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Abstract: Indoor localization is a key research area and has been stated as a major goal for Sixth
Generation (6G) communications. Indoor localization faces many challenges, such as harsh wireless
propagation channels, cluttered and dynamic environments, non-line-of-sight conditions, etc. There
are various technologies that can be applied to address these issues. In this paper, four major
technologies for implementing an indoor localization system are reviewed: Wireless Fidelity (Wi-Fi),
Ultra-Wide Bandwidth Radio (UWB), Bluetooth Low Energy (BLE), and Inertial Measurement Units
(IMU). Sections on Data Fusion (DF) and Machine Learning (ML) have been included as well due to
their key role in Indoor Positioning Systems (IPS). These technologies have been categorized based
on the techniques that they employ and the associated errors in localization. A brief comparison
between these technologies is made based on specific performance metrics. Finally, the limitations of
these techniques are identified to aid future research.
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1. Introduction

Indoor localization with an accuracy below ten centimeters has been cited as a key
goal for the upcoming Sixth Generation (6G) communications [1]. The reason behind
this is its potential to serve as a facilitator for ongoing and forthcoming industrial revolu-
tions. Applications of indoor localization include monitoring patients in care homes [2],
asset management and tracking in warehouses [3], navigation of autonomous robots [4],
and many more [5]. Localization is the process of determining the location of a target
device by taking measurements from certain fixed landmarks. The set of landmarks used
by the localization system is referred to as the map. The standard technique for achieving
localization in an outdoor setting has traditionally been the use of the Global Positioning
System (GPS), which uses satellites to determine the position of the receivers [6,7]. Unfor-
tunately, the signals used by GPS cannot penetrate the walls and roofs of buildings, and
as such are not suitable for indoor localization [8]. Furthermore, compared to the outdoor
scenario, an indoor environment is very challenging owing to exacerbated multipath issues
caused by the many reflections and the obstructions that block the direct Line-of-Sight
(LoS) link between the transmitter and the receiver. A closely related concept to localization
is Simultaneous Localization and Mapping (SLAM), which uses measurements from the
target device to generate the map at run-time [9]. This comes with the advantage of not
needing details of the map to be programmed into the application. For applications in
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real-world settings, it is crucial to consider scalability, affordability, setup, and running
costs before choosing a localization mechanism for installation.

Several technologies have been investigated for indoor positioning, including Blue-
tooth Low Energy (BLE) [10], Ultra-Wide Band (UWB) [11], Inertial Measurement Unit
(IMU) [12], and Wireless Fidelity (Wi-Fi) [13]. These technologies have a broad penetration
in modern homes and workplaces due to their availability in the modern smartphones.
This availability has led to a reduction in the unit cost of such devices. For this reason, they
have been chosen as the target of this survey. Other technologies available in a modern
smartphone or available for low cost have not been considered as the main targets of this
survey, which is for a number of reasons. These include range issues, as are present with
Long-Range Wide-Area Networks (LoRaWAN), Radio Frequency IDentification (RFID),
and 5G, as well as impacts on the lifestyle and behaviour of users, as is the case with
acoustic technologies and ultrasound. The target technologies require distinct information
for localization, including: (1) proximity, where the location of a user is computed based on
the location of the nearest base station; (2) trilateration, where the location of the device is
calculated based off of range estimates to multiple available base stations; (3) triangulation,
where the target location is calculated based on the angles measured between the target
device and multiple available base stations; and (4) fingerprint matching, where a specific
feature (such as the Received Signal Strength (RSS)) is mapped for known locations in the
target area. New measurements can then be performed and compared with the map to
determine the exact device location [5]. Each of these mentioned technologies have their
advantages and disadvantages. To maximize advantages while minimizing disadvantages,
the Data Fusion (DF) technique is generally employed. DF has been used in a wide range of
fields and has proven to be a popular technique in the field of indoor positioning [14–17].

1.1. Related Work

Indoor localization has been an active area of research in the last decade and there
are multiple surveys available on this topic. Both Davidson and Piché and Naser et al.
focus their papers on the technologies and techniques available on smartphones [18,19].
This particular research direction is very similar to the one taken in the present paper.
However, Davidson and Piché’s survey was conducted in 2017, and has become outdated
with the advent of technologies such as BLE AoA determination and the inclusion of UWB
in modern smartphones. Similarly, Naser et al. did not include UWB into their survey,
and did not provide a direct comparison of the performance of different technologies in
the literature in terms of their achieved accuracy [18,19]. The authors of [20–22] covered a
wide range of wireless technologies used for indoor localization, from WiFi to Long-Range
Wide-Area Networks (LoRaWAN) and even Frequency Modulation (FM) radio. None
of them included inertial methods of indoor localization, which is an extremely popular
method due to the low cost of the devices. In [23], the author targeted the field of inertial
IPS, focusing entirely on this technology. The paper mentioned how the fusion of an inertial
IPS with another IPS based on a different technology is preferable to the inertial IPS alone.
This process of DF was the subject of a focused survey in [24], where the authors examined
a wide range of technologies and the methods used to fuse them together. They split data
fusion into three types: homogeneous, where the system is based on a single technology
and either a single measurement type or multiple measurement types; heterogeneous,
where more than a single technology type is used with only a single measurement type,
e.g., RSS; and hybrid, where multiple technologies and multiple measurements are utilized.
This last category contains the fusion of an inertial IPS with other technologies; in [24], the
combination with by far the most listed references was found to be the combination of
WiFi and inertial. The authors additionally mentioned how Machine Learning (ML) can be
applied to the DF problem.

ML has been the centre of several surveys in the literature. The authors of [25] ex-
amined a wide range of ML use cases and techniques, providing comparisons between
systems with and without ML. They provided a detailed analysis of the current short-
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comings of the approaches in the literature as well as potential solutions. The authors
of [26] focused their survey of ML on the highly specific area of WiFi RSS fingerprinting,
where they covered areas such as the use of ML for crowdsourcing and generating radio
maps and other data augmentation techniques along with a detailed overview of the ML
techniques used for RSS fingerprinting. The authors of [27,28] provided surveys of ML
techniques in the indoor positioning field with a focus on SLAM. The latter focused on
visual SLAM, including Visual Odometry (VO), optical flow, loop closure, and many other
important areas of SLAM. The former covered the same areas of SLAM while additionally
providing direct performance metrics in their analysis of the techniques, similar to our goal
in the present paper. Another work focusing on SLAM is [29], which looked at the use
of radio technologies for SLAM. The authors provided a detailed overview of the SLAM
field, including the datasets available for the development of a radio-based SLAM system
without the need for the time-consuming process of gathering one. The authors of [1,5,8] all
took more theoretical approaches to their survey work. These reviews covered all aspects
of localization, including SLAM and ML; however, none provided a detailed quantitative
comparison. Table 1 provides a visual comparison of the topics covered by these related
works, including the present paper, sorted in order of year of publication.

Table 1. Table comparing the topics covered by related works and this paper.
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[23] 2013 X X 5 5 5 5 5 5 5 5 5 5 5 5 5 5

[18] 2017 X X X X 5 5 5 5 X X 5 5 5 5 5 5

[1] 2017 X 5 X 5 X X 5 5 X X 5 5 5 5 5 5

[8] 2018 5 5 X X 5 5 5 X 5 5 X X X 5 5 5

[5] 2018 5 5 X 5 5 X 5 5 X 5 5 5 5 5 5 X

[21] 2019 5 5 X X X 5 5 X 5 5 X X X X X 5

[24] 2020 X X X X X 5 5 5 X X X X X 5 5 X

[20] 2020 5 5 X X X 5 5 X X 5 X X X 5 X X

[27] 2020 X 5 5 5 5 X X 5 5 X 5 5 5 5 5 5

[25] 2020 5 5 X X X 5 5 5 X X X X 5 5 5 5

[22] 2021 5 5 X X X 5 5 X 5 5 X X X X X X

[26] 2021 5 5 X 5 5 5 5 5 5 X 5 5 5 5 5 5

[29] 2023 5 5 X 5 X X 5 5 5 X X 5 5 5 5 5

[28] 2023 5 5 5 5 5 5 X 5 5 X 5 5 5 5 5 5

[19] 2023 X X X X 5 5 5 5 X X X 5 5 X 5 5

This 2023 X X X X X 5 5 5 X X X X X X 5 5

1.2. Motivation and Contribution

The goal of this paper is to collate and analyze as many papers as possible on a subsec-
tion of the indoor localization field to identify which technologies are best suited to practical
implementation. The justification for our selection of the reviewed technologies can be
found in the next section. The contributions that this work makes to the literature include:

1. An in-depth analysis of technologies used for indoor localization focused on the
practicality of the technology for implementation.
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2. Key limitations of indoor localization techniques and possible future research direc-
tions for indoor localization.

1.3. Outline of Paper

The rest of this paper is organized as follows. Section 2 provides a detailed discussion
and highlights the different techniques available for an Indoor Positioning System (IPS)
along with information on their performance found in the literature. A comparison of
the different technologies covered regarding crucial performance metrics is performed at
the end of this section. Section 3 focuses on DF, particularly its implementation, benefits,
and use cases for indoor localization. Section 4 discusses ML, the techniques that can be
used for IPS, and their potential impact on improving localization accuracy. Section 5
discusses limitations of the technologies covered and possible future research directions in
this field.

2. Technologies

There are a multitude of technologies that can be used for the purposes of localiza-
tion [14]. Four significant technologies for indoor localization have been selected: (1) Wi-Fi,
(2) UWB, (3) BLE, and (4) IMU. These were chosen primarily because of their wide avail-
ability in smartphones, which have become ubiquitous in today’s society. Cameras and
microphones were discounted due to the disruption they cause to the operation of the
smartphone as well as the potential ethical issues around having access to the users voice
and image data. Technologies such as LoRaWAN and 5G were not considered due to the
relatively low range of the environments considered for this survey. The theory behind this
approach was that technologies that are common in smartphones are abundantly available
for utilization by other applications, reducing the costs of any potential system.

2.1. Methodology

When implementing an IPS, four conditions must be satisfied. First, the implementa-
tion cost must be kept low. This includes the cost of the devices and downtime for the area
being covered by the system must be kept to a minimum. Using readily available hardware
can significantly improve this issue, as can the ability of devices to cover a wide area, which
reduces how many devices are needed for the target area. Second, the cost of operating
the system must be kept low. This is a more abstract criterion, requiring that the system be
as unobtrusive as possible and limit recurring disruptions to the target area. This can be
achieved by ensuring that the system consumes as little power as possible, thereby keeping
maintenance time and costs to a minimum. Third, the system must be simple to install,
requiring little to no surveying or modification of the target area. Fourth, the potential
localization error of the system must low in order to achieve the most accurate IPS possible.

For each technology covered above, tables are provided that offer a breakdown of the
different techniques used, which papers implement that technology, the range of accuracies
reported by those papers, and any advantages or disadvantages of that approach. When
the localization accuracy for a paper was not provided, it was calculated by taking the mean
of all available accuracy measurements. For instances in which a mean is not calculable
and a Cumulative Distribution Function (CDF) was provided, the 50% accuracy measure
has been used. For all papers covered in this review, the range is based on the lowest and
highest mean accuracies. The citation for the paper that reported the lowest localization
error is highlighted in bold font.

The database selected for the initial search was IEEExplore, where a keyword search
of “All Metadata”: “TECHNOLOGY” AND (“All Metadata”: “Localization” OR (“All
Metadata”: “Indoor” AND (“All Metadata”: “Positioning” OR “All Metadata”: “Localiza-
tion”))) was performed, with TECHNOLOGY being replaced by the name of the particular
technology being searched for, e.g., BLE or WiFi. These results were then further filtered to
return only those journal papers released after 2019. Any papers found using this search
that utilized more than a single technology to achieve localization were considered fusion
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papers. These papers formed the core of the literature considered in this review, and were
further augmented by additional papers found using a snowballing technique based on the
initially selected papers.

2.2. Wi-Fi

IEEE 802.11, commonly referred to as Wi-Fi, is the standard technology for implement-
ing a Wireless Local Area Network (WLAN) in both workplace and home environments.
It operates in two main bands, 2.4 GHz [10] and 5 GHz [30], utilizing several 20 MHz
communications channels within these bands [10]. Owing to the wide availability and
low cost of its hardware, Wi-Fi is highly attractive for IPS, especially for factories where
low costs are essential. A large portion of the research on WiFi localization centers around
the use of RSS for building a fingerprint map. Channel State Information (CSI) has been
employed for fingerprinting as well; however, it has two main drawbacks compared to
RSS [31]. First, it requires a specific model of Wi-Fi Access Point (AP) to expose the CSI
values. Second, it requires special software running on the AP to gain access to the CSI [30].
CSI has many advantages over RSS, including increased stability at a fixed location and
the ability to encode the multipath effect into its samples [32]. There are other means of
building a fingerprint map for localization [33,34]; however, CSI and RSS fingerprinting are
the most common techniques when employing WiFi.

Wi-Fi can be used to measure Round-Trip Time (RTT) through the Fine-Timing Mea-
surement (FTM) protocol added in IEEE 802.11-2016 [35]. Several studies have employed
WiFi’s new FTM protocol for localization [36,37]. Systems based on FTM can achieve
sub-meter accuracy [36,37]. FTM-based systems are relatively new and have not yet been
widely adopted. Only the latest WiFi APs and smartphones are capable of handling FTM
requests; more widespread distribution would require the replacement of existing infras-
tructure. Other disadvantages of FTM include its poor performance in NLoS conditions
and decreased ranging accuracy owing to interference from network traffic generated
by other WiFi APs operating in the local area [37]. These issues make it less desirable
for implementation in an IPS. Table 2 provides an overview of the different techniques
available for use in WiFi-based localization, including the range of localization errors that
have been reported. As Table 2 shows, the only technique that is capable of achieving
localization errors of 10 cm or lower is CSI fingerprinting, which comes with the significant
downside of requiring a site survey. The same applies to RSS fingerprinting, which is the
next best. RSS ranging performed the poorest in the surveyed papers, possibly because of
the unreliability of individual RSS readings.

Table 2. Summary of techniques for WiFi-based IPS.

Technique Advantages Disadvantages Accuracy (m)

RSS Ranging [38] - Low cost of - RSS values fluctuate 2.397
implementation when stationary

- No hardware
modifications required

RSS - Low cost of - Extensive site survey 0.169–7.6
Fingerprinting implementation required before

[39–47] - No hardware implementation
modifications
required

CSI - Capable of low - Requires specific 0.09–2.087
Fingerprinting localization errors hardware and

[32,48–50], firmware to access CSI
- Extensive site survey
required before
implementation
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Table 2. Cont.

Technique Advantages Disadvantages Accuracy (m)

Hybrid AoA/ - Capable of - Requires specific 0.75–1.5
Ranging localization with hardware
[51–54], a single anchor

RTT Ranging - Supported on - Poor performance 0.5-2.10
[36–38,55], commodity devices in NLoS

- Disrupts regular
network traffic

2.3. UWB

UWB radio has several properties that make it highly attractive for use in indoor
positioning [56–58]. These include: (1) its wide bandwidth, which results in an extremely
narrow peak in the time domain, leading to more accurate Time-of-Arrival (ToA) determina-
tion [11]; (2) its object penetration characteristics are far superior to other technologies [59];
(3) its low transmission power means that UWB beacons can operate for long periods with-
out maintenance [60]; and (4) it causes very little interference with other wireless signals
operating in the same area [60], among many other useful properties [60]. This makes
UWB an almost ideal candidate for any IPS. Evidence of this can be found in Figure 1,
which shows a constant trend of accelerating research in the field beginning in 2016. Future
research on the use of UWB is expected to increase following the release of a new generation
of smartphones with UWB capability [61].

Figure 1. Documents per year for different indoor positioning technologies. Results obtained from Scopus.

UWB technology is capable of incredibly accurate (centimeter level) ranging because
of its superior ToF determination [11,62]. As shown in Table 3, it is capable of achieving the
sub-10 cm localization errors targeted by 6 G. Most of the research on UWB IPS is based on
ranging estimates from Time of Flight (ToF) measurements [63,64]. Despite the improved
ability of UWB to penetrate a wide range of objects [60], it remains subject to ranging errors
induced by NLoS conditions [64]. To address this, the detection of the NLoS condition [11,65]
and mitigation of the resulting ranging errors [65] have become active areas of research. Other
studies have focused on channel impulse responses between anchors and receivers [66,67].
The theory behind this approach is to utilize the Multi-Path Components (MPCs) of the
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signal to enhance localization accuracy [67] in a manner similar to WiFi CSI. This makes UWB
Channel Impulse Response (CIR) an ideal candidate for localization in a cluttered environment
with many MPCs.

Table 3. Summary of techniques for UWB-based IPS.

Technique Advantages Disadvantages Accuracy
(m)

RTT Ranging - Extremely accurate - Requires specific 0.03–0.28
[56,59,63,68–70], estimates hardware

- Low power - Susceptible to
consumption NLoS errors
- Does not interfere - Only available in
with WLAN modern smartphones

Hybrid AoA/ - Utilizes multipath - Only available in 0.16–0.3
Ranging components modern smartphones
[66,67,71] - Interference resistance

2.4. BLE

BLE is a low power consumption subset of Bluetooth developed by the Bluetooth
Special Interest Group. The most common use of BLE for localization is through beacons,
which are small battery-powered devices that broadcast BLE advertising packets that other
devices can locate themselves with. BLE beacons used for indoor localization often imple-
ment Apple’s iBeacon protocol [3]. BLE advertisements occur in three 2 MHz wide channels
in the 2.4 GHz band. This band is the same as that used by WiFi; to avoid interference,
the channels are spread out over the band [10]. This leads to unequal signal attenuation of
channels owing to the irregular frequency response of smartphone antennas [10] as well as
to higher path losses at higher frequencies [72]. This unequal signal attenuation issue needs
to be addressed before accurate BLE RSS-based IPS can be designed [72]. Further complicat-
ing this issue, standard compliant BLE devices such as those found in smartphones do not
include information on the channel index when advertising [10]; therefore, other means,
such as the timing of when the advertising packets were received, must be utilized [72].

With regard to localizing smartphones indoors, BLE’s popularity as a technology has
seen a rapid increase in recent years, as shown in Figure 1. This rise in popularity is due to
all modern smartphones having BLE capabilities and the price of deploying BLE beacons,
even in large quantities, being relatively low [3]. BLE-based indoor positioning usually
takes the form of RSS-based localization. This can be RSS fingerprinting, RSS ranging
with a path–loss model, or using RSS to determine the proximity to specific beacons as
mentioned in Table 4. RSS measurements are simple to implement and require no hardware
modifications. However, a large number of measurements are required to achieve reliable
localization, increasing the time delay of localization estimates [73].

Table 4. Summary of techniques for BLE-based IPS.

Technique Advantages Disadvantages Accuracy
(m)

RSS ranging - Low cost of - Requires multiple 0.59–4.92
[2,74,75] implementation readings or filtering

- Requires no to be accurate
hardware modifications

RSS - Low cost of - Requires extensive 0.1–3.73
Fingerprinting implementation site survey

[76–78] - Requires no before implementation
hardware modifications
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Table 4. Cont.

Technique Advantages Disadvantages Accuracy
(m)

RSS Proximity - Requires no - Requires multiple -
[73,79,80] hardware modifications readings or filtering

to be accurate
- Provides location in
terms of the nearest
beacon

Triangulation - Can localize - Susceptible to 0.7
[81–83] with two beacons NLoS errors

- Supported by newest - Not supported by
generation of smartphones
microcontrollers

The Bluetooth mesh technology, introduced to provide Wireless Personal Area Net-
working (WPAN) capability to the Bluetooth stack, has received attention in recent years as
well [84]. The authors of [84] suggested that the technology is poorly suited to applications
that cover a wide area due to the heavy impact on localization delay caused by introducing
new nodes to the mesh network, reporting a localization error of 4m.

The release of the Bluetooth 5 standard in 2016 introduced the new feature of extended
advertisements which can be used to measure RSS values on all 40 Bluetooth channels [85].
This channel diversity can be exploited to improve the localization accuracy of BLE systems
by using a variety of RSS measurements [85]. Bluetooth 5.1, released in 2019, added the
Constant Tone Extension (CTE) protocol. This opens up new possibilities for BLE-based
localization by providing a mechanism for estimating the Angle of Arrival (AoA) of a
signal. The phase of the received BLE signal at each antenna is calculated through the
In-Phase/Quadrature (I/Q) samples generated by the Bluetooth demodulator [81].

The inclusion of the CTE protocol in the Bluetooth specification enables the use of
hybrid AoA/ranging techniques to provide location estimates using only a single anchor.
The authors of [86] used a Kalman Filter (KF) to combine a range estimate with an AoA
estimate as well as a PDR. However, despite the great promise of BLE AoA, only a small
number of papers have been published on this subject [81–83,86], as the technology is very
new, with the standard defining the technology only being released in 2019.

Overall, localization errors for BLE techniques leave much to be desired. As can be
seen in Table 4, only the RSS fingerprinting technique seems capable of 10 cm localization
errors at this moment. However, BLE technology is a good choice for an IPS owing to
its low hardware cost and power efficiency, which can significantly reduce the costs of
deployment and maintenance compared to other wireless technologies.

2.5. Inertial Measurement Unit (IMU)

IMUs, often referred to as motion sensors, are Micro-ElectroMechanical Systems
(MEMS) that are commonly found in smartphones [15]. As such, they are ubiquitous
and cheap, with easy access to data through any smartphone Application Programming
Interface (API) and very low power consumption. The acceleration data gathered by the
IMU can be used for PDR. Owing to the fact that the location estimate of PDRs has a
tendency to drift over time, IPS based solely on inertial data are relatively rare in the
literature. Instead, when an IMU is used for indoor localization, it is common to pair it
with one or two other technologies in a process called DF, which is discussed in more detail
in the next section.

The use of IMU data has proven to be a popular aspect of indoor localization, par-
ticularly in smartphones [35]. This is because its availability [15] and independence from
electromagnetic signals allow it to be reliably used in complex environments where LoS to
a beacon cannot be guaranteed [87]. Furthermore, an IMU-based IPS requires no additional
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infrastructure for its operation, thereby limiting the disruption caused to any potential
location in which the finished IPS would be deployed. Localization accuracies for PDR,
by far the most prevalent technique for indoor localization, often fall short of the 10 cm
goal due to the error drift mentioned previously.

2.6. Comparison

Figure 2 shows a radar graph which provides a visual summary of the performance
of the various techniques covered above with respect to the performance criteria outlined
in Section 2.1. Each subfigure covers the techniques implemented on each technology,
with each being ranked as either poor, medium, or good on each of the criteria. As a
companion to Figure 2, Table 5 compares the technologies on other categories which are
worth considering during selection, as suggested in [88]. For indoor localization, the
goal is to achieve an average estimation error of less than 10 cm. The only technologies
capable of achieving this level of accuracy on their own are WiFi and UWB, as can be seen
in Tables 2 and 3. UWB hardware is relatively niche, and would need to be installed into
the target building for operation. Even with UWB hardware now being affordable [89],
this would drive up the costs of installing a UWB system [90], resulting in its poor ranking
in Figure 2b. In contrast, WiFi hardware is ubiquitous and there is a high chance of it
already being available at the target location; this is reflected in Figure 2a. As Figure 2c
demonstrates, BLE fits the first two criterion for implementation and operational costs
perfectly, with the sole exception of the fingerprinting technique. For both BLE and WiFi,
fingerprinting performs poorly on three of the four criteria, although it does tend to provide
among the best localization accuracies for the given technologies. Unfortunately, Table 4
shows the difficulty of achieving the level of accuracy demanded by 6G. The PDR technique
is possibly the easiest to implement and cheapest to install, as represented in Figure 2d. This
is because it only relies on the target device for implementation. However, the phenomenon
of error drift, where the localization error increases with time, causes significant issues.
Combining two or more technologies together has proven to be very effective in reducing
the localization error while maintaining low power consumption. The next section describes
the DF process in more detail.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. Visual comparison of the performance of different techniques within each technology cov-
ered: (a) WiFi, (b) UWB, (c) BLE, (d) IMU.

Table 5. Table comparing the relative merits of the different technologies covered in this paper.

Metric

Technology
WiFi BLE UWB IMU

Accuracy (m) 0.09–7.60 0.10–4.92 0.03–0.30 0.55–5.64

Robustness Med Poor Good Good

Scalability Good Good Med Excellent

Security Med Med Med Excellent

Complexity Med Good Med Med

2.7. Other Technologies

The technologies mentioned in this section are not the only ones that can be used for
IPS. A wide range of other technologies are often utilized, such as RFID, ZigBee, Visible
Light Communication (VLC), and acoustic. While these were not chosen as the main
subjects of this survey for various reasons, they are important and prevalent for IPS.

2.7.1. Radio Frequency IDentification (RFID)

Ultra-High-Frequency (UHF) RFID is the main type of RFID employed for IPS due to
its significantly increased range over the other forms of RFID [91]. UHF RFID is capable of
centimeter-level localization accuracy; however, to achieve this, it needs an average beacon
deployment density of 1 beacon every square metre [91]. This is impractical and a system
designed for it would be intrusive. Furthermore, this density requirement would increase
the cost of the system when deployed in large areas, even with inexpensive RFID beacons.

2.7.2. ZigBee

ZigBee is a communication protocol built on the IEEE 802.15.4 standard [22]. As with BLE
and WiFi, ZigBee uses RSS measurements for localization, and suffers from poor localization
errors as a result [92]. While ZigBee’s hardware is inexpensive, its lack of availability on user
devices means that it loses out to WiFi for use in IPS [21].

2.7.3. Visible Light Communication (VLC)

VLC-based localization can be achieved using a variety of techniques, including prox-
imity and triangulation. It can be realised using practically any Light Emitting Diode (LED)
light source, including lights that already exist in indoor locations [93]. Unfortunately,
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VLC is highly susceptible to NLoS conditions [21], and its implementation for personal use
requires access to either a camera on the user device, potentially opening up ethical issues
around the users’ private image data, or a rotating light sensor placed on the user in an
unobtrusive position.

The authors of [93] suggested a novel means of realizing VLC in through so-called
passive approach that allows the light sensors to be independent of the target device. This
approach has a lower accuracy bound on the order of tens of centimeters [93].

2.7.4. Acoustic

Acoustic-based localization utilizes sound waves modulated with a time stamp to
perform ToA-based trilateration. Acoustic-based localization is capable of centimeter-level
accuracy, and is extremely suited to smartphone platforms [94]. Unfortunately, the cost
of the hardware used for the anchors is much higher than that of other technologies [94],
and the need to use smartphone microphones means that the audio signal must be in the
audible range [94]. Another significant factor to consider is the need for constant access to
a microphone which is carried by the user. Thus, measures must be put in place to protect
users’ private audio data in order to ensure trust in the system.

3. Data Fusion

In this paper, DF refers to the use of multiple technologies and/or techniques within a
single IPS in order to provide an overall improvement in accuracy, reliability, and coverage.
This differs from the classical definition in that, to a certain extent, most IPS instances
are already based on fusion, for instance, trilateration, where range measurements from
at least three different beacons enable localization in two dimensions, and triangulation,
which relies on AoA measurements from at least two different beacons in two dimensions.
The only exceptions are CSI-based hybrid localization systems, which enable localization
from a single beacon using a single measurement [48,52–54]. Theoretically, fingerprinting
techniques are capable of localizing using a single beacon, and would fall into this latter
group; however, most practical applications use multiple beacons [10] or fuse them with
other technologies [86]. This is because of the ability of DF to maximize the advantages of
technologies while minimizing their negatives [95], such as reducing an IPS sensitivity to
RSS fluctuations and providing landmarks to reduce the error drift in PDR.

3.1. Kalman Filter (KF)

Despite the process being decades old, KF or variants such as Extended KF (EKF) and
Unscented KF (UKF) [96], remains the predominant method of implementing DF. A KF is
an “optimum state estimator” [96] that propagates an estimate of the system state from the
previous time step forward in time and then uses measurements to ensure the correctness
of this estimation [97]. For a given a system described by the state vector x, which evolves
in a manner described by the state transition matrix H, an estimate of the current system
state at time k can be made as follows:

x̂k|k−1 = H · x̂k−1 + v(k), (1)

where v(k) is the system noise and x̂k−1 is the previous system state estimation. When a
measurement of this system is made, it represents an approximation of the true state of the
system. This can be represented mathematically as

zk = M · xk + w(k), (2)

with M being the observation matrix mapping the state vector x to the measurement vector
z and w(k) being the measurement noise. This measurement vector can then be used to
update the state estimate

x̂k = x̂k|k−1 + Kk

(
zk −M · x̂k|k−1

)
, (3)
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where Kk is the Kalman gain [98]. The Kalman gain can be understood as a mathematical
measure of how much the initial state estimate can be trusted. Data fusion can be achieved
in Kalman filtering through a number of means, such as concatenating the individual
measurements into a single measurement vector [99]. Alternatively, separate KFs can be
applied to the measurements and then their individual outputs can be combined. Another
solution is introduce an intermediary step to extract information from the measurements,
with the KF being applied to these new features [100].

EKF and UKF are modifications of KF that were developed to address the problems
that arise when using KF with nonlinear systems. EKF works by linearizing the system
equations by calculating the Jacobian matrix of the system equation and then substituting
a linearized approximation [97]. The regular KF process is then applied to the linearized
state equations [96]. UKF works by generating a set of points that perfectly capture the
statistical information of the underlying system and then propagating these points through
the nonlinear system equations [97]. UKF provides several advantages over EKF, such
as working with discontinuous functions and eliminating the need for calculating Jaco-
bian matrices while offering comparable performance in terms of the number of required
computations [97].

3.2. Inertial Measurement Unit (IMU) Fusion

As mentioned in the previous section, IMUs are extensively used for localization in
smartphones owing to their low cost, wide availability, and independence from electro-
magnetic interference. The array of wireless communications technologies they present
combined with their ubiquitous presence on smartphones means that DF of IMU data and
other localization techniques is inevitable. In fact, IMUs are rarely used alone because of the
inherent disadvantages of PDR and the low accuracy of smartphone IMUs. Furthermore,
IMUs can provide reliable positioning estimates when RF technologies cannot, such as in
NLoS conditions or when the device is out of range of the beacons [35]. This makes the
resultant IPS much more resilient in the harsh propagation conditions presented by indoor
settings. A summary of localization accuracy results from papers that have fused PDR with
other techniques can be found in Table 6.

Table 6. Summary of techniques used for data fusion-based IPS.

Technique Advantages Disadvantages Accuracy (m)

IMU Fusion - Robustness to NLoS - Requires 0.18–2.674
[3,15,86,87,95,101–103] conditions computation

- Provides an estimate resources
of user position
- Can reset error drift

Crowdsourcing - Does not require - Requires accurate 0.1–4.3
[102,104–107] initial site survey position estimates

- Can update maps for map updates to
dynamically be reliable

Hybrid Fusion - Counteracts the - Requires 0.39
[14,108] negative aspects computation

of involved technologies resources
- System becomes robust - Requires
against failures communication

resources
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Table 6. Cont.

Technique Advantages Disadvantages Accuracy (m)

Heterogeneous Fusion - Makes system more - Requires 0.6
[109] robust to device failure computation

- Can counteract resources
the negative aspects - Requires
of involved technologies communication

resources

Homogeneous Fusion - Makes system more - Requires 0.03–0.6
[60,65,110,111] robust to device failure computation

- Makes system more resources
robust to negative - Requires
environment effects communication

resources

3.3. Crowdsourcing

One of the more popular means of localization through RSS measurements for both
WiFi and BLE is building and using a fingerprint map, as mentioned in Tables 2 and 4. This
is because it does not require any hardware or software modifications to the underlying
infrastructure or smartphone and can operate with only a single beacon. The major problem
with fingerprinting is that thousands of samples must be gathered at each reference point.
Slight changes in the environment can affect how the signal propagates through it, rendering
the original map inaccurate and useless. This necessitates the repetition of the site survey
for a real system, driving up the cost of maintaining an IPS based on fingerprinting [106].

To mitigate these issues with the fingerprinting process, several papers have been
published which use a process called crowdsourcing. Crowdsourcing aims to avoid the
need to perform a site survey each time the map needs to be updated. It does this by
using data gathered by users in the area to automatically update the map. This process
requires that the user be accurately localized in the first place, otherwise the accuracy of
the resulting localization system is severely affected [105]. Another significant issue with
crowdsourcing is the security risks stemming from potential leaking of personalized user
data. Comparing the localization accuracy for crowdsourcing in Table 6 to the localization
accuracies of the RSS fingerprinting technique in Tables 2 and 4 shows no difference. This
is great news for this, technique as it could completely eliminate the need for site-surveys.

3.4. Hybrid, Heterogeneous, and Homogeneous Fusion

Hybrid, heterogeneous, and homogeneous fusion are terms defined by the authors
of [24] in their survey of fusion-based IPS. The definitions are as follows:

• Hybrid: the combination of disparate measurements from different technologies to
unlock the full potential of the measurements. While this is primarily realized in the
literature through the combination of IMU measurements with other technologies,
as outlined in Section 3.2, this is not the only hybrid fusion of technologies available.

• Heterogeneous: the combination of a single measurement type gathered from different
technologies. An example of this could be the fusion of RSS measurements from WiFi,
BLE, and RFID to improve fingerprinting localization [109].

• Homogeneous: the combination of different measurement types from the same tech-
nology, e.g., the combination of WiFi RSS and FTM measurements [110].

4. Artificial Intelligence (AI)

The application of AI to indoor localization can provide several benefits to the problem
domain. This is largely due to its ability to learn potentially abstract patterns that are present
in the training data. There are many ways that ML can be applied to the localization task. One
popular application is the use of the K-Nearest Neighbors (KNN) algorithm for fingerprint
matching [10,26]. This algorithm compares the received signal features to every available
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reference point and finds the k reference points which are the closest match for the received
signal. The final position of the target is then determined to be the weighted average of the
positions of the selected k reference points [112]. The Naïve Bayes Classifier (NBC) is another
classifier. It uses the Bayesian theorem to determine the likelihood of a signal belonging
to a certain class based on the combined probability of it having certain features. It has
been used for indoor localization to detect LoS conditions in UWB [11]. Other classifiers
include the Decision Tree (DT) algorithm, which creates a branching network of decision
boundaries that eventually converge on the class, and Support Vector Machine (SVM), which
determines the plane which optimally separates the classes. Regression based on the SVM
algorithm was utilized in [113] to automatically update the radio map in a crowdsourcing-
based fingerprinting scheme. A common neural network-based alternative to SVM for
fingerprinting is the use of Extreme Learning Machine (ELM). This neural network architecture
typically consists of a single hidden layer, and its unique training process means that it can
make accurate predictions based on new samples with just a single pass through the training
dataset [114–116]. The Long Short-Term Memory (LSTM) model is often used to perform
PDR-based localization, where its capability to infer outcomes based on time series data has
proven invaluable in improving the localization error [39].

4.1. Deep Neural Networks (DNNs)

DNNs are a class of ML model that are made up of several layers. DNNs cover a
wide range of model architectures, including Artificial Neural Networks (ANNs) and
Convolutional Neural Networks (CNNs). In an ANN, each layer is made up of one or
more neurons with output value that are calculated by multiplying the output value of
each neuron in the previous layer with its associated weight:

yn = f (wT
n hn + bn), n = 1, 2, . . . , N, (4)

where wn is the weight vector of the nth neuron, hn is the input vector of the nth neuron,
bn is the activation bias of the nth neuron, f (·) is the activation function applied to the
neuron’s output [117] and N is the total number of neurons in the layer. The output of each
neuron is then propagated forward to the next layer, as demonstrated in Figure 3. These
layers of neurons, where each neuron in one layer is connected to every neuron in the next,
are known as fully connected layers. Due to their interconnected nature, models made up
of these layers scale very poorly when the number of neurons in a layer is increased. DNNs
have been applied to a wide range of tasks in indoor localization [70,118,119]. One example
application of an ANN to indoor localization is [120], which detects LoS blockages on BLE
technology and corrects the corresponding RSS dips.

Figure 3. The general structure of an ANN.
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4.1.1. Convolutional Neural Networks (CNNs)

A CNN is a DNN that contains one or more convolutional layers which perform
the function

y(t) = (x ∗ w)(t) =
∫

x(a)w(t− a)da, (5)

where w is known as the kernel. The kernel is learned by the model in order to perform
the assigned task [117]. CNNs are made up of one or more layers which implement this
convolution function, and are capable of handling two-dimensional inputs such as images.
Use of CNNs in the literature is often focused on WiFi CSI, which can be processed into
images [32,50,121].

4.1.2. Recurrent Neural Networks (RNNs)

RNNs are another subclass of DNNs; they incorporate information gleaned from a
previous iteration in order to inform the decision at the current time step. These networks
are excellent at predicting time series data [122]; however, during the backpropagation
process the loss gradient has a tendency to dwindle until it has little to no effect on
the weights of the network. This is known as the vanishing gradients problem, and is a
significant problem affecting RNN architectures [122].

One solution to this problem which is commonly encountered in the literature is to
use an LSTM network. These consist of a number of LSTM cells made up of a forget gate,
an update gate, and an output gate [122,123]. The combined function of these gates allows
a cell to choose its inputs as well as to select the information that is propagated at each time
step [39]. LSTM networks are particularly well suited for applications in PDR, where their
ability to analyze time series data has proven to be invaluable [39,122,123].

4.2. Discussion

One main disadvantage of ML techniques is their reliance on the availability of relevant
data. A large amount of data is required in order for supervised ML techniques to learn
the desired model [124]. Collecting the required datasets can be a time consuming process.
A major limiting factor on research into ML for IPS is the fact that there are not enough
datasets available for public use. To address this issue, research is being conducted on the
use of Generative Adversarial Networks (GANs) to generate synthetic training data in order
to augment real data gathered experimentally [50]. A GAN works by training two separate
models in tandem with each other, which are called the generator and the discriminator.
The generator’s task is to take random noise as input and generate an output that matches
the training samples as closely as possible. The discriminator’s task is to determine whether
its input is a generated input or one of the original training samples [117]. When training is
complete, the discriminator can be discarded, leaving a model capable of generating data
which closely match the real-world data.

Another issue with training an ML model is that large models require a significant
amount of time to train, especially when dealing with complex models and large datasets.
This is because the error generated by each sample in the dataset must be differentiated
and backpropagated through each layer in the model. This scales poorly for large models
with many neurons. This process can be accelerated through the use of more specialized
computing resources, such as Graphical Processing Units (GPUs) or the more modern
Tensor Processing Units (TPUs) [125].

In order to provide a comparison of various ML models, three different classifiers
were trained to perform the task of LoS determination on a synthetic BLE AoA dataset.
The dataset was generated using ray tracing to trace the path taken by signals from a BLE
transmitter to a 4 × 4 array of BLE receivers. As per the BLE 5.3 specification, the receiver
generated an I/Q sample pair at each sampling slot, with eight pairs being collected from
the reference antenna before sampling the rest of the array [126]. The classifiers were
trained on one I/Q sample per antenna and four I/Q samples per antenna, respectively,
to determine the effect on the size of the final model and the size of the data vector needed
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for inference. The chosen classifiers were SVM, KNN, and DT algorithms. The classifiers
were evaluated on precision, recall, and accuracy as well as on the final size of the model.
The results of this analysis can be seen in Figure 4. Using one sample per antenna instead
of four results in a 66.2% reduction in the size of the input data vector while having
negligible effects on the performance of the final model, as demonstrated in Figure 4.
Furthermore, there are significant benefits in terms of the size of the final models. KNN,
while performing the best in terms of precision, recall, and accuracy on both of the tests,
performs far worse in terms of disk size. This is because KNN works by comparing the
input vector to every single instance in the dataset in order to determine which samples it
is closest to. This has significant implications for its potential use in TinyML operating on
severely memory-limited devices.

Figure 4. Comparison of different ML models trained to perform LoS determination on a synthetic
BLE AoA dataset.

To further demonstrate that ML can provide significant benefits in the indoor localiza-
tion field, Table 7 lists a number of papers which have reported the accuracy of their IPS
both before and after the application of ML, showing the calculated percentage improve-
ment. From these results, it can be observed that ML provides a significant improvement in
localization capability when applied to IPS.

Table 7. Results demonstrating the efficacy of ML for improving IPS accuracy.

Paper Localization Technique ML Technique Reported Accuracy (m) Percent ImprovementWithout ML With ML

[32] WiFi CSI Fingerprinting CNN 4.8 2.39 50.2

[116] WiFi RSS Fingerprinting ELM 10.64 7.58 28.76

[122] WiFi RSS Fingerprinting LSTM 1.47 0.75 48.98

[127] BLE RSS Fingerprinting DNN 16.6 5.5 66.87

[127] BLE RSS Fingerprinting DRL 16.6 8.6 48.19

[15] BLE + PDR Fusion RNN 1.45 1.235 14.83

[128] BLE + PDR Fusion DNN 111.36 45.41 59.22

[129] PDR LSTM 47.96 2.21 95.39
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As mentioned in Section 3, there has been a continual increase in the use of ML for
DF owing to its ability to accurately learn complex relationships between data [103,128].
Similar to KF, DF can be implemented through ML by either measurement fusion, by
combining the measurement vectors of different sensors for use as input to the model, or
by state vector fusion, where features are extracted from the individual sensor modalities
before being passed to the model for inference [103]. Decision fusion is the third potential
method for DF using ML. It relies on the generation of individual location estimates which
can then be combined to form a more accurate final decision. ML can be applied to the
models used to generate the initial estimates, a final classifier that averages or weights the
individual decisions, or both.

5. Future Research Directions and Challenges

Indoor localization is a relatively mature area of research [70], opening up the field
to applications in a wide number of areas such as care homes, malls, and disaster relief as
well as for asset tracking in factory environments. To help identify potential future trends
in IPS, a survey of the papers published in the field was performed using Scopus. Figure 1
shows the results obtained from Scopus regarding the number of documents published
each year for the reviewed technologies. It can be observed that most of the research since
2020 has been focused on visual localization techniques such as Visual Inertial Odometry
(VIO) or on UWB. The clear upward trend in the number of papers published per year
shows the growing popularity of the indoor localization field, with UWB and camera-based
localization showing almost exponential growth in research interest.

5.1. Future Research Directions

With the advent of BLE AoA technology, a new avenue of research has opened up
for triangulation using BLE. This has already gathered significant interest in the litera-
ture [81,130,131] and is showing very interesting results in localization accuracy. Table 4
demonstrates the improvements with triangulation compared to traditional RSS-based
localization. The ability to access angle information from BLE devices opens up the oppor-
tunity for localization using a single anchor, which can significantly reduce IPS installation
costs thanks to the possibility of fusing several localization estimates from a range of mea-
surements and individual location estimates. Researchers are beginning to investigate the
possibility of AoA determination on UWB devices as wll [132,133].

In [70], the authors used a UAV with a UWB sensor onboard to act as a mobile AP
gathering signal data from transmitters inside an arbitrary location. Where UWB sensors
are already available, this solution allows for localization in areas where there is no indoor
localization system already in place and no means of installing one. Such a solution is ideal
in disaster relief situations such as locating victims of earthquakes or other natural disasters
which may lead to people being trapped in rubble.

As discussed in Section 4, ML is proving to be a vital future component of IPS. Un-
fortunately, the need to transmit data from the devices collecting the data at the edge to a
central server capable of performing inference on the collected data opens up a number
of security and privacy issues. One method which is being developed to address this
particular challenge is Federated Learning (FL), in which each edge device learns a model
in parallel and then transmits the parameters to a central server which aggregates them
and then redistributes the aggregated model back to the edge devices [134–136]. This
method can be used to make fingerprinting-based IPS more robust against changes in the
environment and location [135]

As mentioned in Section 2.7, a new form of passive VLC localization has been pro-
posed in [93] which could allow for device-free localization at centimeter accuracy. This
would be exceptional for future IPS, requiring only the installation of sensors in the ceilings
of target locations. Other forms of device-free localization are being researched utiliz-
ing technologies such as WiFi CSI fingerprinting [49] and UWB [66]. Improvements to
fingerprint-based device-free localization is being investigated with the development of
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meta-learning [137,138], where a separate ML model learns to output model weights for
a given novel environment. The application of this technique to other areas of indoor
localization could drastically improve the adaptability of systems to new environments.

5.2. Challenges

Despite the opportunities that indoor localization provides, a number of open prob-
lems need to be resolved before it can be implemented to support future applications.

• Survey Delays: As shown in Tables 2 and 4, the fingerprinting technique is capable of
achieving a very low localization error. Unfortunately, the need for a protracted period
of site surveying to build the fingerprint map means that the operating environment
almost certainly needs to halt operations for health and safety reasons. This problem
is exacerbated by the fact that the propagation of WiFi and BLE is heavily influenced
by objects in the environment. Factors such as objects or even people moving in the
environment can drastically affect the RSS or CSI signature of a point in space [38],
invalidating the fingerprint map and significantly reducing localization accuracy.
Unfortunately, the solution of crowdsourcing for this problem introduces a new issue
that is yet to be properly addressed, namely, the requirement that an accurate estimate
of the user’s location already be in place before their contribution to the global map
can be useful.

• Localization Delays: RSS measurements for path–loss modeling are known to deviate
significantly even when the subject is standing still [10]. Our literature survey revealed
several attempts to address this issue, including applying a KF to RSS readings before
localization [74] or simply taking several samples and finding their average [38].
The latter approach can introduce severe time delays into localization estimation,
resulting in reduced efficacy when localizing moving objects. On the other hand,
the KF-based approach is computationally intensive owing to the need to calculate an
inverse matrix. KF has poor performance when tracking a measurement value that
has the potential to change, i.e., RSS values when a subject is moving. Research into
methods for smoothing RSS values without introducing significant time delays while
retaining the ability to tracking moving values could be of significant value in the
context of indoor localization.

• NLoS Errors: One of the primary problems for systems based on ToA and AoA is
their reliance on LoS for accurate estimates. One method used in [79] to deal with
this is to use the floorplan of the area to be localized to calculate the placement of
beacons to ensure that every point of the floorplan is covered by the desired amount
of beacons, thereby circumventing the NLoS issue. While this approach has many
advantages, it can lead to a very large number of beacons needing to be installed,
which could raise the capital expenditure of the system, perhaps very significantly in
the case of UWB. Other methods include detection of the NLoS condition, which can
then be accounted for in the range estimation process [11]. Further research into the
detection and mitigation of NLoS issues is required if techniques such as trilateration
and triangulation are to be successfully deployed.

• Limited Access: With the improved penetration, narrow peak, and robustness to
electronic interference provided by UWB technology, there has been a large amount of
research into its application [60,69]. The accuracy of systems based on this technology
is able to achieve a decimeter-scale localization error; however, such systems cannot
provide concurrent access to many users simultaneously [61]. This issue needs to be
resolved if centimeter-level localization is to be reached using UWB in crowded areas.

• Lack of Datasets: One promising area of research has proven to be the application
of ML to various aspects of indoor localization. As mentioned in Section 4, one
of the major issues facing research on ML is the lack of available datasets. Most
experiments are performed in laboratory or office environments, which are only
broadly comparable to other indoor environments. Compounding this issue is the fact
that very few researchers have released their datasets for public use. If research into the
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use of ML for indoor localization is to progress, more datasets covering a broader range
of environments need to be released. The datasets necessary for training a model for
indoor localization require several modes of data, for example, IMU, BLE, UWB, etc.,
in order to be as universal as possible. For example, a dataset used for the development
of an indoor localization system for smartphones could incorporate inertial sensors
for PDR as well as multiple forms of wireless communications, including UWB for
the most recent smartphones [61]. One alternative solution for this issue could be the
application of research into transfer learning or semi-supervised learning techniques.
This can allow existing datasets to be extended without requiring extra data to be
gathered and stored. Unsupervised techniques could be a potential research direction
as well, as they can avoid the need for a lengthy and potentially inaccurate process of
labelling the training data, which is one of the main barriers to the creation of new
datasets. GANs can be used to address this issue. As previously mentioned, GANs
can learn how to imitate training samples. Further research could be conducted on the
applications of GANs to supplement the gathered data.

• Reliance on Devices: Every technique mentioned in this survey requires the user
being localized to carry a device with them, such as a smartphone, tag, etc. However,
in certain circumstances this may not always be possible. For example, in high-security
manufacturing contexts employees may not be allowed to use their phones in sensitive
areas. In such cases, localization using these techniques is impossible. Research into
device-free localization, such as that performed by [49,66], would go a long way
towards mitigating this issue.

6. Conclusions

In this paper, we have examined the problem of implementing an accurate IPS. The in-
door environment provides many unique challenges, such as exaggerated multipath effects,
interference, a highly dynamic environment, and increased sensitivity to disruptions. WiFi,
UWB, BLE, and IMU technologies have all been considered as the basis of IPS because of
their wide availability in smartphones. For each of these technologies, we have surveyed
the papers released since 2019, identified the techniques used within them, and created ta-
bles to categorize the publications and display the range of localization errors encountered
in each case. We have discussed both DF and ML in depth because of their importance in
research seeking to reduce the localization error of IPS. This review provides perspectives
on the limitations faced by research in the field of IPS and the possibilities for potential
future research directions.
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Abbreviations
The following abbreviations are used in this manuscript:

Sixth Generation 6G
Access Point AP
Angle of Arrival AoA
Application Programming Interface API
Artificial Neural Network ANN
Bluetooth Low Energy BLE
Channel Impulse Response CIR
Channel State Information CSI
Constant Tone Extension CTE
Convolutional Neural Network CNN
Cumulative Distribution Function CDF
Data Fusion DF
Decision Tree DT
Deep Neural Network DNN
Deep Reinforcement Learning DRL
Extreme Learning Machine ELM
Fine-Timing Measurement FTM
Federated Learning FL
Generative Adversarial Network GAN
Global Positioning System GPS
Graphical Processing Unit GPU
In-Phase/Quadrature I/Q
Indoor Positioning system IPS
Inertial Measurement Units IMU
K-Nearest Neighbors KNN
Kalman Filter KF
Extended KF EKF
Unscented KF UKF
Line-of-Sight LoS
Long-Range Wide-Area Network LoRaWAN
Long Short-Term Memory LSTM
Machine Learning ML
Micro ElectroMechanical Systems MEMS
Multi-Path Components MPC
Naïve Bayes Classifier NBC
Non-Line-of-Sight NLoS
Pedestrian Dead Reckoning PDR
Radio Frequency IDentification RFID
Received Signal Strength RSS
Round-Trip Time RTT
Tensor Processing Unit TPU
Time of Arrival ToA
Time of Flight ToF
Simultaneous Localization And Mapping SLAM
Support Vector Machine SVM
Unmanned Aerial Vehicle UAV
Ultra-Wide Bandwidth UWB
Wireless Fidelity Wi-Fi
Wireless Local Area Network WLAN
Wireless Personal Area Network WPAN
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