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Abstract: Training devices to enhance golf swing technique are increasingly in demand. Golf swing
biomechanics are typically assessed in a laboratory setting and not readily accessible. Inertial
measurement units (IMUs) offer improved access as they are wearable, cost-effective, and user-
friendly. This study investigates the accuracy of IMU-based golf swing kinematics of upper torso and
pelvic rotation compared to lab-based 3D motion capture. Thirty-six male and female professional and
amateur golfers participated in the study, nine in each sub-group. Golf swing rotational kinematics,
including upper torso and pelvic rotation, pelvic rotational velocity, S-factor (shoulder obliquity),
O-factor (pelvic obliquity), and X-factor were compared. Strong positive correlations between IMU
and 3D motion capture were found for all parameters; Intraclass Correlations ranged from 0.91 (95%
confidence interval [CI]: 0.89, 0.93) for O-factor to 1.00 (95% CI: 1.00, 1.00) for upper torso rotation;
Pearson coefficients ranged from 0.92 (95% CI: 0.92, 0.93) for O-factor to 1.00 (95% CI: 1.00, 1.00) for
upper torso rotation (p < 0.001 for all). Bland–Altman analysis demonstrated good agreement between
the two methods; absolute mean differences ranged from 0.61 to 1.67 degrees. Results suggest that
IMUs provide a practical and viable alternative for golf swing analysis, offering golfers accessible
and wearable biomechanical feedback to enhance performance. Furthermore, integrating IMUs into
golf coaching can advance swing analysis and personalized training protocols. In conclusion, IMUs
show significant promise as cost-effective and practical devices for golf swing analysis, benefiting
golfers across all skill levels and providing benchmarks for training.

Keywords: golf; golf swing technique; biomechanics; rotational parameters; wearable sensors; inertial
measurement units; golf coaching; performance analysis; real-time feedback

1. Introduction

The popularity of golf has grown internationally, with the number of participants
reaching approximately 119 million in the US alone in 2023 [1]. Simultaneously, there is an
increased demand for devices that can assist recreational golfers’ training to improve their
golf swing techniques [2].

Implementing information gained from quantifying golf swing biomechanics analysis
may assist in enhancing golf performance and reducing the risk of injuries [3]. The rotation
of the upper torso and pelvis plays a crucial role in generating clubhead speed, which
is a key factor in achieving greater distance and accuracy in golf shots. Biomechanical
research has revealed that the X-Factor, or rotation between the upper torso and pelvic
angles, during the swing, is closely linked to clubhead speed and power [4,5]. Additionally,
the angles of the upper torso and pelvic rotation, along with their rotational velocities,
influence swing efficiency and accuracy [6,7].

Biomechanical research on the golf swing has focused on the upper torso and pelvic
rotation due to their significant associations with clubhead speed [8–12] and important
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differences between professional and recreational golfers [11,13,14]. Upper torso obliquity
during the early downswing is also associated with clubhead speed and the direction of
the ball outcome–greater obliquity is associated with faster clubhead speed [8] and less
slice (curve to the right side) of the ball direction [15]. However, accurate calculation of
these metrics typically necessitates a laboratory setting, which limits feasibility outside of
the research setting [5]. As a result, there is a rising interest in developing portable and
non-intrusive motion capture systems specifically designed for golf swing analysis [16].
Consequently, a training device capable of measuring upper torso and pelvic rotation could
offer substantial performance improvements.

Inertial measurement units (IMUs) are increasingly being employed in the develop-
ment of sports training devices, due to their wearable and low-cost features and their
ease of use in the field [17]. A prior study successfully validated the angle of upper torso
rotation measured by IMUs against the gold standard of 3D motion capture across four
sports, including golf swing [18]. The study found that the IMUs measured the upper
torso rotation angle with a deviation of less than 5 degrees compared to 3D motion capture,
across all four sports. However, the upper torso rotation angle at the top of the backswing
was found to be approximately 30 degrees, a stark contrast to the 100 degrees reported
in prior studies for both professional and recreational golfers [11,13,14]. This discrepancy
suggests the participants in the former study may not have been experienced golf players.
Validating the use of IMUs across a broad spectrum of potential golfers, both male and fe-
male professional and recreational golfers, can provide a more robust test for data accuracy.
Additionally, not only the angle of upper torso rotation but also other performance-related
variables, such as pelvic rotation angle [19], X-factor [13], pelvic rotational velocity [20],
and shoulder and pelvic obliquities [11,19], can provide a more comprehensive assessment
of the utility of IMUs for measuring golf swing performance.

The purpose of this research is to investigate the accuracy of IMUs in measuring
golf swing kinematics. Specifically, the aim was to determine the validity of IMU-based
measures of the upper torso and pelvic rotation, pelvic rotational velocity, shoulder and
pelvic obliquities, and X-factor during the golf swing. We hypothesized that IMU measures
of golf swing rotation would correlate highly with the gold-standard 3D motion capture.

2. Materials and Methods
2.1. Participants

Testing was conducted at Stanford Medicine, Department of Orthopaedic Rehabilita-
tion, Motion Analysis Laboratory (Redwood City, CA, USA). Based on an a priori power
calculation, a total of 36 subjects would provide over 80% power to calculate the intraclass
correlation coefficient for agreement between IMU and motion capture data to within a
confidence interval width of 0.1, assuming ICCs of 0.8 or greater. To ensure a balanced
cohort for validation, an equal number of amateur and professional golfers (18 each) and
male/female gender (18 each) were recruited. The study was approved by the Institutional
Review Board (eProtocol number: 63133), Stanford University, and consent was obtained
from all volunteer participants.

2.2. Data Acquisition

Kinematic data were collected using a ten-camera optometric system with Cortex 9
Motion Capture Software for 3D motion analysis (Motion Analysis Corporation, Santa Rosa,
CA, USA). The custom IMUs were recorded with in-house developed software written in
Rust 1.71.0 and Python 3.10.0 at a sampling rate of 100 Hz. The average 3D residual error
for the motion capture system was 1.2 ± 0.6 mm, indicating the degree of precision with
which the system could reconstruct the location of each marker within the capture volume.

IMU data were captured using 2 IMU devices, with a sampling rate of 100 Hz. The
IMUs used in the research were configured with a gyroscope setting full-scale range
of 2000 degrees per second and an accelerometer full-scale range of 16 g, allowing for
accurate recording of a wide range of angular velocities and accelerations during the golf
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swings. These IMUs were wirelessly connected to a lab computer via Bluetooth Low
Energy, enabling real-time transmission of the collected data. The data were then stored for
subsequent in-depth analyses.

2.3. Protocol

Four reflective markers (14 mm) were placed on the anterior superior iliac spines (ASIS)
and acromions, bilaterally. This marker placement is a customized model in accordance
with the swing variables validated in this study. The analysis of the upper torso and pelvis
angular kinematics during the golf swing has used this marker placement in several prior
studies [11,21,22]. A reflective tape (a radius of 15 mm) was also placed 5 cm proximal to
the clubhead of the participants’ seven-iron golf club. A plastic practice ball, comparable in
size to a standard golf ball, with the reflective tape attached, was utilized and placed on a
synthetic grass mat. In addition, two custom IMUs were placed on the participant’s T1 and
L4 vertebrae.

Participants were positioned in the laboratory so that their starting position had the
upper torso and pelvis aligned with the frontal plane of the 3D motion capture space
coordinate system. Each participant was given the opportunity to warm up with ‘easy’ golf
swings and then was instructed to perform five ‘hard’ golf swings, from which a minimum
of 3 representative swings were recorded.

2.4. Data Processing

For each golfer, a minimum of two to a maximum of three swings with no marker
dropout were processed. Marker data were filtered using a Butterworth filter with a
cutoff frequency of 12 Hz. Marker data from the ball and clubhead were not smoothed
because the only interest was the time of swing phases. In addition, at impact, very large
displacement occurs in those markers and smoothing would introduce an undesirable
delay and reduction in magnitudes. Of note, to address this issue, some prior studies have
used different cutoff frequencies for each marker, at which the clubhead was smoothed at
30 Hz [22,23].

Swing phases were delineated based on the clubhead and ball kinematics. The initia-
tion of the backswing was identified when the clubhead’s vertical velocity exceeded 0.2 m/s.
The initiation of the downswing was defined by the reversal of the clubhead’s vertical
direction at the top of the backswing. Impact was defined as the time point immediately
preceding the initial increase in ball velocity.

The rotation of the upper torso and pelvis were calculated as the rotation of the
segments connecting the bilateral acromion and ASIS markers, respectively, along the
vertical axis. The X-factor was calculated as the difference between the upper torso and
pelvic rotation. The rotational velocity of the pelvis was calculated as the rate of change
of the pelvic rotation [24–27]. Obliquity of the upper torso (S-factor) and pelvis (O-factor)
was calculated as the angle between the horizontal plane and the segment connecting the
acromion for the upper torso and the ASIS for the pelvis [11].

Each swing was normalized to a percentage of the golf cycle from the beginning of the
backswing (0%) to the ball impact (100%). The end of follow-through (130%) was defined
by the local minimum of vertical clubhead displacement following the circumduction of
the club around the body during the follow-through phase. The swings of amateur golfers
were plotted over the average curve of professional swings for comparative purposes.

IMUs placed on the T1 and L4 spinous processes were used to capture the raw ac-
celerometer and gyroscope measurements of the golf swings. Orientation angles relative
to the participant’s orientation at address were calculated using the Madgwick filter [28],
resulting in angular measurements in the pitch, roll, and heading directions, where upper
torso and pelvic rotations are represented by roll and the S-factor and O-factor are repre-
sented by heading. X-factor, or the relative rotation between the upper torso and pelvis,
was determined by calculating the difference between the filtered and smoothed upper
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torso and pelvic angles. Finally, pelvic rotational velocity was calculated by calculating the
rate of change in the filtered and smoothed roll angles of the pelvis.

2.5. Statistical Analysis

Statistical analyses were performed using a custom script on Python 3.10.0 (Python
Software Foundation, Wilmington, DE, USA) for outlier detection and Bland–Altman
analysis and SAS version 9.4 (Cary, NC, USA) for Intraclass Correlation and Pearson
correlation.

2.5.1. Outlier Detection

An outlier detection analysis was conducted to ensure the reliability and validity of
subsequent analyses. Due to the time-series nature of the data, where each swing trial was
composed of multiple frames, an outlier detection approach was employed, considering
the entire swing [29]. The Z-scores for each biomechanical variable within each swing
were calculated. Swings with frames that exhibited Z-scores above 3 or below −3 for any
variable were identified and flagged as outliers and were excluded from further analysis,
as previously recommended [29].

2.5.2. Intra Class Correlations and Pearson Correlation

Rotational biomechanics of the golf swing was examined by calculating the Intraclass
Correlation (ICC) and Pearson correlation coefficients between the 3D motion capture and
IMU kinematic data. Six parameters, including upper torso and pelvic rotations, pelvic
rotational velocity, S-factor, O-factor, and X-factor, were compared.

2.5.3. Bland–Altman Analysis

Bland–Altman analysis was employed to further assess the agreement between 3D
motion capture and IMUs. This statistical method involves plotting the mean of the
two measurements against their difference, providing visual and numerical measures of
agreement, including the mean difference and limits of agreement (LoA, defined as the
mean difference ± 1.96 standard deviations of the difference) [30]. If the IMU and 3D motion
capture are in good agreement, then the mean difference on the Bland–Altman plots should
be near zero, indicating that IMU neither consistently over- or underestimates relative to
3D (i.e., low systematic bias). If the width of the LoA is narrow relative to the range of the
data, this indicates relatively low random error between the two measurements. Other
features of the Bland–Altman plots to look for are that the errors between the two measures
and the variability in these errors are relatively consistent across the plot, indicating that
these do not increase or decrease as the measurements get larger.

3. Results
3.1. Demographics

The study included a cohort of thirty-six golfers, comprising 18 professionals and
18 amateurs. The participants were evenly distributed between males and females. The
mean age was 33.8 ± 15 years, with professionals being younger at 27.7 ± 10.4 years, and
amateurs older at 39.9 ± 16.6 years. The mean height and weight were 173.8 ± 10.2 cm,
and 71.6 ± 14.5 kg, respectively, with no substantial differences between professionals.
The median handicap and interquartile range (IQR) across all participants was 4.5 [IQR:
0.8, 13.3]. The median handicap was significantly lower for professionals (0.5 [0.0, 2.8])
compared to amateur players (13.5 [IQR: 9.3, 18.8]). These demographic data provide an
overview of the diverse study population, which comprises individuals with varying skill
levels and physical attributes (Table 1).
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Table 1. Descriptive Statistics of Demographic and Physical Characteristics for Professional and
Amateur Golfers. SD = standard deviation.

All
Mean (SD)

Pro
Mean (SD)

Amateur
Mean (SD)

Age 33.8 (15.0) 27.7 (10.4) 39.9 (16.6)

Height (cm) 173.8 (10.2) 174.4 (10.4) 173.1 (10.2)

Weight (kg) 71.6 (14.5) 70.5 (14.6) 72.7 (14.7)

3.2. Swing Results

A total of 108 swings were recorded from which a subset of five swings (4.6% of all
trials) were identified as outliers based on z-scores above 3 or below −3. These outlier
swings exhibited deviations primarily attributed to measurement errors and were excluded
from further analysis. A total of 103 swings qualified and were included in the analysis.

To examine swing variation within a subject, a minimum of two swings (5 participants)
or three swings (31 participants) were analyzed.

Figure 1 presents plots of the golf swing biomechanical variables derived from both
IMU and 3D motion capture for each parameter. The plot illustrates the mean values
over the golf swing cycle, starting with the beginning of the backswing, downswing,
impact at 100%, and follow-through. Bands represent one standard deviation to provide a
comprehensive view of the average and variability within the golf swing data.
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Figure 1. Comparison of 3D motion capture and IMU measurements across different swings; shaded
regions represent 95% confidence intervals (CIs) around the plotted lines for the golf swing cycle,
with impact at 100%.

3.2.1. Intra Class Correlations and Pearson Correlation

The Intraclass Correlation Coefficients (ICCs) provided evidence of a strong correlation
between the measurements collected by the IMU and 3D motion capture methods for the
upper torso and pelvic rotation, pelvic rotational velocity, S-factor, O-factor, and X-factor
(Table 2). Upper torso and pelvic rotation as well as S-factor exhibited a tighter, while
pelvic rotational velocity, O-factor, and X-factor demonstrated wider variability (Figure 2).
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Correlation analysis of the second swings of each participant resulted in similarly high
ICC values (pelvic rotation: 0.99, pelvic rotational velocity: 0.98, upper torso rotation: 0.99,
S-factor: 0.99, O-factor: 0.91, X-factor: 0.94). Strong association is further supported by the
Pearson coefficient and corresponding R2 values.

Table 2. Pearson correlation coefficients and Intra Class Correlation (ICC) comparing IMU and 3D
motion capture methods. All Intraclass and Pearson correlations were highly significant (p < 0.001).

ICC (95% CI) Pearson (95% CI) R-Square

Upper Torso Rotation 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.99

Pelvic Rotation 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99

Pelvic Rotational Velocity 0.98 (0.98, 0.98) 0.98 (0.98, 0.98) 0.96

S-factor 0.99 (0.98, 0.99) 0.99 (0.98, 0.99) 0.97

O-factor 0.91 (0.89, 0.93) 0.92 (0.92, 0.93) 0.85

X-factor 0.94 (0.93, 0.94) 0.94 (0.94, 0.95) 0.89
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3.2.2. Bland–Altman Analysis

The comparison of measurements between the IMUs and 3D motion capture was also
assessed using Bland–Altman plots. The mean differences for all measures were close to
0, demonstrating that IMU neither consistently over- or underestimated the 3D measures
(Table 3, Figure 3). The LoA was narrowest for torso and pelvic rotation, only around
8–10% relative to the range of these measures. The width of the LoA was greatest for
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O-factor but was still only a third that of the range of the data for this measure. None of
the Bland–Altman plots showed evidence that the error in the data or the variability in the
error varied appreciably over the range of measurement.

Table 3. Bland–Altman analysis comparing 3D motion capture and IMU measurements for each
parameter. The mean difference and limits of agreement are provided for each parameter, quantifying
the agreement between the two measurements.

Mean
Difference

Mean
Difference
% of Range

LoA
(Lower)

LoA
(Upper)

LOA
% of Range

Upper Torso Rotation
(deg) 1.05 0.3% −11.16 13.26 8.1%

Pelvic Rotation (deg) 0.76 0.4% −9.57 11.10 10.2%

Pelvic Rotational
Velocity (deg/s) 1.67 0.2% −63.06 66.40 15.9%

S-factor (deg) 0.61 0.5% −8.11 9.32 15.7%

O-factor (deg) 1.65 2.8% −8.14 11.44 33.4%

X-factor (deg) −1.39 −0.9% −21.35 18.56 25.0%
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Figure 3. Bland–Altman plots comparing the measurements of golf swing parameters obtained from
IMUs and 3D motion capture. Mean difference (red line) and limits of agreement (blue lines) are
displayed, showing the agreement between the two measurement methods. The plots help identify
systematic bias and the degree of random error between the methods.

4. Discussion

The present study aimed to investigate the accuracy of inertial measurement units
(IMUs) in measuring the rotational biomechanics of the golf swing. We compared IMU-
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based measures with the gold standard of 3D motion capture, seeking to determine the
validity of IMUs for assessing upper torso and pelvic rotation, pelvic rotational velocity,
shoulder and pelvic obliquities, and X-factor during the golf swing.

Our findings indicate that IMUs provide a highly accurate alternative for capturing
golf swing kinematics, exhibiting strong correlations with lab-based 3D motion capture
systems as assessed by ICC and Pearson correlation analysis. Mean differences and limits
of agreement (LoA) across various parameters revealed the overall agreement between the
two methods. It is worth noting, however, that variations existed across different aspects of
the swing.

The mean differences between IMU and 3D motion capture data were all close to 0.
Relative to the range of the data, the mean difference was smallest for pelvic rotation (0.2%)
and largest for O-factor (2.8%). The LoA were narrowest relative to the range of the data
for the rotational measures (8.1% for upper torso rotation and 10.2% for pelvic rotation),
and widest for X-factor (25.0%) and O-factor (33.4%). Given the range of rotation and
rotational velocity, the absolute mean differences detected are negligible, indicating high
accuracy. This underscores the importance of precision in capturing golf swing rotational
biomechanics, while also affirming the robustness of the method, despite minor deviations.

Post-processing and filtering of IMU measurements exert a significant impact on IMU-
derived metrics. This effect is particularly pronounced for derived values such as pelvic
rotational velocity, which is computed by differentiating the pelvic rotational angles over
time. Figure 4 illustrates this phenomenon by depicting a single trial that demonstrated
notable inconsistency at the beginning of the swing, most likely attributed to a sudden
movement shifting the IMU at the beginning of backswing due to loose attachment. The
rest of the measurement for the swing, however, appears to be consistent and accurate. This
discrepancy negatively impacts the agreement between the two methods and may lead
to disparities in the data analysis. A refined filtering method could enhance the precision
of the measurements, including those of the pelvic rotational velocity. Consequently, this
could further improve the congruence between the IMU and 3D motion capture data.
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ment. The rest of the measurement for the swing, however, appears to be consistent and 
accurate. This discrepancy negatively impacts the agreement between the two methods 
and may lead to disparities in the data analysis. A refined filtering method could enhance 
the precision of the measurements, including those of the pelvic rotational velocity. Con-
sequently, this could further improve the congruence between the IMU and 3D motion 
capture data. 

 
Figure 4. Artifact observed on IMU-derived metrics for a single trial. (A): Pelvic rotation, (B): pelvic 
rotational velocity as a function of time for both IMU and 3D motion capture measurements. (C): 
Figure 4. Artifact observed on IMU-derived metrics for a single trial. (A): Pelvic rotation, (B): pelvic
rotational velocity as a function of time for both IMU and 3D motion capture measurements. (C): Scat-
ter plot comparing pelvic rotational velocity derived from 3D motion capture (x-axis) against the
IMU-derived pelvic rotational velocity (y-axis).

Precise placement of IMUs is vital for the accurate measurement of upper torso and
pelvic rotation. The disparity in locations for calculating upper torso rotation, such as
the T1 vertebra for IMU versus the segment between the two acromion markers for 3D
marker-based analysis, may account for slight variations in the measurement of upper
torso rotation between the two methods. These variations can also be influenced by specific
movement characteristics, such as upper torso protraction during the follow-through phase
of a swing, where the spine may stop rotating but the upper torso continues.
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Our findings have significant implications for golf swing analysis, particularly in the
context of training and performance improvement. Traditional 3D motion capture for golf
swing analysis has been mainly limited to laboratory settings, making it challenging for
recreational golfers to access biomechanical insights and performance feedback outside of
research settings. Wearable IMU devices offer portable and cost-effective access, enabling
golfers to receive immediate feedback and guidance on their swing techniques both on the
driving range and the golf course.

The integration of IMUs into existing golf coaching and training technologies presents
an exciting opportunity [5]. IMUs offer comprehensive and instantaneous feedback, which
can complement traditional coaching methods and accelerate advancements in golf per-
formance. Furthermore, researchers and practitioners can gain valuable insights into the
biomechanics of each individual golf swing, which, in turn, can lead to the development of
new injury prevention strategies for golfers.

A promising avenue these findings uncover is the possibility of creating a single score
swing performance index, which could be computed solely utilizing IMUs. Such an index
would gauge the disparity between an individual’s swing and the pro benchmark swing,
enabling golfers to assess their performance, pinpoint areas for enhancement, and monitor
their progress over time [7].

As golf continues to grow in popularity, the sheer number of participants and the
portable nature of wearable IMUs present an opportunity for collecting large-scale golf
swing data [31]. Analyzing big data can reveal valuable insights and patterns in swing
mechanics across different skill levels and playing styles [32]. In addition, the application
of artificial intelligence (AI) in analyzing extensive golf swing data offers great promise in
interpreting large volumes of swing-related information, thereby enabling highly individu-
alized and nuanced suggestions to improve golf swings. By identifying key performance
factors and swing patterns, golfers and coaches can tailor training programs for individual
needs and optimize performance strategies.

Potential future directions involve the formulation of personalized training protocols
utilizing IMU-based metrics. Through the comparison of an individual golfer’s swing data
with the established benchmark patterns observed in professional golfers, a customized
training regimen can be devised to target the unique requirements of each golfer.

While our findings hold significant implications for golf swing analysis and perfor-
mance improvement, it is essential to address certain limitations in our study. The observed
small variations in agreement between IMUs and 3D motion capture for specific parameters
may be influenced by individual swing styles, IMU placement accuracy, and environmental
factors, such as radio interference and data loss during transmission. To overcome these
limitations, future research should focus on standardizing IMU placement and calibration
procedures and investigating the impact of environmental factors. By addressing these
challenges, the accuracy and reliability of IMU-based measurements can be further im-
proved, unlocking the full potential of wearable devices for golf swing analysis and offering
practical insights for golfers across skill levels.

In conclusion, our research revealed that IMUs can provide a reliable and accurate
method for measuring rotational biomechanics in the golf swing. The accuracy and validity
of IMUs when compared to the gold-standard 3D motion capture, across a wide spectrum
of golfers, highlight their potential use as portable, non-invasive, and cost-effective devices
in golf swing analysis and training. This supports the potential for IMUs to facilitate
biomechanics analysis outside of lab-based settings, thereby enabling real-world applica-
tions, such as on-course training and performance enhancement for both professional and
recreational golfers. These findings pave the way for future research to further refine and
expand the use of IMUs in sports biomechanics.
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