values, searching, reusing, integrating, and interpreting these data
requires more than just the observation results. The captured information with its context
is equally important for properly interpreting the values as information about the studied
feature of interest; for example, for a heater, the observed property, the specific locations
and times at which the temperature was measured, and a variety of other information. This
work only takes into account the ontology that is standardized, integrated by, and aligned
with W3C semantic web technologies [15] and linked data [16], which are key drivers for
creating and maintaining a global and densely interconnected graph of data.
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Intelligent sensors should be interconnected seamlessly and securely, to enable au-
tomated high-level smart applications. Smart interconnection of sensors, actuators, and
devices enables the development of solutions required for smart city- and CPS industrial
solutions [17].

Ontologies can enrich sensory data and ensure interoperability by providing an ab-
straction layer [18]. The ontology defines the semantic model and contextual information
of the devices [19]. Figure 2 shows the essential components of an ontology design. W3C
has developed several benchmark ontologies based on IoT standards, such as Smart Onto
Sensor, SSN, SAN, IoT-Lite, SOSA, and others, adopted by industrial manufacturers glob-
ally. The authors of [18] presented a timeline of the evolution of all base-level ontologies
developed from 2002 to 2018. The authors divided the timeline into before and after the SSN
ontology, as this was the first ontology with complete design patterns for a sensory device
network. Ontologies are continually evolving, compiling ever more space for reasoning
and simplification.
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Figure 2. Basic Components of an Ontology. There are three types of nodes here: (1) subject node,
(2) object node, and (3) literal node. Both subject and object nodes belong to the class of the knowledge
domain, for which the ontology is developed. The edges between nodes represent relations, and the
third literal node has a data fact about them.

SOSA provides a lightweight core for SSN, as shown in Figure 3, and aims to broaden
the target audience and application areas that can make use of semantic-web ontologies.
At the same time, SOSA [20] acts as a minimal interoperability fall-back level; i.e., it defines
the common classes and properties for which data can be safely exchanged across all uses
of SSN [21], its modules, and SOSA.

2.2. M2M Translation Problem in the IloT Domain

Devices often use different communication protocols, standards, and data representa-
tion languages, which creates interoperability and M2M translation challenges. The existing
literature contains different perspectives on addressing the M2M translation problem. Appli-
cation protocol-level solutions focus on predefined functions or annotations as proxies and
XML schemes to enable translation between sender and receiver devices [22,23]. However,
such solutions fail regarding automated CPSs, which cannot rely on hand-crafted predefined
schemes for every possible pair of devices. Moreover, protocol-level proxies exclude the pos-
sibility of utilizing data in the messages to make intuitive interpretations about the device’s
protocol. Data-driven methods [24] exploit the data augmentation approach to analyze pat-
terns and features in device data messages and infer important knowledge that can generate
interpretations between heterogeneous devices. However, to the best of our knowledge, a
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successful automatic translation model based specifically on industrial IoT ontologies has
not been developed. The major challenge in developing such learning-dependent solutions
is the unavailability of large datasets, which is a great hindrance.
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Figure 3. SSN and SOSA ontology core structure.

2.3. Knowledge Graph Alignment

Knowledge graph alignment aims to link equivalent entities across different knowl-
edge graphs. ML models, in conjunction with data-driven methods for automatic semantic
translations, have recently been trending among researchers [10]. Deep learning (DL) mod-
els such as deep alignment for ontology [25] design solutions among parallel ontologies
by aligning entities of different ontologies that have been developed independently but
for the same domain. [25] introduced word vector-driven descriptions for defining the
entities (nodes) and matching tasks on the DBpedia dataset for ontologies and Schema.org.
Recently, a large number of knowledge graphs (KGs) have been established to support Al
applications, such as Freebase [26] and YAGO [27]. Entity alignment seeks to discover iden-
tical entities in different KGs, such as the English entity Thailand and its French counterpart
Thailande. To tackle this important problem, the literature has devised embedding-based
entity alignment methods [28-30]. These methods jointly embed different KGs and put
similar entities in close proximity in a vector space, as shown in Figure 4, where a nearest
neighbor search can retrieve the entity alignment.

KG1 ENTITIES
O O o
O O o
0O O O K62 ENTITIES

|
:
|
— o O |
|
|
|

Figure 4. Illustration of entity alignment between two heterogeneous KGs. Each KG has its embed-
ding vector space for its entities, i.e., circles represent nodes, and squares represent relations. The
entities from both graphs that have similar embedding in the vector space overlap in the figure.
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Due to its effectiveness, embedding-based entity alignment has drawn extensive atten-
tion recently. KGs have evolved to be the building blocks of many intelligent systems. They
provide fundamental tools for NLP tasks [31] in language representation through BERT,
knowledge reasoning [32], recommend systems using knowledge graph convolutional
networks (KGCN) [33], and cross-lingual entity alignment (CEA) based on generative
adversarial networks (GAN) [28] with semi-supervised learning. Despite their importance,
KGs are usually costly to construct and naturally suffer from incompleteness [34]. Table 1
shows a brief survey of recent graph alignment methods on account of whether they are
scalable for the IIoT domain or not. The analysis focused on the utilization of both language
and structural information. It is evident that most of the models heavily rely on pre-aligned
entities used during the training stage.

Table 1. Summarizing recent and renowned state-of-the-art methods for the graph alignment task.

Learning Entity . Structure Scalable for IToT
Ref. Approach Matching Domain Datasets Used Information Used? Domain?
yes, but only if
[35] supervised MTransE based Languages WK31-15k v benchmark datasets
is present
yes, but only if all
. GCN based entity pre-aligned entities
[36] supervised embeddings Languages DBP15K v are included in
training data
no, as each entity in
. . ontology graph
[37] supervised TOPIC ggg graph Languages DBP15K X represents a topic
using and topic grouping
will fail here
no, as structure
Tran§E baseFl information is used
predicate alignment only to learn the
[38] unsupervised for attribute Locations DBP, GEO, YAGO v v
relations labels and
character not the
embeddings interconnections
yes, but only with
unsupervised
. BERT based learning approach
[39] supervised Interaction Model Languages DBP15K X and inclusion of
structure
information
no, as ontology
graphs can not be
) . . s realized as triadic
[40] semi-supervised BERT for Triadic KG =~ Languages DBP15K X KG with all
independent

entities

2.4. Challenges to Adaptation and Integration

For the foreseeable future, ML models will play a primary role in automating cur-
rent industrial applications into intelligent solutions. However, as the previous sections
highlight, research in translation among IoT devices and automatic language translation
is working in isolated areas, whereas their synergy could bring greater benefits to both.
The following sub-section presents the important gaps this work is based on and clear
indications for plausible mergers to bridge these gaps.

2.4.1. State-of-the-Art Limitations

We conducted a query search in three well-known search engines, i.e., Google Scholar,
SCOPUS, and Web of Science, to investigate the existing research publications for the given
problem. The main metric of this analysis was the number of publications per year.

The search queries were designed sequentially, in which the first search query was on
publications for M2M translation but only within the Industry 4.0 paradigm. The second
query was narrowed down to the same problem but specifically addressing ML approaches.
Lastly, the third query investigated the number of publications focused on ML models
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for solving ontology alignment problems. Table 2 presents the statistics of search results,
and the numbers indicate a lack of attention towards ML approaches for solving M2M
translation problems, specifically using alignment tasks.

Table 2. Details of the search queries in different search engines and search results in the number of
publications in every year. Searching in Google Scholar was on “Entire Article”, and SCOPUS was on
“Title, Abstract, Keywords”, while Web of Science was only on “Abstract”.

Query 1: M2M Translation Query 2: M2M Translation & Query 3: M2M Translation & Industry 4.0
Year & Industry 4.0 Industry 4.0 & ML & ML & Ontology Alignment
Google Scholar  SCOPUS Web of Science  Google Scholar SCOPUS  Web of Science  Google Scholar SCOPUS Web of Science

2010 10,200 95 76 9180 0 0 232 0 0
2011 11,600 89 85 10,900 0 0 229 0 0
2012 12,900 101 94 12,800 0 0 231 0 0
2013 13,400 116 93 14,500 0 0 233 0 0
2014 15,000 220 140 16,100 0 2 202 0 1
2015 16,000 344 306 17,100 2 3 196 0 1
2016 18,500 751 500 17,500 21 8 211 0 0
2017 16,600 1432 957 16,600 49 24 201 1 0
2018 22,900 2495 1501 19,600 146 77 206 1 1
2019 16,800 4886 2242 16,700 329 128 210 1 1
2020 29,700 5577 2514 22,900 496 148 236 1 1
2021 37,300 6706 3118 26,700 791 225 143 1 0
2022 45,120 8954 3118 22,950 977 225 298 2 0

2.4.2. Lack of NLP Fusion in the IIoT Domain

Dynamic translation between machines has stressed the need to establish automated
systems that enable effective real-time communication across heterogeneous devices. The
literature is unquestionably full of NLP solutions for various industrial applications, in-
cluding language translation (chatbots), but most focus on a pre- or post-process analysis
of processes and datasets. On the other hand, IIoT network activities are ongoing and
very diverse, and there is an important need to deploy automatic translators for dynamic,
seamless communication between heterogeneous devices. Using NLP models for that pur-
pose represents a considerable gap in the available studies. As seen in Table 2, researchers
place great emphasis on language datasets, even regarding graph alignment approaches.
This work will be the first of many efforts to conceptualize the mapping and validate the
proposed solution as a proof of concept. To understand how mapping is implemented in
this study, let us dissect the NLP domain into its main components: a language encoder, a
structural encoder, language sentences and tokens, and a structural question set.

2.4.3. Limitations of the Dataset for IloT Ontology Alignment

Considerable efforts have been made and will continue for the foreseeable future to
develop a variety of datasets for computer-based linguistic technology applications [41].
The research community recognizes that only data can pave the way for linguistic tech-
nology. Hence, the number of publicly accessible NLP datasets has grown significantly as
researchers experiment with new tasks, larger models, and novel benchmarks [42]. Datasets
are essential in empirical NLP studies, since they are utilized to evaluate proposed models
and for their bench-marking. Supervised datasets with predefined annotations are required
to train and fine-tune models, and large unsupervised datasets are required for pre-training
and language modeling. DBP15K [43], YAGO [44], and DWY100K [45] are widely used
large benchmark datasets of knowledge bases for alignment tasks, with the high alignment
accuracy of existing embedding-based methods. Each consists of millions of KG triplets,
with thousands of entities and relations.
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Whereas there is plenty of research on and datasets for cross-linguistic alignment tasks,
both are scarce for industrial IoT ontology alignment. IoT ontology graphs are concise,
since they are curated for specific industrial use cases and devices. As seen in Table 3, there
are fewer nodes and graph triples than language dataset knowledge bases.

Table 3. Statistics of the empirical NLP datasets used for entity alignment in two domains: (a) contem-
porary language-based and (b) IloT domain utilizing both structure and language-based alignments.

Dataset Entities  Relations  Triples

Domain: Language-based

DBP15K 711 px Chinese 66,469 2830 153,929
English 98,125 2317 237,674
DBP15K; 4_ £ Japenese 65,744 2043 164,373
English 95,680 2096 233,319
DBP15Kpp_ g English 66,858 1379 192,191
French 105,889 2209 278,590
Domain: IToT Language + Structure-based
Smart Appliance REFerence (SAREF) 37 20 1097
Semantic Actuator Network (SAN) 17 17 271
Semantic Sensor Network (SSN) 105 40 767
Sensor, Observation, Sample, & Actuator (SOSA) 70 23 487

3. Problem Formulation

This section contains two key definitions designed to the address problem domain.
Then, we present the problem targeted in this work.

3.1. Definition 1: Knowledge Graph and Structure Encoding

We generate KGs of two forerunner ontologies using W3C regulations: SSN and SOSA
as KG; and KGy. A graph is denoted as KG = (H, T, R), where R is a set of all relation
entities, H is a set of all head entities, and T is a set of all tail entities. Each edge represents
a relation r € R, a subject node represents h € H, and an object node represents t € T. In
the structural encoder of the proposed model, there are four representation vectors: D3,
D3, D%, and DS. Vector D3, represents the path length from a head entity, D§, represents
the path length from the relation, D% represents the path length from a tail entity, and D°
encodes the structural information of the underlying KG. Entity pairs between KG; and
KG; are denoted as

e for pair of head entities g(h, ') where h e H e KG; and h' ¢ H' € KG;
e for pair of relation entities g(r, 7') where r € R € KGy and 1’ € R’ € KG,
e for pair of tail entities g(t, ') where t e T e KG; and t' € T' e KGy

3.2. Definition 2: Mapping to the BERT Language Model

The metadata, labels of nodes, and relations are conceived as the language of the IoT
ontology. The language encoder of our proposed model is similar to the original BERT
encoder [46]. Sets of H, R, and T along with DS vectors are encoded into the BL encoder, on
which we apply concatenation to generate a final language representation vector, as Ck.
KG; will have a matching node in KG; if a node ¢; has a similar embedding vector ef in the
common latent space of both KGs.
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3.3. Problem Definition: Ontology Graph Alignment

The problem herein is manifold. Given two ontology graphs, KG; and KG,, provided
they both are designed for IloT sensor devices, the prime task is to learn the alignment of
the heterogeneous ontology graphs. For which, we first use the language BERT encoder (BF)
on the ontology dataset and further process it using a two-layer multi-layer perceptron
(MLP) network that learns the final language representation vector as Ct. Next, we use a
structural encoder to transform the language vectors into a binary vector D° to capture the
triplets and in-graph information with respect to neighboring nodes. Then, an interaction
model is used to learn the alignment across the graphs with two baseline assumptions:

1.  Anentity from a KG; can only match with only one entity in KG,. The term Cquuemax
ensures this property in two different KGs.

2. Ifanentity ¢; form KG; is aligned with entity e; of KGp, then their neighbor will also
topsu

have similar properties. The term S, " ensures this property in the neighbor of ¢;

and ej.

Lastly, a Loss;yteraction function is defined to learn the maximal similarity based on the
side and structural information of the different entities from both KGs.

4. Proposed Model
4.1. Architecture of the Proposed System

There are two forms of information available in a KG. The first is language information,
and the second is structural information. BERT-based encoders have already proven their
effectiveness in language models [46]. Recently, BERT-INT, a BERT encoder, has also been
used for the entity alignment task in KGs [39]. However, BERT-INT [39] only uses language
information with a BERT encoder to generate an encoded vector, which is further encoded
by a multi-layered-perceptron (MLP) network to yield the final representative vector for a
given query.

Indeed, the structural information is used in its interaction model in the last stage but,
importantly, structural information is not covered effectively by BERT-INT. In this work,
we present a model-based solution for ontology alignment using a modified BERT-INT
model on graph triplets that encodes the available information in KGs, with or without
pieces of language information. Figure 5 illustrates an overview of the model, starting from
two heterogeneous sensor devices that have different ontologies.

4.2. Improvements to the BERT_INT Model

The following sections present in detail every component of the proposed model.
However, here is a summary of proposed improvements to the state-of-the-art model:

* A modified input arrangement is used in this work, to utilize the full potential of a
pretrained BERT model;

*  The improved input arrangement can be used for experiments of aggregation models
that are designed using both language and structural encoders;

e  For integrating the structural encoder and incorporating side information with an
improved BERT-INT model, the structural question-set reasoning block is designed
and implemented with an in-graph approach;

®  The interaction model is changed by proposing an iterative method of calculating
similarities between entities in each iteration;

*  Aninteraction model is designed for an unsupervised learning approach, as in the case
study used for the work, where no alignment pairs are available for KG1 and KG2.
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Figure 5. Complete overview of the proposed model with abstract components.

5. Ontology Dataset Construction for the System Use Case

We selected two ontologies, SOSA and SSN, as discussed in Section 2.1.3, as these
are the forerunner ontologies curated by W3C on the account of IoT sensor devices. For
generating ontology instances strictly on SOSA and SSN ontology graphs, we follow the
W3C standardized examples of Appartment 134 [47] and utilize the RDF (resource descrip-
tion framework) files containing graphs with SOSA and SSN core terms. The example is
designed for temperature sensor devices and an actuator, in which the devices log their
temperature values for corresponding time stamps. Although this gives us a complete
graph of the ontology for sensor devices for the training of a machine learning model, we
require a much larger number of ontology instances.

Therefore, we refer to Kaggle’s dataset of smart building data [48] synthesized by
Hong et al. [49]. This dataset was collected from 255 sensor time series, instrumented in
51 rooms on four floors of the Sutardja Dai Hall(SDH) at UC Berkeley. This dataset can
be utilized for experiments relating to IoT, sensor fusion networks, or time series tasks.
It is also suitable for both supervised and unsupervised learning tasks. The building
infrastructure is such that each room includes five types of measurement sensor data, as
shown in Figure 6. In the following sections, we discuss the complete workflow of the
proposed system for language encoding and ontology structural construction.

5.1. Language Encoder

The language encoder of the proposed work is similar to BERT-INT, with modification
as discussed in Section 4.2, and it generates a language representative vector for each
entity and relation in the graph represented in Figure 7. Then, the language vectors of
the head, relation, and tail of the triplet are concatenated to form the input vectors for the
structural BERT encoder shown in Figure 7b. The corresponding embeddings generated
using the structural BERT are further diverged into three separate vectors using another
MLP network, to yield the final representative vector for the respective triplet’s head,
relation, and tail.
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Figure 6. Smart building system dataset collected over a period of one week, from Friday
23 August 2013 to Saturday 31 August 2013. The PIR motion sensor was sampled once every 10 s
and the remaining sensors were sampled once every 5 s. Each file contains the timestamps (in Unix
Epoch Time) and actual readings from the sensor.
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Figure 7. Different BERT Encoders used in the proposed model; (a) Encoding Structure; (b) Encoding
Structure.

The original BERT encoder [46] uses a sentence-1 and sentence-2 input arrangement,
as shown in Figure 8a. The same input arrangement is utilized by most of the methods
that utilize the pretrained BERT model [46]. However, BERT-INT [39] does not use this
input organization and uses a very different arrangement, as shown in Figure 8b. Therefore,
utilization of the full potential of a pretrained BERT model is questionable. In contrast,
the input arrangement of the proposed language encoder, as represented in Figure 8¢, is
very similar to the original BERT encoder. Here, only the input arrangement is updated
and everything else remains the same as in BERT-INT. The representation generated by the
language BERT encoder (BL) is further processed using a two-layered MLP network, which
yields the final language representation vector as Ct.
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Figure 8. Different Input Arrangements for the BERT Encoder; (a) BERT; (b) BERT-INT; (c) Proposed.

The structural encoder yields an output for a given KG as input, such that the generated
output can answer all questions related to the structure of the KG, as shown in Figure 9.
However, there are two issues with this structural encoder:

1.  How to represent the complete KG as an input?
2. What questions should be set to capture all structural information of the KG?

KG—> Encoder — Structural Questions — Answers

Figure 9. Structural Encoder Block.

Processing the complete KG as input for very large KGs is not computationally feasible,
so initial work tried to generate the embedding vectors for the different components of KG
(such as the head (subject), relations, and tail (object)). Generating an embedding vector
for a component of KG requires contextual information, but acquiring all the contextual
information of a node or a relation is complex. Therefore, most existing works treated
all neighbors within a specific path length as the context of the targeted node. Besides
this, these embeddings should provide answers to structural questions. The most famous
approaches are (1) continuous bag of words (CBOW) and (2) skip-gram for encoding
structural information.

5.2. Structural Encoder
Graph Representation for Structural Encoder

In this work, we represent a graph using its set of triplets. These triplets are passed
to the structural encoder to incorporate the structural information. These triplets do not
have any specific order, so they are not integrated with the positional encoder. Besides this,
the set of triplets passed as input at a time are considered in-graph. The components of
the original graph that are not part of the in-graph are considered for structural encoder
processing.Therefore, only the elements of the in-graph (nodes and relations) will partici-
pate, differentiating the entity from having different neighbors and weakening the issue of
aggregating neighbors.

We require a cost function to train the structural encoder, such that the generated
representation vectors should incorporate the structural information of the underlying
knowledge graph. We can ensure specific information is encoded into the representation
vectors by obtaining the desired results from a linear transformation of the vector. The
linear transformations shown in Figure 10 convert the representation vectors into vectors as
DIS_I, Df{, D%, and DS, which represent the structural information from the knowledge graph.
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Figure 10. The structural question-set for encoding structural information.

The vectors generated by the structural encoder should incorporate the structural
information. Therefore, a fully connected layer extracts these pieces of information from
them. Figure 10 and Equation (1) explain the structural question-set used in the proposed
work. Here, the vector CISQ is transformed into a binary vector D3, where its ith element
represents the connectivity of the ith entity with this relationship element. The vectors C3;,
C% are transformed into probability vectors DS, D%, respectively, where the ith element
represents the connectivity score of the ith entity with this entity. £D is the reference-labeled
ground truth for the corresponding vector, as shown in Equation (1).

e~sP!, splis shortest path length
§pg, = between ith entity and this head

0, no connectivity

§pS _ {1, if ith entity is connected with this relation

0, otherwise

e~sP!, splis shortest path length
§p3 = between ith entity and this tail

0, no connectivity
¢DS = one hot vector for corresponding entity

The cost function for the learning of the parameter of the structural encoder is based
on the mean square error (MRR) function. As we have multiple questions set for encoding
the structural information, their corresponding losses are weighted to form the final cost
(loss) of the encoder. The cost of the structural encoder (L°) is given by Equation (1). Here,
the weights s1, 52, 53 are empirically set as s1 = 0.3,52 = 0.5,s3 = 0.3.

Lo(iDf = D57

Dy — n
§psS _ips
Los — io({ D} — iD})?
DR n (1)
§pS _ ips
Los— i—o(; D} — iD7)’
D3 n
L " (3D —iD5)?
b n
S _
L _SlxLDI%+52XLD1%+S3XLD§+LDS (2)

5.3. Interaction Model

The proposed work utilizes two interaction model learning schemes: (1) supervised,
and (2) unsupervised. The supervised interaction model learning scheme is used when
we have labeled data available for training, whereas the unsupervised interaction model
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learning does not have any label data. These two different learning approaches use different
interaction models, with some modifications.

ck. cF
S“
TNICEICE ||C A 3)

max
S :ma())((si(]/sillsizlsiﬂ)
]:

5.3.1. Supervised Learning of the Interaction Model

The interaction model used in the proposed work is similar to BERT-INT (refer to
Figure 11). All operations are the same, except for the calculation of the S/"** (r BERT-INT).
The original BERT-INT discarded the other similarities, except the maximal one. The
maximal similarity is given by Equation (3). Discarding other similarities is a waste of
information, and we propose that they should be discarded after applying a softmax
activation (refer to Equation (4)) across the row similarities. If we have similar entity pairs

from graph 1 and graph 2, then we can maximize the corresponding Ssof % and then

softmax

use S; as the S for the interaction model. However, if the pair mformation is not

avallable (i.e., we do not have the proper pairing between the entities), then §"** should be
topsum

replaced by S; , which is calculated using Equation (4). Here, N is the number of top

softmax

elements (having high S ). The value of N is dynamic in nature and decreases as the

learning proceeds. We decrease the value of N by one after each epoch of learning, till it
becomes one.

ck. CF

S.. =
TICEIICEN HC 1l

z
softmax et i
l] - nf eD(ZS,‘]'
TopN so;tmax softmax )
S; = {S | S € top N elements of S; row }
topsum softmax
Sz‘ - ; Z (Sij )
softmax _ ~TopN
s es;

LosS;yteraction = same as BERT-INT

Pairs of entities from
Graph 1 and Graph 2

Interaction Models (BERT-INT)

CFT Cr
MLP MLP

t t

Cs Cs
Graph 1 Graph 2

Figure 11. The interaction model for alignment of the entities of the different graphs.

5.3.2. Unsupervised Learning of the Interaction Model

The interaction model used for this scheme is different from BERT-INT. Here, we do
not have pair alignment information for the entities of KG 1 and KG 2. Therefore, we need
to reduce the trainable parameter of the interaction model, as there is no validated gradient
(corresponding to the ground truth label) for parameter learning. The proposed work
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also does not utilize the dual-aggregation technique for unsupervised learning, as we do
not want to use a trainable MLP for the final classification. This new interaction model is
defined by Equation (5). Here, as we do not have any alignment information available, we
need to utilize only the implicit information of the different entities from different KGs. The
two properties (assumption) we are exploiting for the learning are mentioned in Section 3.3.

Dist;j = Cf — C}

uniquemax _ eﬁzDiSt’j

g 2?1:0 eﬁZDistij + 2}1:0 eﬁzDistij i e‘B2Disti]v
Sij _ C:;z;’]quemax
SZ.TOPN = {S;j | Sij € top N elements of S; row } ©
S =Y (Sy)

s;es; PN

LosSinteraction = %(10 - Sfopsum)

6. Experimental Setup
6.1. Training Procedure

In this section, we elaborate on the training procedure used for the experiments. We
utilized the Adam optimizer to train the proposed system with a dynamic learning (ex-
ponentially and linear decreasing) rate setting. The learning rate was initialized to 0.001
and reduced to 10~* in 25 thousand iterations, with an exponentially decaying rate. After
25 thousand iterations, we operated a linearly decaying learning rate, as in Equation (6). A
total of one million iterations with 16 batch sizes were used to train the proposed system.
The learning stage also included L2 regularization with a scale of 104, to limit overfitting
in the trained system.

iterationCount

_1n—4 _
Ir =10~ x (1.01 250,000

) (6)

6.2. Evaluation Metric

Consistently with the previous works in the literature, Hits@k (k = 1, and 10) and
mean reciprocal rank (MRR) were selected as the evaluation metrics in this paper. Hits@k
calculates the proportion of correctly aligned entities ranked in the top-k list. Here, we
focused on Hits@1 and Hits@10. MRR measures the average of the reciprocal ranks of the
results. Outstanding methods should have a higher Hits@k and MRR. Furthermore, during
training, a 30-70% split of the dataset was applied by consciously taking out the data of
floor#4 to be used during validation.

6.3. Experiments Breakout

The empirical study for this work was designed with three different experiments, as
shown in Figure 12.

Experiments were designed from a systematically logical perspective. First, we con-
ducted a comparative analysis of the baseline model with our proposed model. Next,
we evaluated the performance of the proposed model in contrast to the state-of-the-art
methods. Lastly, we conducted an ablation study on the proposed model, to study the
architecture’s effectiveness. The selection of datasets in each set of experiments is also
mentioned in Figure 12.
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Figure 12. Layout of the experiments and the components used in them.

7. Proof of Concept and Results
7.1. Improvement on SoTA (BERT_INT vs. Proposed)

As discussed earlier, the proposed model was designed as a similar model to BERT-INT
but with the modifications explained in Sections 4.2 and 5.3. We extended the experiments
of language encoder-based graph alignment conducted by Tang et al. [39] by using the
same DBP15K dataset and similar BERT embedding setting and evaluated the results using
the same parameters of HitRatio@K (K = 1, 10) and MRR. The modification of the language
encoder involved updating the input arrangement shown in Figure 8b. The effectiveness of
this input arrangement was also verified by incorporating it within BERT-INT, as shown
in Table 4. The table’s first row shows that the BERT-INT model’s performance improved
when the proposed input arrangement was used. The second row shows the results of
the proposed model only using the proposed language encoder with the modified input
arrangement. The results clearly show that even minor improvements bettered the BERT-
INT model. Moreover, we compared the complete proposed model (language + structural
encoder) with the state-of-the-art results presented in [39] in Table 5, and it can be seen that
the performance of the proposed model was the highest, by approximately 1.2-2.7%.

Table 4. Experiment A, results of the performance of supervised entity alignment using the BERT_INT
method and its variant with the proposed input arrangement on DBP15K dataset.

Method DBPlSKZH_EN DBPlSKIA_EN DBPlSKFR_EN

HR1 HR10 MRR HR1 HR10 MRR HR1 HR10 MRR

BERT-INT  96.8 99.0 97.7 96.4 99.1 97.5 99.2 99.8 99.5

Proposed 97.1 99.1 97.9 96.9 99.1 97.9 99.3 99.8 99.6
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Table 5. Experiment B, results of the overall performance of graph alignment on the DBP15K dataset
using SoTA and the proposed models.

Method DBP15Kzy_gNn DBP15Kj4_En DBP15KrRr—EN
HR1 HR10 MRR HR1 HR10 MRR HR1 HR10 MRR
Only use graph structures by variant TransE
MTransE 30.8 61.4 36.4 27.9 575 34.9 24.4 55.6 33.5
IPTransE 40.6 73.5 51.6 36.7 69.3 474 33.3 68.5 45.1
BootEA 62.9 84.8 70.3 62.2 85.4 70.1 65.3 87.4 73.1
RSNs 50.8 74.5 59.1 50.7 73.7 59.0 51.6 76.8 60.5
TransEdge 73.5 91.9 80.1 71.9 93.2 79.5 71.0 94.1 79.6
MRPEA 68.1 86.7 74.8 65.5 85.9 72.7 67.7 89.0 75.5
Only use graph structures by variant TransE plus GCN
MuGNN 494 84.4 61.1 50.1 85.7 62.1 495 87.0 62.1
NAEA 65.0 86.7 72.0 64.1 87.3 71.8 67.3 89.4 75.2
KECG 47.8 83.5 59.8 49.0 84.4 61.0 48.6 85.1 61.0
AliNet 53.9 82.6 62.8 54.9 83.1 64.5 55.2 85.2 65.7
Only use graph structures by variant TransE plus adversarial learning
AKE 32.5 70.3 449 259 66.3 39.0 28.7 68.1 41.6
SEA 424 79.6 54.8 38.5 78.3 51.8 40.0 79.7 53.3
Combine graph structures and side information by variant GCN
GCN-Align  41.3 74.4 54.9 39.9 74.5 54.6 37.3 74.5 53.2
GM-Align 67.9 78.5 - 74.0 87.2 - 89.4 95.2 -
RDGCN 70.8 84.6 74.6 76.7 89.5 81.2 88.6 95.7 91.1
HGCN 72.0 85.7 76.8 76.6 89.7 81.3 89.2 96.1 91.7
DGMC 77.2 89.7 - 77.4 90.7 - 89.1 96.7 -
Combine graph structures and side information by multi-view learning
JAPE 41.2 74.5 49.0 36.3 68.5 47.6 32.4 66.7 43.0
MultiKE 50.9 57.6 53.2 39.3 489 42.6 63.9 71.2 66.5
JarKA 70.6 87.8 76.6 64.6 85.5 70.8 70.4 88.8 76.8
HMAN 87.1 98.7 - 93.5 99.4 - 97.3 99.8 -
CEAFF 79.5 - - 86.0 - - 96.4 - -
BERT_INT 96.8 99.0 97.7 96.4 99.1 97.5 99.2 99.8 99.5

Graph structural encoder in conjunction with language encoder

Proposed 98.1 99.2 98.3 97.2 99.2 98.1 99.4  99.8 99.6

7.2. Quantitative Analysis with Ablation Study

To thoroughly investigate the effectiveness of the proposed encoders, we conducted
an ablation study on the proposed model. The dataset used for these experiments was
the synthesized ontology dataset created from the smart building dataset of Kaggle, as
discussed in Section 5, using SOSA and SSN ontology graphs. In Table 6, the first set of
experiments were on Synthetic SOSA—KG SSN, in which the MMR score was highest when
both encoders were used. For experiments with only the KG structure, the interaction
model was pretrained on a known ontology and used the direct input embedding vector
for the corresponding entity. However, the MRR score was lowest when only the structural
encoder was used, which indicates that enforcing the graph structural information might
have excluded all those alignment matches that were correct with respect to the language
encoder but incorrect as per the ontology. A similar pattern was observed in the other
experiment sets as well. The last key observation is that the highest HRs and MRR scores
were achieved when the KG SOSA—Synthetic SSN dataset was used. Our reflection on this
is that SSN is a superset of SOSA, so the model might have found all the correct alignments
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for every token of SOSA. Additionally, all alignment results had to be validated using
annotations hand-picked by a human expert, as no bench-marking ontology alignment
dataset was present. Although these results are subjective to the alignment annotations,
they are important because of their novelty.

Table 6. Experiment C, results of the ablation study using the proposed ontology alignment model
on a smart building dataset with an unsupervised learning approach.

Model Used Result in Percentage
Sideinformations  (KG Sructur RO HRI  MRR

Synthetic SOSA—KG SSN

v v 87.6 94.3 89.5

X v 81.9 88.6 82.8

v X 83.8 924 84.8

KG SOSA—KG SSN

v v 80.9 914 83.8

X v 75.2 88.6 77.1

v X 77.1 90.5 79.0
KG SOSA—Synthetic SSN

v v 88.4 94.7 90.3

X v 70.1 76.9 73.2

v X 82.5 93.2 84.3

7.3. Qualitative Analysis of the Proposed Model

To visualize the alignments, we generated tsne plots of all the entities from both
ontologies. First, we performed indexing of all nodes and relations for both SOSA and
SSN ontologies. Then, lookup tables for the entities were created. Next, we reduced the
embedding vectors of all entities into two-dimensional tsne plots, as shown in Figure 13.
Figure 14 demonstrates an alignment pair. Here, we magnified a pair of adjacent nodes
from the alignment plot and followed their index in the lookup tables. We can see that
both nodes were similar across the ontology; hence, they were aligned in the plot with
the smallest Euclidean distance. Additionally, for further analysis of all entities, the tsne
plots were used to create heat-maps by calculating the Euclidean distance maps shown in
Figures 15 and 16. These figures also show the learning of the model throughout iterations
from 1000 to 62,000th iteration. The heat maps show the one-to-one mapping between pairs
of SOSA and SSN nodes and relations, respectively. In the beginning, the model learned
almost no mapping, but the processing of loss functions continued; it started identifying
similar entities and those with lesser Euclidean distances between them are highlighted
with lighter colors on the map.



Sensors 2023, 23, 8427 20 of 24

SSN - Subject Object Entities
SOSA - Subject Object Entities

o~ .
-! . 3 -
. S
* . - . -
. . - .
. B . .
- %
- " - . v, .
. B
% -
e
-
.
B . . . eee
. o e .
e R — -
e .
. == BT
e T .
. : - B o
. S = ==
v
.
- - A
.
o, o M
3
.
e == .
=3 -—
e
. '
T
. e
e .

SOSA - Relation Entities
SSN - Relation Entities

Figure 13. tsne plots generated from vectors of SOSA and SSN entities. An entity can be a node
(subject or object) or a relation.
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Figure 14. Ontology graph alignment pair demonstration. Entities in blue represent SOSA graph
nodes and green represent SSN graph nodes. For clarity and ease of visualization, all SSN nodes in
the alignment plot are shifted three spaces to the left.
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(b)

() ()

Figure 15. DistMap between Different Nodes of SOSA and SSN KGs; Sub-Sub DistMap at (a) 1000 it-
eration; (b) 18,000 iteration; (c) 35,000 iteration; (d) 62,000 iteration.

@) (b)

(o) (d)

Figure 16. DistMap between Different Relations of SOSA and SSN KGs; Rel-Rel DistMap at (a) 1000 it-
eration; (b) 18,000 iteration; (c) 35,000 iteration; (d) 62,000 iteration.
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8. Conclusions and Future Work

This paper is the first to conceptualize ontology alignment for the Industrial Internet
of Things (IloT) domain based on a natural language processing (NLP) model for alignment
among heterogeneous devices. The proposed model characterizes the ontological meta-data
as side information and the structure as the schema and learns vector embeddings for all
entities and relations. In extensive experiments on both cross-lingual and cross-ontology
tasks, our model consistently outperformed the baseline BERT_INT model by 1.2-2.7% in
HR and MRR scores. However, these results have a few pertinent limitations. First, the
ontology dataset had to be synthesized, due to the lack of publicly available real-world
smart sensor datasets. While language translation undoubtedly has a solid foundation
and large datasets are available for human language ontology, this is not true for the
IIoT domain. Second, there is no bench-marking dataset available for establishing the
ground truth for IoT ontology alignment; therefore, the alignments between SSN and SOSA
ontology were annotated by human experts. Although the results may be subjective due to
the alignment annotations, they are important because of their novelty. Last, the ontology
graphs of IoT ontology for sensor devices are very concise by design. The number of unique
entities (nodes + relations) and triples in them is maximum in the hundreds, as opposed to
language ontology, which usually has thousands of nodes. For instance, the SSN ontology
has 125 unique entities, while SOSA has 75, so the accuracy results of correct alignments in
Table 6 are as per the limited number of unique entities. Moreover, the ontologies for sensor
devices were designed for functionally similar types of devices but with varying design
principles. Nevertheless, when the model learns language embeddings, it is easier to find
nodes across ontologies that have labels with similar semantic meanings. To remove any
such biases, a structure encoder was utilized to impose the context by correctly aligning
only those nodes with matching labels and similar in-graphs (neighbors).

There are several directions this work could potentially develop in. A generalized
IoT ontology designed for any IoT device (beyond sensors) could be tested for ontology
alignment, to make an even stronger ablation study. One such ontology is SAREF [50],
which has approximately 1097 unique triples, the maximum among any IoT ontology.
Another potential future work is that the paucity of benchmarking datasets could be
resolved by conducting crowd-sourcing of a ground truth to build validation data for IoT
ontology alignment and annotations. There are public platforms such as BioPortal being
used for medical research that provide annotations for disparate biomedical ontologies [51].
Inspired by this, IoT ontological resources could also be publicly provided for research,
to remove the bottlenecks of dataset limitations. Last but not least, as this work can be
considered a step towards enabling translation between heterogeneous IoT sensor devices,
the proposed model could be extended to a translation module in which, based on the
ontology graphs of any device, the model could interpret the messages transmitted from
that device. This idea is at an abstract level as of now and needs extensive efforts and
empirical studies to be realized fully.
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