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Abstract: Anomaly detection tasks involving time-series signal processing have been important
research topics for decades. In many real-world anomaly detection applications, no specific distri-
butions fit the data, and the characteristics of anomalies are different. Under these circumstances,
the detection algorithm requires excellent learning ability of the data features. Transformers, which
apply the self-attention mechanism, have shown outstanding performances in modelling long-range
dependencies. Although Transformer based models have good prediction performance, they may be
influenced by noise and ignore some unusual details, which are significant for anomaly detection.
In this paper, a novel temporal context fusion framework: Temporal Context Fusion Transformer
(TCF-Trans), is proposed for anomaly detection tasks with applications to time series. The original
feature transmitting structure in the decoder of Informer is replaced with the proposed feature fusion
decoder to fully utilise the features extracted from shallow and deep decoder layers. This strategy
prevents the decoder from missing unusual anomaly details while maintaining robustness from
noises inside the data. Besides, we propose the temporal context fusion module to adaptively fuse
the generated auxiliary predictions. Extensive experiments on public and collected transportation
datasets validate that the proposed framework is effective for anomaly detection in time series.
Additionally, the ablation study and a series of parameter sensitivity experiments show that the
proposed method maintains high performance under various experimental settings.

Keywords: anomaly detection; deep learning networks; transformer; time series

1. Introduction

Anomaly detection aims to find patterns that do not comply with expected be-
haviour [1]. In many real-world applications, anomaly detection tasks are important
research topics [2,3]. Typically, anomalies are categorised as point, contextual, and col-
lective. Since it is common to find that no specific distributions fit the data, and the
characteristics of anomalies are different, using traditional anomaly detection methods
based on distance estimation or statistical theory may be challenging. Moreover, complex
and changing intrinsic data characteristics, low recall rate, and high dimensional data [4]
further impede the learning performance of traditional machine learning methods. Under
these circumstances, the detection algorithm requires excellent learning ability of the data
features. Deep learning methods commonly learn the complex dynamics in the data with-
out relying upon underlying patterns within the data. This advantage makes them popular
in dealing with anomaly detection tasks. Transformers, which apply the self-attention
mechanism, have shown outstanding performances in modelling long-range dependencies
among different deep learning methods.

Common methods for dealing with anomaly detection tasks [5–7] can be generally
classified as traditional machine learning methods and deep learning methods.
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SVM [8], One-class SVM (OC-SVM) [9], Isolation forest [10] and Local Outlier Factor
(LOF) [11] are typical examples of machine learning anomaly detection algorithms. How-
ever, if raw samples are complex or dense, the detection performance of these methods will
be limited. LODA [12] is a lightweight anomaly detector that ensembles different detectors
and is suitable for data streams. LSCP [13] is another ensemble framework compatible with
different types of base detectors and further determines the most competent base detector
in the local region upon similarity measuring.

Although machine learning methods are suitable for some anomaly detection tasks,
deep learning methods more effectively learn expressive representations of complex data
in some real-world applications [4,14]. For example, deep support vector data description
(DeepSVDD) [15] is applied to complex data for better feature selection. Recurrent neural
networks (RNN) that capture time dependence are commonly used to recognise or predict
sequences. RNN has been exploited with gating mechanisms to become common methods such
as LSTM and Gated recurrent units (GRU). For example, one LSTM-based method is adopted
for detecting urban anomalies [16]. DeepAnT [17] is a novel anomaly detection method in time
series, which does not require a huge dataset. It primarily applies a CNN-based network to take
a window range of time series and try to predict its value for the next stamp. Then, the predicted
value is sent to an anomaly detector module to determine its abnormality. DAGMM [18] applies
a compression network and an estimation network to achieve unsupervised anomaly detection.
The compression network implements a deep autoencoder to generate a low-dimensional
representation for each input. Then the estimation network, based on the Gaussian Mixture
Model, takes the representation and predicts the corresponding likelihood. Parameters of
both the two sub-networks are jointly optimised simultaneously. SO-GAAL [19] applies the
generative adversarial learning framework, which consists of a generator and a discriminator
used to detect anomalies. Alternatively, GDN [20] combines graph structure learning and
attention weights to achieve good anomaly detection results in some fields. LUNAR [21]
is another graph neural network-based anomaly detection method. It extracts information
from the nearest neighbours of each node and further detects anomalies, and it can learn and
adapt to different sets of data. Transformer [22]-based algorithms are also widely applied
in anomaly detection tasks. For example, UTRAD [23] obtains stable training and accurate
anomaly detection/localisation results based on a transformer-based autoencoder. Additionally,
MT-RVAE [24] utilises the variational Transformer model with improved positional encoding
and feature extraction to achieve satisfying anomaly detection performances.

In this paper, one Transformer-based network, Informer [25], is chosen as the baseline
for dealing with anomaly detection tasks with data collected from real-world applications.
The original Informer is an efficient model of Transformer that adopts ProbSparse self-
attention mechanism to significantly reduce the time complexity and memory usage while
outperforming existing methods, mainly in time-series forecasting tasks. Additionally, it can
handle tasks in an unsupervised way to avoid the cumbersome labelling cost. However, directly
applying the original Informer to time-series anomaly detection tasks may not be appropriate.
Since the origin Informer is used in time-series forecasting tasks, it aims to find the overall
trend of the target sequence and can ignore some unusual details. Moreover, Transformers
may focus on dominant relationships among sequences while paying less attention to intrinsic
details when dealing with short-term data. As a result, as shown in Figure 1, it has a straight-
throughout feature-transmitting structure for layers in the decoder, and the output of the
informer decoder is merely based on the last layer, which contains the least noise but may miss
some details. However, anomalies may be rare in anomaly detection tasks, and some minor
details in data may reflect the anomaly and cannot be ignored. Different features should be
utilised to improve the overall detection performances [26].
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Figure 1. Demonstration example of the 3-layer decoder block diagram for the original Informer network.

To overcome the above-mentioned limitations, we propose to better utilise features
from shallow and deep decoder layers with a new multi-layer feature fusion decoder. The
original feature-transmitting structure in the decoder of Informer is replaced with the
proposed feature fusion decoder to fully utilise the features extracted from shallow and
deep decoder layers. This strategy prevents the decoder from missing unusual anomaly
details while maintaining robustness from noises inside the data. Next, the auxiliary
predictions generated by the decoder will be further adaptively fused based on similar-
ities/distances and sequence information in the temporal context fusion module. This
strategy exploits temporal context information of the data by a learnable weight to make
the output more robust. We evaluate the proposed method using both the public and our
collected transportation datasets for anomaly detection tasks and compare the results with
recently proposed machine learning and deep learning methods.

The main contributions of our work can be summarised as follows:

• We introduce a novel framework: Temporal Context Fusion Transformer (TCF-Trans)
for unsupervised anomaly detection in time series based on temporal context fusion.

• We replace the straight throughout feature-transmitting structure in the decoder layers
of Informer with the proposed feature fusion decoder, which fully utilises the features
extracted from shallow and deep decoder layers. This strategy prevents the decoder
from missing unusual anomaly details while maintaining robustness from noises
inside the data.

• We propose the temporal context fusion module to fuse the auxiliary predictions
generated by the decoder adaptively. This strategy alleviates noises or distortions
caused by the single auxiliary prediction and fully uses temporal context information
of the data.

• Extensive experiments on the public and collected transportation datasets validate
that the proposed framework is effective for anomaly detection tasks, such as trans-
portation tasks in time series. In addition, a series of sensitivity experiments and the
ablation study show that the proposed method maintains high performance under
various experimental settings.

The remaining parts of this paper are organised as follows. Section 2 reviews related
works and the background of the Transformer. Section 3 describes the details of the
proposed method. Section 4 describes the experiments for validating the proposed method.
The conclusion of this paper is presented in Section 5.

2. Related Work

In this section, the background and a review of related works are presented. We first
formulate the anomaly detection task in Section 2.1. The background of the transformers
and Informer are described in Section 2.2 and Section 2.3, respectively.

2.1. Problem Statement

Given a time-series x ∈ RC×L, where C is the number of channels, and L is the length
of the sequence, we can obtain an observation sequence X t based on x. The observation at
time t with length Lx can be represented as follows:

X t = {x1, . . . , xLx | xi ∈ Rdx}, (1)
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where xi is the ith observed values and dx is the dimension of the observation.
Then, we follow the forecasting-based strategy to generate the corresponding predic-

tion sequence Y t with length Ly based on X t, as follows:

Ŷ t = {ŷ1, . . . , ŷLy | ŷi ∈ Rdy}, (2)

where ŷi is the ith predicted value and dy is the dimension of the prediction.
Time series anomaly detection methods aim to determine anomalies in x. Our anomaly

detection approach is to generate an anomaly score based on anomaly criteria between
Ŷ and its corresponding target Y . Next, the anomaly detection result can be obtained by
comparing the anomaly score to a threshold.

2.2. Transformer

Compared with traditional machine learning methods, deep learning methods can
capture complex dynamics in the data without making assumptions about the raw data.
Among numerous deep learning methods, LSTM [27] and Transformer [22] based algo-
rithms are popular in time series tasks, including anomaly detection. Although LSTM-based
methods achieve satisfying performances in some anomaly detection tasks, their highly
computationally expensive and inefficient long temporal pattern learning capability still
limits their performances. Recently, innovations based on the vanilla Transformer [22] have
been widely applied in various fields such as natural language processing (NLP) [28,29],
computer vision (CV) [30–33] and time series applications [34–36].

Transformers have shown outstanding performances in modelling long-range depen-
dencies based on the self-attention mechanism and therefore are appealing for time series
applications. Moreover, compared with LSTM-based methods, Transformer-based methods
are commonly more efficient because of parallel computing [37]. The architecture of a
vanilla Transformer framework is shown in Figure 2. The vanilla Transformer consists of
an encoder and a decoder, each of which is a stack of N identical layers. Each encoder layer
contains two sub-layers, including the multi-head self-attention module and a position-
wise fully connected feed-forward network. The residual connection [38] is applied on
each sub-layer, and a layer normalisation module [39] is set at the end of each sub-layer.
As for the decoder, it has one additional layer between the two sub-layers to perform
multi-head attention over the output of the encoder. The residual connection and layer
normalisation modules are also implemented in the decoder. Alternatively, a mask is added
to the self-attention module to prevent positions from attending to subsequent positions.

Time series anomaly detection methods aim to determine anomalies in x.

Our anomaly detection approach is to generate an anomaly score based on

anomaly criteria between Ŷ and its corresponding target Y . Next, the anomaly

detection result can be obtained by comparing the anomaly score to a threshold.

2.2. Transfomer135

Compared with traditional machine learning methods, deep learning meth-
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anomaly detection. Although LSTM-based methods achieve satisfying perfor-140
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Figure 2: Architecture of vanilla Transformer.
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Figure 2. Architecture of vanilla Transformer.
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The vanilla Transformer has four key modules: the attention module, feed-forward
module, layer normalisation module, and positional encoding module [40].

The attention module takes the scaled dot-product attention with Query-Key-Value
(QKV) model, which is shown in Equation (3).

Attention(Q, K, V) = softmax(
QKT
√

Dk
)V (3)

where packed matrix representations of queries Q ∈ RLQ×Dk , keys K ∈ RLK×Dk , values
V ∈ RLk×DV and LQ, LK are lengths of queries and keys (or values). Dk, DV are dimensions
of keys (or queries) and values, respectively.

Then, the vanilla Transformer applies the multi-head attention to project the queries, keys
and values with H different sets of learned projections, which is shown in Equation (4).

MultiHeadAttn(Q, K, V) = Concat(head1, . . . , headH)WO (4)

where headi = Attention(QWQ
i , KWK

i , VWV
i ) (5)

where WQ
i , WK

i , WV
i and WO are projection parameter matrices.

The vanilla Transformer performs remarkably in many fields, but quadratic computa-
tion complexity remains the bottleneck for some real-world tasks. Recently, Informer [25]
selects prototypes from queries using ProbSparse mechanism based on Kullback–Leibler
divergence between the query’s attention probability distribution and the uniform dis-
tribution. However, as we mentioned earlier, directly applying the Informer to anomaly
detection has limitations. Therefore, a novel temporal context fusion framework named
TCF-Trans based on Informer [25] is presented in the next section to better deal with
anomaly detection tasks in time series.

2.3. Preliminary on Informer

Although the vanilla Transformer performs remarkably well in many fields, high
computational complexity remains challenging for some real-world tasks. Several works
have been proposed to improve the efficiency of the vanilla Transformer. Informer [25]
is one of the most popular improved versions. It selects prototypes from queries using
ProbSparse mechanism based on the Kullback–Leibler divergence between the query’s
attention probability distribution and the uniform distribution. Informer significantly
reduces the time complexity and the whole memory usage of the network while maintaining
the good learning capability of the Transformer.

The Informer [25] implements a popular encoder-decoder architecture to produce
outputs. The encoder encodes the input X t into the hidden state representationHt. Next,
the decoder produces output Ŷ t based onHt.

The standard self-attention can be replaced by the ProbSparse self-attention mechanism
to reduce the time complexity from O(L2) to O(L ln L). This mechanism allows each key
to only attend to the Top-k dominant queries, as follows:

A(Q, K, V) = Softmax(
QKT
√

d
)V, (6)

where Q is the sparse matrix of queries that only contains top-k dominant of queries under
the query sparsity measurement [25], d is the dimension of the input, K is the matrix of
keys and V is the matrix of values.

In the encoder, Self-attention distilling operations can also be implemented between
attention blocks to reduce the whole memory usage. The encoded feature will be sent to
the decoder layers to produce auxiliary predictions.
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As shown in Figure 1, the structure of the Informer decoder contains layer stacks of
multi-head attention blocks. The decoder input combines the earlier piece sequence before
the output and a placeholder, as follows:

Xt
din = [Xt

re f , Xt
0] ∈ R(Lre f +Ly)×dmodel , (7)

where [·, ·] donates the concatenation, Xt
re f is a Lre f long reference sequence, Xt

0 is a Ly long
placeholder sequence and dmodel is the dimension of the model.

When computing ProbSparse self-attention in the decoder, a mask can be applied by
setting masked dot products to −∞ for inappropriate connections. The final output is
produced by a fully connected (FC) layer. The decoder of the Informer utilises multiple
layers to extract features and reduce noise, which may be beneficial in forecasting applica-
tions, since its goal is to determine the overall trends, and hence minor details may not be
necessary. However, since anomalies are rare and some points anomalies differ from the
primary trend, this setting becomes inappropriate in anomaly detection tasks. Moreover,
different features contain different characteristics, and relying on a single feature may make
the method less robust and more likely to be infected by noise in the single feature.

3. TCF-Trans: Temporal Context Fusion Transformer
3.1. Overall Structure

As shown in Figure 3, TCF-Trans consists of three main modules: an auxiliary pre-
diction generator, a temporal context fusion module and an anomaly detection module.
The auxiliary prediction generator performs feature learning, fusion and refinement of
the processed input data based on an Encoder–decoder architecture. Next, the generated
auxiliary predictions are further processed by the temporal context fusion module based on
the similarity/distance and sequence information to generate output predictions adaptively.
Finally, the output predictions are compared with the target data under anomaly detection
criteria to produce anomaly scores. The final detection result will be determined based on
the threshold. These modules will be presented in detail in the following sections.

Input features

Input data

Multi-layer feature 

fusion decoder

Encoder

Auxiliary prediction generator

Temporal 

context 

fusion 

module 

Anomaly 

detection

module

Detection results

Decoder input

Figure 3. Block diagram of overall structure of TCF-Trans.

3.2. Auxiliary Prediction Generator

The auxiliary prediction generator implements an Encoder–decoder architecture simi-
lar to the Informer [25]. The input X t is encoded into the hidden state representationHt as
the encoder output. Next, the decoder produces output auxiliary predictions P̂ t

based on
the encoder outputHt and the decoder input Xt

din.
The process in the encoder is based on the Informer baseline. However, as we men-

tioned earlier, the process of the Informer baseline in the decoder is ineffective in anomaly
detection tasks. To overcome such limitations, we propose a multi-layer feature fusion
decoder to better use different features extracted in shallow and deep decoder layers and
further refine them to generate auxiliary predictions. To smoothly demonstrate the idea of
feature fusion in the decoder, we take a three-layer decoder as an example. As shown in
Figure 4, the decoder consists of three layers and inputs are based on encoder outputHt

and the decoder input Xt
din. The outputs for three layers are denoted as D = {d1, d2, d3},

where di is the output for the ith layer. Our feature fusion aims to generate the merge and
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refined di ∈ RL (denoted as d∗i ) for the ith layer based on D and use it to produce auxiliary
predictions to assist detection.

In the multi-layer decoder, shallow layers contain more information about details,
while deep layers contain more depth representations of the data [41,42]. Therefore, we
can fuse features from deep layers with those from shallow layers to obtain an optimal
representation of the data, as follows:

d∗i = [di, . . . , d1] ∈ RL×d f eature∗ , (8)

where [·, . . . , ·] donates the concatenation, i is the order of the layer and d f eature∗ is the
dimension of the fused feature.

Decoder

layer 1

Decoder

layer 2

Decoder

layer 3

Input features

Decoder input

Encoder output

Encoder output

Encoder output

FC layer

MLP layer

MLP layer

FC layer

FC layer

Auxiliary prediction 1

Auxiliary prediction 2

Auxiliary prediction 3

Figure 4: Demonstration example of the 3-layer feature fusion decoder of TCF-Trans. ⊕
donates feature fusion operations.
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Figure 4. Demonstration example of the three-layer feature fusion decoder of TCF-Trans. ⊕ donates
feature fusion operations.

During the fusion process, the deeper the layer, the more features it fuses. Under this
circumstance, directly applying the FC layer to produce outputs makes it likely to lose
information. Therefore, feature-refining tools such as multilayer perceptron (MLP) layers
can be implemented to refine the fused features for deeper layers. Note that MLP layers
can be represented as hidden layers in the MLP network and layer normalisation can be
added to achieve stable transmission.

Lastly, auxiliary predictions produced by the FC layer using refined features can be
defined as follows:

P̂ t
= {P̂ t

1, . . . , P̂ t
N}, (9)

where N is the number of layers in the decoder and P̂ t
1 is the ith auxiliary prediction.

During the training of this module, the mean squared error (MSE) loss function can
be chosen to compute loss among auxiliary predictions and target sequences. Moreover,
weights can be assigned for each prediction to emphasise the importance of predictions
produced by different layers. The loss function of this module can be expressed as follows:

Loss1 =
N

∑
i=1

wi MSE(P̂ t
i , Y t), (10)

where wi is the weight of the ith decoder layer.

3.3. Temporal Context Fusion Module and Anomaly Detection

After obtaining several auxiliary predictions produced by the former module, one
direct way to combine them is to empirically assign weights to each prediction. However,
such a method takes a long time to reach a satisfying solution due to the large number
of trials required. Also, applying a scalar weight limited the utilisation of the temporal
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context of these predictions. Because different dimensions or points in the sequence
may include different intrinsic temporal contexts or the importance of one prediction,
applying a scalar weight to a prediction means only different importance exists on different
predictions. However, all points in the sequence and dimensions may not share the same
importance. In that case, the output prediction based on a fixed scalar weight may only
partially take advantage of our feature fusion decoder. Therefore, we aim to produce the
final prediction adaptively based on a weight learned from these auxiliary predictions’
similarity/differences and fused temporal context.

As shown in Figure 5, auxiliary predictions are sent in the similarity/distance mea-
surement block to determine their similarities/differences. We can calculate the similari-
ties/differences among them as follows:

di,j = k(P̂ t
i , P̂ t

j ) i 6= j, (11)

where k(·, ·) can be a user-defined distance or similarity measurement such as Euclidean
distance, etc.

Auxiliary predictions

Similarity/ 

distance 

measurement 

block

Sequence information

MLP layer Output predictionsFC layer

Auxiliary predictions

Figure 5. Demonstration example of temporal context fusion module of TCF-Trans. ⊕ donates feature
fusion operations.

In the meantime, a slice or all of each auxiliary prediction4P t
i ∈ RLs×ds can be chosen

as the sequence information, where Ls and ds are its length and dimension, respectively.
Target sequences could also be added to the sequence information, and we take the auxiliary
prediction as an example for convenience of understanding. Then, the temporal context
fusion is processed as follows:

D̂t = [d1,2, . . . , dN,N−1,4P t
1, . . . ,4P t

N ], (12)

where [·, . . . , ·, ·, . . . , ·] donates the concatenation and N is the number of layers in the decoder.
Next, the fused temporal context is processed by MLP layers to further feature ex-

traction and refinement. Since we aim to make full use of auxiliary predictions’ sim-
ilarity/differences and temporal information, the output of the MLP will be sent to
the FC layer to adaptively generate the weight W t∗ based on different weight resolu-
tion expectations on various data inputs. (learned weight with a higher dimension
presents higher resolution). Specifically, the learned weight W t∗ can be chosen from
W t = {W t ∈ RN ,W t ∈ Rdy×N ,W t ∈ RLy×dy×N}.

Last, the output prediction can be computed as follows:

Ŷ t =
N

∑
i=1
W t∗

i · P̂ t
i . (13)

During the training of this module, we can also implement the MSE loss function to
compute loss output prediction and target sequences.

After we have obtained the output predictions, the anomaly detection module com-
pares them with the target sequence under specific criteria. Here, we can choose MSE loss
to generate the anomaly score as follows:

AnomalyScore = MSE(Y , Ŷ). (14)
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Once we have the anomaly score, a threshold can be set to determine anomalies. The
threshold can be determined empirically or via grid search for better precision, but such methods
require extensive trials and are time-consuming. Alternatively, methods based on Streaming
Peaks-Over-Threshold (SPOT) [43] can be applied to determine the threshold th.

Therefore, values exceeding th in the AnomalyScore are considered potential anomalies.
The main procedures for detecting anomalies via TCF-Trans are summarised in Algorithm 1.

Algorithm 1: Anomaly detection via TCF-Trans
Input: Test Time-series x and number of layers in feature fusion decoder N.

1 Obtain T observations as X from x;
2 for t = 1, . . . , T do

// Processed in the Auxiliary Prediction Generator
3 for n = 1, . . . , N do
4 Obtain output of each decoder D = {d1, . . . , dN};
5 end
6 for n = 1, . . . , N do
7 d∗i ← using (8);
8 if MLP layers required then
9 P t

n ← refine d∗i by MLP layers and using FC layer;
10 else
11 P t

n ← using FC layer;
12 end
13 end

// Processed in Temporal Context Fusion Module
14 for i, j = 1, . . . , N i 6= j do
15 di,j ← Compute similarities/differences using (11);
16 end
17 D̂t ← Temporal context fusion using (12);
18 W t ← refine D̂t by MLP layers and using FC layer;
19 W t∗ ← choose resolution expectation onW t;
20 Output prediction Ŷ t ← using (13);
21 AnomalyScore← using (14);
22 end
23 Anomaly detection results← applying threshold method on AnomalyScore;

Output: Anomaly detection results

4. Experiments

In this section, we validate the effectiveness of the proposed anomaly detection frame-
work through several experiments. First, we describe the experimental setup. Then, we
evaluate the proposed framework on three public datasets in Section 4.2. Next, we compare
the proposed method with several state-of-the-art methods in the real-world transportation
traffic dataset in Section 4.3. Moreover, we conduct an ablation study and parameter
sensitivity experiments in Sections 4.4 and 4.5, respectively.

4.1. Setup

We follow standard evaluation metrics in anomaly detection tasks, including F1 score,
Precision, and Recall, to evaluate performances as follows

Precision =
TP

FP + TP
,

Recall =
TP

FN + TP
,

F1 = 2× Precision× Recall
Precision + Recall

,

(15)
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where TP denotes the number of correct anomalous detections, FP denotes the number of
incorrect anomalous detections, and FN denotes the number of incorrect normal detection.
A higher F1 score, precision and recall demonstrate better performances.

The proposed method is implemented with the Pytorch [44] framework and runs on
the NVIDIA RTX 3080 GPU. Some comparison methods are based on publicly available
codes provided by PyOD [45]. We implement three layers (l = 3) for the feature fusion
decoder and the dimension of the model dmodel = 512.

4.2. Evaluation on Public Datasets

We evaluate the proposed method by applying it to three real-world public anomaly
detection datasets. The first public dataset is a gesture dataset [46] collected in a real-
world scenario. It records X and Y moving coordinates of one actor’s right hand into a
time-series sequence. During the actor’s actions with the right hand, anomalous actions
within a specific time period are recorded. In total, the number of data points in the gesture
dataset is around 11,000, with a dimension of two. Around 70% of the samples are used
to train the model, while the rest of the data are used for testing. The second and the
third public datasets are provided in NAB (The Numenta Anomaly Benchmark) [47] with
known anomaly causes collected in the real-world scenario. The second one contains
temperature sensor data of an internal component of a large industrial machine (i.e.,
machine temperature dataset). The third one contains ambient temperature data in an office
setting (i.e., ambient temperature dataset). Each dataset has more than 7000 univariate data
samples collected in time series. Part of the dataset is used as the training set, while the rest
is set for testing.

In the gesture dataset, we implement three state-of-the-art comparison methods,
including LUNAR [21], DeepAnt [17], and DeepSVVD [15]. Comparison anomaly detection
results on this dataset are shown in Table 1, where bold faced number in each column of
the table indicates the best result among all the methods in comparison, which is applied
to all other tables in this paper. The results show that the proposed TCF-Trans obtains the
best performance in terms of F1 score, which indicates this method has a good balance
in terms of its overall performance without biased detection. Although the recall of the
proposed method is not the highest, the methods with higher recall values can suffer from
low precision. This phenomenon means they are highly likely to generate false alarms.
Therefore, the proposed method obtains competitive performances among the compared
state-of-the-art anomaly detection methods. The visualisation examples of detection result
slices achieved via the proposed method and LUNAR on the gesture dataset are presented
in Figure 6. The X-axis represents recording time. Figure 6a represents the raw data from
the test set. Figure 6b and Figure 6c are the corresponding anomaly scores of the proposed
method and LUNAR, respectively. Potential anomalies continuously happen after around
the 1600th recording time. Compared with LUNAR, the proposed method has more stable
anomaly scores among the anomalous regions. On the contrary, anomaly scores obtained
from LUNAR suffer from many missing alarms.

In the machine temperature dataset and the ambient temperature dataset, we im-
plement four state-of-the-art comparison methods, including LSCP [13], LUNAR [21],
SO-GAAL [19], and DeepSVVD [15]. Comparison anomaly detection results on the ma-
chine temperature dataset are shown in Table 2. Results show that the proposed method
outperforms other methods in the F1 score, with close precision and recall values, indicating
that the proposed method can avoid biased detection results. Although some methods have
higher recall values than the proposed method, the gap between their recall and precision
is noticeable. This unbalanced performance prevents such methods from making accurate
predictions among normal samples.
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(a)

(b)

(c)
Figure 6. Visualisation examples on the gesture dataset. (a) Raw data slice from the test set (b) Visu-
alisation example of a detection result slice by the proposed method (c) Visualisation example of a
detection result slice by LUNAR.
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Table 1. Comparison anomaly detection results of the proposed method with other methods on the
real-world gesture dataset.

Method F1 (%) Precision (%) Recall (%)

LUNAR [21] 50.33 38.57 72.40
DeepAnt [17] 40.08 25.07 99.86

DeepSVVD [15] 50.00 43.46 58.86
TCF-Trans 69.69 61.67 80.11

Table 2. Comparison anomaly detection results of the proposed method with other methods on the
machine temperature dataset.

Method F1 (%) Precision (%) Recall (%)

LSCP [13] 60.53 62.30 58.86
LUNAR [21] 45.59 88.66 30.69

SO-GAAL [19] 59.76 57.61 62.08
DeepSVVD [15] 54.51 81.62 40.92

TCF-Trans 62.55 68.76 57.36

Table 3 summarises the comparison anomaly detection results on the ambient tem-
perature dataset. Results show that TCF-Trans obtains satisfying results among the four
methods compared here. Meanwhile, we notice that performance vibrations of some meth-
ods on these three datasets are apparent, while the proposed method is more stable for
different datasets. This advantage indicates that the proposed method is less sensitive to
the change in the intrinsic dataset and may be exploited for many detection tasks.

Table 3. Comparison anomaly detection results of the proposed method with other methods on the
ambient temperature dataset.

Method F1 (%) Precision (%) Recall (%)

LSCP [13] 41.24 48.87 35.67
LUNAR [21] 44.33 35.13 60.06

SO-GAAL [19] 40.36 40.50 40.22
DeepSVVD [15] 32.19 20.41 76.03

TCF-Trans 60.55 50.18 76.31

4.3. Evaluation of the Real-World Transportation Dataset

The proposed method is applied to one real-world collected transportation dataset for
anomaly detection tasks to show its potential in other real-life applications. The dataset
is collected in Chongqing, China, by days (i.e., real-world transportation dataset (days)),
and it contains vehicle traffic data from several roads. This dataset with a day collection
rate can reflect long-term traffic anomalies, which can be valuable for local enforcement,
helping to assess overall traffic planning and management. Moreover, since the relatively
large collection rate requires a longer accumulation of data to enlarge its size, the collection
difficulty is greater, and the relatively small size of this dataset already contains information
for several months. Under such circumstances, the proposed method’s learning ability
with a small number of samples can also be evaluated. The statistical summary of this
dataset is shown in Table 4. In total, the real-world transportation dataset (days) contains
270-day vehicle traffic data from different roads. Part of the dataset, which does not
contain an anomaly, is used as the training set, while the rest is chosen as the testing set.
We implement five state-of-the-art anomaly detection methods for comparison, including
LODA [12], LSCP [13], LUNAR [21], SO-GAAL [19], and DeepSVVD [15]. Table 5 presents
the comparison anomaly detection results on this dataset. Results show that TCF-Trans
effectively detects anomalies in the real-world transportation dataset. It can be observed that
the proposed method balances precision and recall. We owe this good ability to the proposed



Sensors 2023, 23, 8508 13 of 18

feature fusion strategy because we fuse different features with different characteristics. This
strategy can alleviate the negative drawbacks of being vulnerable to noises or missing
anomaly details. As a result, the proposed method can obtain good overall detection
performance. The visualisation example of a detection result slice is shown in Figure 7. In
this figure, the X-axis represents collected dates. Figure 7a contains the raw data slice from
the test set, and Figure 7b shows the corresponding anomaly score among the test set. SPOT,
which is mentioned in Section 3, can be used to determine the threshold without requiring
time-consuming grid search trails. It can be observed that there are two types of anomalies
in the raw data. For example, a continuous long-term vehicle traffic drop happens around
100th date, which may reflect a continuous anomalous vehicle traffic drop due to large-scale
traffic control by local enforcement. The corresponding anomaly score achieved using the
proposed method remains continuously high without a clear drop during this region, which
reflects that it can effectively deal with this anomalous pattern. Some short-term sharp
changes, such as points before the 140th date, may reflect temporary constructions and
belong to another type of anomaly. The anomaly scores in this region are also sufficiently
stable, showing that the proposed method can effectively detect short-term anomalies.

(a)

(b)

Figure 7. Visualisation examples on the real-world transportation dataset (days). (a) Raw data
slice from the test set, where each graph line represents traffic from different raw data sources
(b) visualisation example of a detection result slice achieved using the proposed method
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Table 4. Statistical summary of the real-world transportation dataset (days).

Dataset Dimension of Data Training Size Testing Size

real-world transportation
dataset (days) 12 104 166

Table 5. Comparison anomaly detection results of the proposed method with other methods on the
real-world transportation dataset (days).

Method F1 (%) Precision (%) Recall (%)

LODA [12] 83.05 81.67 84.48
LSCP [13] 90.91 96.15 86.21

LUNAR [21] 88.89 96.00 82.76
SO-GAAL [19] 82.64 79.37 86.21

DeepSVVD [15] 87.39 85.25 89.66
TCF-Trans 93.81 96.36 91.38

4.4. Ablation Study

In this section, we conduct the ablation study on the real-world transportation dataset
(days) to analyse the effectiveness of each component of the proposed method. We imple-
ment four variants of the proposed method, including (i) the Informer baseline, (ii) the
TCF-Trans w/o temporal context fusion, in which we replace the temporal context fusion
module with one FC layer to generate the output directly, and (iii) the TCF-Trans w/o
feature fusion, in which we do not fuse features form different layers. To minimise the
impact of different threshold methods, we present results via the grid search based on F1
score to check performances in theory (with notations †) in this ablation study.

Based on results shown in Table 6, we make the following observations: (1) The
proposed TCF-Trans utilises the advantages of each sub-module to achieve the optimal
performance among these variants. (2) Since features from different layers have different
characteristics, fusing features from different layers helps to improve detection performances.
Fusing them can make the proposed method robust to noise and prevent the decoder from
missing potential details related to anomalies. (3) Adaptively fusing the auxiliary predictions
based on temporal context helps to satisfactorily generate results. On the contrary, directly
transforming auxiliary predictions to the final output may be inappropriate.

Table 6. Ablation study results on the real-world transportation dataset (days).

Method F1 (%) Precision (%) Recall (%)

Informer baseline † 94.02 93.22 94.83
TCF-Trans w/o temporal context fusion † 85.22 85.96 84.48

TCF-Trans w/o feature fusion † 94.74 96.43 93.10
TCF-Trans † 96.55 96.55 96.55

Next, we implement another optimiser SGD on the proposed method to evaluate its
impacts. Table 7 shows the results of using different optimisers. The results obtained using
SGD are worse than the Adam. The low performance can be led by SGD trapping in the
local optimal.

Table 7. Comparison of the anomaly detection performance of the proposed method with different
optimisers in relation to the real-world transportation dataset (days).

Optimiser F1 (%) Precision (%) Recall (%)

SGD † 88.50 90.91 86.21
Adam † * 96.55 96.55 96.55

* Current optimiser for the proposed method.
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Moreover, we gradually decrease the number of data used for training from 100% to
80% to show the proposed method’s potential to achieve effective detection performances
without requiring the accumulation of a large amount of data. The results using different
ratios of data used are listed in Table 8. It can be found that F1 scores do not vary much
with ratios from 100% to 80%, which indicates that the proposed method has the potential
to obtain satisfying detection performances. Moreover, the results further validate the
proposed method’s learning ability with few samples.

Table 8. Comparison of the anomaly detection performance of the proposed method with different
ratios of training data on the real-world transportation dataset (days).

Ratio of Data (%) F1 (%) Precision (%) Recall (%)

80 † 92.86 96.30 89.66
90 † 94.74 96.43 93.10

100 † * 96.55 96.55 96.55
* Default ratio of data for the proposed method used in training.

4.5. Parameter Sensitivity Experiments

In this section, the proposed method is implemented under different parameter set-
tings to evaluate its sensitivity to parameter changes on the real-world transportation
dataset (days). We also report results achieved via a grid search, in theory (with notations
†), to reduce the impact of different threshold methods.

Since the decoder input Xt
din combines the earlier piece sequence before the output and

a placeholder, we aim to evaluate the effect of reference sequence Xt
re f with different lengths

Lre f , as well as corresponding input sequence lengths. Therefore, we choose five reference
and input length combinations to evaluate their effect. The results of the proposed method
using different combinations of lengths are summarised in Table 9. Our F1 scores with
different lengths are close, which indicates that the proposed method is good at dealing
with different input and reference sequences.

Table 9. Comparison of the anomaly detection performance of the proposed method with different
lengths of input and reference sequence on real-world transportation dataset (days).

Input and Reference Length F1 (% ) Precision (%) Recall (%)

[3 & 1] † 93.91 94.74 93.10
[5 & 1] † 94.02 93.22 94.83
[5 & 2] †* 96.55 96.55 96.55
[7 & 2] † 93.81 96.36 91.38
[9 & 3] † 91.67 88.71 94.83

* Current lengths of input and reference sequence.

Meanwhile, we aim to determine the impact on a larger number of decoder layers.
We increase the number of decoder layers to four (i.e., four-layer TCF-Trans) to validate
its performance. We also compare the performances of the Informer baseline with four
decoder layers (i.e., four-layer Informer baseline). As shown in Table 10, when comparing
performances with the four-layer Informer baseline, the impacts of increasing decoder
layers for the proposed method are not serious. This can be explained by our fusion strategy,
which fully utilises features from shallow and deep layers to make the method more robust
to the noise from a single layer while retaining important details for anomaly detection.

Other loss functions besides the MSE loss may also be chosen as the training loss during
the training. We also evaluate the proposed method using two different training loss func-
tions: MAE loss and SmoothL1 loss. The results of using different types of training loss are
summarised in Table 11. These results show that F1 scores with different types of training loss
do not vary much, which indicates that loss functions can be adopted in our method.



Sensors 2023, 23, 8508 16 of 18

Table 10. Comparison of the anomaly detection performance of the proposed method with a four-
layer decoder on the real-world transportation dataset (days).

Method F1 (%) Precision (%) Recall (%)

4-layer Informer baseline † 85.22 85.96 84.48
4-layer TCF-Trans † 93.91 94.74 93.10

TCF-Trans † 96.55 96.55 96.55

Based on experiments conducted on the proposed method, the proposed method can
handle anomaly detection tasks with different settings, and it shows robustness to these
changes. Therefore, the proposed method: TCF-Trans, is an effective solution for anomaly
detection in time series applications.

Table 11. Comparison of the anomaly detection performance of the proposed method with different
types of training loss on the real-world transportation dataset (days).

Optimiser F1 (%) Precision (%) Recall (%)

MAE † 94.02 93.22 94.83
SmoothL1 † 95.73 94.92 96.55

MSE † * 96.55 96.55 96.55
* Current training loss for the proposed method.

5. Conclusions

This paper has addressed anomaly detection tasks in time series based on a novel
framework named temporal context fusion transformer (TCF-Trans). This model utilises
the Transform’s excellent long-range dependencies modelling capacities and fuses features
extracted from shallow and deep decoder layers to prevent the decoder from missing
unusual anomaly details while maintaining robustness from noises inside the data, and
it improves detection performances. Additionally, the proposed temporal context fusion
module fuses the auxiliary predictions generated by the decoder adaptively. It makes
the output more robust to noises or distortions caused by the single auxiliary prediction
and fully uses temporal context information of the data with a learnable weight. We
have performed extensive experiments using the proposed framework on the public and
collected transportation datasets. Results have shown that the proposed framework is
applicable for some real-world anomaly detection tasks such as transportation in time
series. Additionally, the ablation study and several parameter sensitivity experiments
have shown that the proposed method can maintain a high performance under various
experimental settings.
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