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Abstract: The high-temperature strain gauge is a sensor for strain measurement in high-temperature
environments. The measurement results often have a certain divergence, so the uncertainty of the
high-temperature strain gauge system is analyzed theoretically. Firstly, in the conducted research,
a deterministic finite element analysis of the temperature field of the strain gauge is carried out
using MATLAB software. Then, the primary sub-model method is used to model the system; an
equivalent thermal load and force are loaded onto the model. The thermal response of the grid
wire is calculated by the finite element method (FEM). Thermal-mechanical coupling analysis is
carried out by ANSYS, and the MATLAB program is verified. Finally, the stochastic finite element
method (SFEM) combined with the Monte Carlo method (MCM) is used to analyze the effects of the
physical parameters, geometric parameters, and load uncertainties on the thermal response of the
grid wire. The results show that the difference of temperature and strain calculated by ANSYS and
MATLAB is 1.34% and 0.64%, respectively. The calculation program is accurate and effective. The
primary sub-model method is suitable for the finite element modeling of strain gauge systems, and
the number of elements is reduced effectively. The stochastic uncertainty analysis of the thermal
response on the grid wire of a high-temperature strain gauge provides a theoretical basis for the
dispersion of the measurement results of the strain gauge.

Keywords: high-temperature strain gauge; primary sub-model; stochastic finite element method;
Monte Carlo method; uncertainty analysis

1. Introduction

A high-temperature strain gauge is a precision instrument for measuring the surface
strain of a structure in a high-temperature environment. The high-temperature strain
gauge is usually fixed on the surface of the measured structure by spraying [1]. In practical
engineering, the manufacturing and installation process of the high-temperature strain
gauge is often affected by a variety of uncertain factors [2]. For example, the thickness
of each spray layer is often affected by technical conditions and human factors during
installation. In addition, the spray material and the grid wire material physical parameters
(such as density, elastic modulus, heat transfer coefficient, etc.), geometric parameters (such
as length, width, and height), and external loads have uncertainty. The uncertainty of the
above input conditions directly leads to the uncertainty of the output strain, making the
measurement results have a certain divergence [3]. It is important for the development
of high-temperature strain gauges to accurately analyze the effects of uncertainties in
assembly and material parameters on the accuracy of strain gauge measurements and to
determine highly sensitive uncertainty parameters.

At present, most of the research on the measurement accuracy of strain gauges are
based on deterministic analysis. The influence of different geometric parameters on the
accuracy is analyzed. N.M. Khairi carried out the measurements using three sizes of strain
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gauges (2 mm, 5 mm, and 8 mm), and the response data were compared and analyzed [4].
P. Schmid studied the effect of film thickness on the gauge factor of platinum films at
different temperatures [5]. Rakesh Kolhapure used the finite element software to optimize
the multi-objective geometric parameters of the sensor, which gave the optimal parameter
combination. The effect of each process parameter on the performance characteristics
was studied using the ANOVA technique [6]. Hao Liu studied static and dynamic strain
responses from room temperature to 1073 K. The temperature dependence of the measure-
ment factor and the periodic variation of the strain gauge resistance were analyzed [7].
Zhiyang Guo studied the performance of direct ink writing (DIW)-printed strain gauges.
The results showed that their performance mainly depends on the design parameters
and fabrication process [3]. Herbert Enser proposed that the difference in elastic moduli
between the adhesive layer and the substrate affected the measured coefficients of the
final sensor [9]. Yonggian Li concluded that the width, thickness, and shear modulus
of the bond layer change greatly, and have a great influence on the strain transfer ratio.
Moreover, the strain transfer ratio strongly depends on the length and width of the sensitive
mesh [10]. Daniel Grabner studied the effect of temperature and strain on resistance strain
gauges [11].

The uncertainty of models and parameters is a common phenomenon in engineering
practice. For this reason, many scientists and engineers have studied the problem of ana-
lyzing and solving the uncertainty of models and parameters. The stochastic finite element
method is formed by combining the stochastic method with the finite element method.
Mikkel Lovenskjold Larse established stochastic stiffness matrices and stress stiffness ma-
trices for stochastic and buckling analysis in beam and frame problems. Furthermore, the
parameters were discretized by Karhunen-Loéve and solved [12]. Barttomiej Pokusinski
presented a selection procedure for a random perturbation method. The convergence
and accuracy of generalized perturbation schemes in linear and nonlinear problems of
solid mechanics were numerically analyzed [13]. Chen Chen used the stochastic Galerkin
method to realize the discretization of the physical space and the probability space to
advance the solution [14]. Jian Li used the stochastic Navier-Stokes equations, which gave
the corresponding results for the fully discrete finite element method [15].

In 1972, Shinozuka first applied the Monte Carlo method to the field of engineering
mechanics. In 1976, he converted the two-dimensional random plate problem into a format
compatible with the finite element [16]. In 2005, Popescu used a Monte Carlo simulation
(MCS) and finite element analysis (FEA) combined method to predict random shear strength
to study the influence of the random heterogeneity of soil properties and the behavior
of failure mechanism [17]. In 2006, MCS stochastic finite element analysis was used to
optimize the reliability design of the shell structure, considering the material defects and
uncertain thickness [18]. The Monte Carlo method for the finite element model has a good
applicability; the calculation results are accurate, but needs to consume a large amount of
computer resources. This difficulty with the development of computer technology and the
finite element method, to a certain extent, has been solved. The Monte Carlo stochastic
finite element method has been widely used. In 2019, Lorella Palluotto simulated the
radiative heat transfer of three actual three-dimensional configurations based on the Monte
Carlo method. And a stochastic quasi-Monte-Carlo algorithm, which was superior to
Monte Carlo algorithm, was developed [19]. In 2020, Shashank Vadlamani proposed the
stochastic beam element formulation. The results obtained by the perturbation method
were compared with those obtained by the MCS [20]. In 2020, Bing Wang analyzed the
uncertainty and reliability of thermomechanical problems through MCS. The accuracy
and effectiveness of the smooth finite element method based on randomly stable nodes
were verified [21]. In 2023, in Ngoc-Tu Do’s study based on the stochastic finite element
method of MCS, the stochastic vibration of functionally graded material (FGM) plates
under moving loads was studied when the parameter inputs were random quantities
following normal distribution [22].
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In summary, nowadays, the research on high-temperature strain gauges is mainly
divided into two main areas: experiment and simulation. High-temperature strain gauges
are expensive and it is difficult to obtain sufficient data in tests. The simulation can only
perform deterministic calculations and cannot analyze uncertain parameters. Therefore, a
high-temperature strain gauge simulation model capable of uncertainty parameter analysis
is developed by using MATLAB programming in this paper. The accuracy of the calculation
results of the MATLAB program is then verified by Workbench simulation results. Finally,
the thermal response of high-temperature strain gauges is analyzed by combining the
Monte Carlo stochastic finite element method and the random factor method.

2. Analysis of Temperature Field of High-Temperature Strain Gauge
2.1. Problem Description

It is of little significance to study the performance of a single and free strain gauge,
which needs to be installed on the specimen for analysis. As shown in Figure 1, the
transition layer is first sprayed on the specimen, followed by the basal layer. The strain
gauge is placed on the basal layer, and finally the covering layer is sprayed to fix it. The
strain gauge, basal layer, and coating layer form the complete measurement system, and the
function of the transition layer is to connect the measurement system to the test specimen.
In order to better simulate the high-temperature environment of the engine, the specimen
installed with the strain gauge is placed in the high-temperature heating furnace. The
temperature and force are loaded together.

Coating Layer
Strain gauge
Basal layer

Transition layer

Test specimen

Figure 1. Strain gauge installation and load. 1—heating device; 2—strain gauge; 3—specimen; 4—the
loading device of the force.

2.2. Establishment of the Primary Sub-Model

In the high-temperature strain gauge structure, the thickness of the specimen is
6 mm, the thickness of the transition layer is 0.1 mm, and the thickness of the basal layer is
0.1 mm. The cross-section of the grid wire of the strain gauge is circular, the diameter is
0.02 mm, and the thickness of the cover layer is 0.3 mm. In the transverse direction, the
heat is uniform, in the longitudinal direction due to the fact that the size difference is large.
The method of step-by-step fine analysis, that is, the primary sub-model method, is used
for grid division, reducing the requirements for computing resources.

Compared with the three-node triangular element, the calculation accuracy of the
planar four-node rectangular element is higher. Therefore, the primary sub-model adopts
the planar four-node rectangular element for grid division, as shown in Figure 2. The
establishment of the primary sub-model is mainly divided into two steps. The first step is
to establish the entire longitudinal model from the test specimen to the cover layer. The
large grid division is used for the preliminary calculation. The side length of the element is
22 =2b = 0.1 mm. In the second step, the basal and cover layer, which contact the grid wire,
are cut out from the whole, and the local area is divided into fine grids. The element is a
square with a side length of 2a = 2b = 0.01 mm, and the temperature boundary conditions
calculated by the first step are applied to the boundary for a more detailed calculation.
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Figure 2. Planar four-node rectangular element.

The grid division of the primary sub-model is created using a MATLAB program [23].
Figure 3a is the diagram of each bond layer, the primary model is shown in Figure 3b, and
Figure 3c shows the sub model. The boundary condition in the main model is the tempera-
ture load applied to the upper surface of 1273.15 K. The node temperature calculated by the
primary model is loaded into the sub-model as the boundary condition, and the loading
node is represented by red dots as shown in Figure 3.
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Figure 3. Primary sub-model. (a) diagram of each bond layer; (b) primary model; (c) sub model.

2.3. Finite Element Calculation of Temperature Field

The governing equation of the thermal transfer problem based on the Fourier heat
transfer law and the energy conservation law is as follows:

0, dT o, dT

— (k=) 4+ —(ky—) = 1

ax(xax)+8y(y8y) M)
where ky and k, are the thermal conduction coefficients along the x and y directions,
respectively, and the unit is W/(m-K). On the basis of Equation (1), the integral formula of
the element thermal transfer matrix K% can be obtained as Equation (2):

3[N]" 3[N] 3N]" [N] =T
e __ . .
o= [ |t I S dxdy+/th NdA @)
SL’
The internal element heat transfer matrix of the specimen in the primary model is
achieved as follows:

13.33 —3.33 —3.33 —6.67
. —333 1333 —6.67 —3.33
= 1333 —6.67 1333 —3.33
—6.67 —3.33 —3.33 13.33



Sensors 2023, 23, 8647

50f18

The internal element heat transfer matrix of the transition layer is obtained as:

16.67 —4.17 —4.17 —8.33
. —417 16.67 —833 —4.17
27 | 417 —-833 1667 —417|

—833 —4.17 —4.17 1667

The internal element thermal transfer matrix of overlay layer can be described as:

22 =55 =55 -11
e _ |55 22 11 =55

S~ 155 —11 22 —55|"
-11 -55 —-55 22

From Formula (2), notice that the heat transfer coefficients of different bonding lay-
ers are different [24], resulting in different element heat transfer matrices. The element
heat transfer matrix of each layer is calculated by MATLAB program. The element heat
transfer matrix of the same bonding layer is assembled first. Then, the thermal transfer
matrix of different bonding layers is assembled. Finally, the global heat transfer matrix K
is obtained.

For the primary model, the temperature of the upper boundary is loaded at 1273 K.
The temperature is loaded on the two nodes marked in red, as shown in Figure 3b.
The value of temperature assigned to the element node is calculated by the formula as
Pt = | 55 heTo-NTdAQ = [0 0 50 50] T,' the internal element has no thermal load. The
node temperature array of the boundary element and the internal element are assembled
into the global temperature array Pr.

The global heat transfer matrix K and load array Pt were substituted into the global
equilibrium Equation (3) to solve the problem.

Kr-qr = Pr 3)

The temperature values of each node in the primary model are obtained, and the
calculation results of some nodes are shown in Table 1. The y co-ordinate of the cutting
position of the primary sub-model is 6.1 mm, that is, the positions of nodes No. 62 and 128.

Table 1. Calculation results of some nodes of the master model.

Nodes Temperature/K x Coordinates y Coordinates
61 1221.87 0 6
62 1234.52 0 6.1
63 1244.10 0 6.2
64 1253.68 0 6.3
65 1263.26 0 6.4
66 1272.83 0 6.5

The temperature of nodes No. 62 and 128 is applied to the lower boundary of the
sub-model as a load, and the upper boundary of the sub-model is also subjected to a
temperature load of 1273 K, as shown by the red dot in Figure 3c. The temperature profile
calculated of the sub-model drawn by MATLAB is shown in Figure 4. The specific values
of the temperature of each node are shown in Table 2. The y co-ordinate of the position of
the grid wire is 6.2 mm, which is the position of nodes 11 and 52.
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Temperature distribution
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1265
6.4
oy 1260
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Figure 4. Temperature distribution cloud of the sub-model.
Table 2. Temperature values of some nodes of the sub-model.
y x y x
Nodes Temperature/K Co-ordinate ~ Co-ordinate Nodes Temperature/K Co-ordinate ~ Co-ordinate
7 1240.97 6.16 0 48 1240.97 6.16 0.01
8 1241.88 6.17 0 49 1241.88 6.17 0.01
9 1242.79 6.18 0 50 1242.79 6.18 0.01
10 1243.70 6.19 0 51 1243.70 6.19 0.01
11 1245.20 6.20 0 52 1245.20 6.20 0.01
12 1246.70 6.21 0 53 1246.70 6.21 0.01
13 1247.61 6.22 0 54 1247.61 6.22 0.01
14 1248.53 6.23 0 55 1248.53 6.23 0.01

3. Thermal Response Analysis of High-Temperature Strain Gauge Based on Coupled
Thermo-Mechanical Model

3.1. Establishment of a Primary Sub Model for Thermal Response Analysis

On the basis of a temperature field analysis, the FEM is used to further analyze the
thermal response of the high-temperature strain gauge [25]. As shown in Figure 1, the force
is loaded on the specimen and transferred to the grid wire of the strain gauge through the
bonding layers, rather than directly applying the force load to the strain gauge. The size
difference between the specimen and the strain gauge is very large. The two-dimensional
size of the specimen is 400 mm x 6 mm, and the size of the strain gauge is 7.8 mm x 1.2 mm.
The load of the strain gauge comes from the specimen and the specimen is almost unaffected
by the strain gauge. Based on the above-mentioned reasons, the primary sub-model is used
to analyze the thermal response of the strain gauge. It can effectively reduce the number of
elements and obtain the exact thermal response of the concerned grid wire part.

A rectangular element with four nodes and eight degrees of freedom are used to
divide the grid, as shown in Figure 5. The element of the primary model is a square with
a side length of 2a = 2b = 2 mm, with a total of 3 x 200 elements. In order to facilitate
the uncertainty analysis of the thermal response and to facilitate the MATLAB program,
the assembly of the stiffness matrix between different bonding layers is omitted, and the
sub-model is divided into three parts. In this way, in the following uncertainty analysis,
when a certain parameter is assumed to be a random variable, the whole stiffness matrix
need not be assembled repeatedly, which is very important when the number of samples is
large. The purpose of this is to effectively reduce the amount of computation. This practice
refers to the transfer of force between layers in the theoretical calculation [10,26]. The load
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force is loaded on the specimen and transferred to the grid wire of the strain gauge through
the transition layer and the substrate. The sub-model is divided into three parts, namely,
sub-models 1, 2 and 3, as shown in Figure 6b—d.

ya
VY AVy
p Uy m ;/lm
v.
B ! 0 ic
27 Vi v
= Uj

Figure 5. Planar four-node eight-degree-of-freedom rectangular unit.

Basal layer
Sub model of specimen I\

(d)

Primary model of specimen B (©) ’m‘

(@)

Figure 6. Grid division of the primary sub-model. (a) primary model of specimen; (b) sub model of
specimen; (c) transition layer; (d) basal layer.

The square element side length of sub-model 1 is 2a = 2b = 0.4 mm, with a total of
15 x 50 units. The square unit side length of sub-model 2 and 3 is 2a = 2b = 0.1 mm, with 1
x 200 elements, respectively. The grid division of the primary sub-model is realized by a
MATLAB program, and the results are shown in Figure 6.

3.2. Transfer of Force in the System

The shape function matrix N7 of the rectangular element of the primary model is:
Ny =[Ni Nj Nu N
=31-00-y) Q+x0)1-y) Q+)0+y) Q-x)(1+y)]

The strain-displacement matrix B of the primary model element is:

(4)

92 y—1 1-y y+1 —1-y
ox - 0 = 0 == 0 —/ 0
p) _ L _
By = |0 M=o 50 =0 g0
3 9
o 2o x=1 y=1 —x-1 1=y 14x I+y 1-x 1=y
dy ox T T Z = i T I i

The specimen is made of Ni-Al superalloy GH36, which is commonly used in hot end
parts of aircraft engines. The elastic modulus of the specimen E; = 1.33 x 10!! Pa, Poisson’s
ratio y#1 = 0.4, and the elastic coefficient matrix D are obtained by Equation (5).

P 1 04 0
D=0 p 1 0 |=158x10"{04 1 0 (5)
P lo oo L 0 0 03
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By substituting B; and D into Equation (5), the element stiffness matrix K{ of the
specimen is:

K = [ BIDBdQ)

[ 686 277 —449 396 343 277 106 —04 ]
277 686 —04 106 -277 —343 396 —449
449 -04 686 -277 106 396 343 277
04 106 -277 686 —04 —449 277 343 (6)
—-343 277 106 —04 686 277 —449 396
—2.77 —343 396 —449 277 68 —04 1.06
1.06 04 343 277 —449 -04 686 277

| —3.96 —449 277 343 396 106 277 686

=10° x

The element stiffness matrix is assembled to form the global stiffness matrix K, and
q is the node displacement array. The total load is superimposed by nodal force vector
P; and equivalent temperature load Py;. The element equivalent temperature load Py, is
related to temperature increment AT and thermal expansion coefficient 1, as shown in
Equation (7), AT =1223.15K, a1 = 17 x 107¢/K.

T
Py’ = /Q B, D&%0 @)

& =mAT[1 1 0" =102x [1615 1615 0] (8)

Substitute K, P1, and Py; into the global stiffness Equation (9) and solve it. The
displacements g of all nodes divided in the primary model are obtained:

Kq = Py + Py, )

The concerned part, that is, the part with the strain gauge installed, is cut from top to
bottom. The cutting process includes the boundary load, and a sub-model is established, as
shown in Figure 6. The sub-model includes the part cut from the specimen, the transition
layer, and the base, and is calculated step by step.

The node displacement g calculated by Equation (9) is substituted into Equation (10).
The element on the cutting boundary of the primary model is calculated. The nodal force
P? of the boundary element is obtained. The nodal force is taken as the external load and
loaded into sub-model 1, as shown by the red dot in Figure 6b.

K°q® = P* (10)

Sub-models 1, 2, and 3 are calculated by MATLAB programs similar to the primary
model. The node displacements and the node forces of the boundary elements are obtained.
The obtained nodal forces are transferred as loads from the specimen to the transition layer,
and then to the substrate. Finally, the nodal forces of the substrate elements in contact with
the strain gauge grid wire are obtained.

3.3. Element Division and Thermal Response Analysis of Grid Wire

The division element of the strain gauge is a general beam element with two nodes
and six freedom degrees, as shown in Figure 7. The element size of the linear part of the
grid wire is /1 = 1 mm. The curved part is a semicircle of ¥ = 0.4 mm, which is divided by
angle and divided into one element every 30°. The element length I, = 0.8 x sin({5) mm.
The discrete result of the grid wire is shown in Figure 8.
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Figure 7. Plane beam element.
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Figure 8. Grid wire unit division.

The shape function matrix N, of the beam element is:
sz[l—x 1324233 x—222+x x 3x>—2x° x3—x2} (11)

where x represents the distance from a point to a node in the beam element.
The strain-displacement matrix By is:

B,=[-1 —p(12x—6) —p(6x—4) 1 y(12x—6) —7(6x —2)] (12)

where 7 is the distance from the point on the cross-section to the neutral layer.

Take the elastic modulus of grid wire E4 = 2.2 x 10'! Pa, cross-section area

Ay = mr* = 71 x 0.012 mm?, and moment of inertia I = 72—‘14 = 7.85 x 10~ mm*. In the lo-

cal co-ordinate system, the stiffness matrix of a general planar beam element Kj is calculated
by Equation (13).

(B0 0 E 0 o
12E1 6EI _12E1  6EI
0 B 2 0 B 2
6EI 4EI 0 __6EI 2EI
12 I 12 I
K¢ = (13)
4
B0 0 E 0 o
_12ET _ 6EI 0 12EI  _ 6EI
B I2 B 2
6EI 2EI 6EI 4FI
L 0 7 T 0 Tz T ]

Through Equation (13), the stiffness matrix of the linear part of the grid wire Kj; can
be obtained.

69115 0 0 —69115 0 0
0 20.7 0.01 0 —-20.7 0.01
K. — 0 001 69x10°° 0 —0.01 3.45x107°
47 169115 0 0 69115 0 0
0 -20.7  —0.01 0 20.7 —0.01

0 0.01 345x10°° 0 —0.01 69x10°°
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The stiffness matrix of the curved part of the grid wire is Kj,:

667600 0 0 —667600 0 0
0 18653 0.97 0 —18653 0.97
e 0 097  6.66 x107° 0 —0.97 3.33x107°
427 | —667600 0 0 667600 0 0
0 —18653 —0.97 0 18653 —0.97
0 097 333x107° 0 —0.97 6.66 x 107°

Since the local co-ordinate system of the bending part does not coincide with the
global co-ordinate system, as shown in Figure 8, the stiffness matrix needs to be co-ordinate-
transformed through Equation (14). In Equation (15), the angle « between each beam
element and the horizontal direction is a1 = 15°; ap = 45°; ag = 75°%; ay = 105°; a5 = 135°;
and ag = 165°.

K, = T'T.K°T° (14)
where
cose sina 0 0 0 0
—sina cosa O 0 0 0
0 0 1 0 0 0
= 0 0 0 cosa sina O (15)
0 0 0 —sina cosa O
0 0 0 0 0 1

The stiffness matrix of all elements is assembled to obtain the global stiffness matrix
K4, the dimensions of which is 138 x 138.

The node displacement matrix of the beam element is 4°, each node has three degrees
of freedom, and the whole node displacement matrix g, is formed after assembly.

T
g =[m v 6 up vy 6] (16)

The boundary condition P is the superposition of the force P, and the temperature
equivalent load Py;. P, is the node force in contact with the grid wire on the basal layer
calculated in Section 4.2. Py, is the equivalent temperature load of the element which is
expressed in Equation (17), taking AT, = 1223.15 K, a3 = 9. 5 x 10~°/K, and Poisson ratio
u =0.36.

$ = / B, Dye9d0) (17)
Qe
Of which
1 036 0
D, =253 x 101|036 1 0 (18)
0 0 032
& =mAT,[1 1 o]T:10*3>< [9.025 9.025 0] (19)

By substituting K, P,, and Py, into the global stiffness Equation (20), the node dis-
placement matrix g is obtained.

qu = P, + Py (20)

Calculate the stress and strain of one element on the grid wire. For example, take
element 2, as shown in the blue line segment in Figure 8; read the displacement of node 2
and node 3 as calculated by Equation (20). Moreover, the node displacement g° and the
geometric function matrix B({) are substituted into Equations (21) and (22) to calculate the
stress o and strain ¢ of element 2. The strain field is expressed in Equation (21).

e(x,9) = B(5)-q° (21)
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0 0.02 0.04mm

— —)

The stress field is defined in Equation (22):
o(x,9) = E-B(x,9)-4° (22)

Finally, the strain of element 2 is 9200 y¢, and the x-direction normal stress of node 2
0xx = —0.6370 Pa, while the y-direction normal stress oy, = 1.8386 Pa.

4. Results and Discussion
4.1. ANSYS Verification of the MATLAB Program

In order to verify the correctness of the MATLAB program, a thermal-mechanical
coupling simulation of the high-temperature strain gauge is carried out by ANSYS. Solid-
Works is used to establish the strain gauge system model. The model is divided into regions
and imported into Workbench to facilitate load application and grid division. The grid
division result of the primary model is shown in Figure 9. The specimen element size is
1 mm X 1 mm x 1 mm, and each bonding layer element is 0.1 mm x 0.1 mm x 0.1 mm.
The sub-model is the grid wire of the strain gauge, and its cross-section is circular. The grid
wire is divided into five regions and divided by sweeping mesh. The solid model of the
grid wire is obtained, as shown in Figure 10.

=
[ ——— o o o 0 ]

(a) (b)

Figure 9. Primary model—three-dimensional finite element model of specimen and bond layer:
(a) top view; and (b) front view.

0 1.5 3mm

Figure 10. Sub-model—three-dimensional finite element model of grid wire of strain gauge.

When a thermal load of 1273.15 K is applied to the covering layer, the temperature
nephogram of the strain gauge grid wire is obtained, as shown in Figure 11. The mean
temperature of the strain gauge calculated by ANSYS is 1258.44 K, compared with the
temperature of 1245.2 K calculated by MATLAB; the difference between the two is 1.34%.
The boundary conditions of the constraints and forces applied to the specimen are shown
in Figure 12. The thermal response is calculated by superimposing the thermal load; the
results are shown in Figure 13. The thermal strain at element 2 is 9141 pe, compared with
the equivalent thermal strain 9200 pe calculated by MATLAB; the difference between the
two is 0.64%. Because the difference between the calculation results of the temperature and
thermal strain is small, it is considered that the modeling and calculation by the MATLAB
program are correct and effective.



Sensors 2023, 23, 8647 12 of 18

1259.04 Max
1258.91
1258.78
1258.64
1258.51
125838
1258.24
1258.11
1257.98
1257.85 Min

Figure 11. Strain gauge grid wire temperature contour.
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Figure 12. Boundary conditions and forces.
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Figure 13. Thermal strain of strain gauge grid wire.

4.2. Uncertainty Analysis of Thermal Response of High-Temperature Grid Wire Based on SFEM

Under the combined action of thermal energy and force, the stress and strain finally
transferred to the grid wire of the strain gauge are affected by a variety of factors. The
uncertain factors include three aspects: physical parameters, geometric size, and loads, as
shown in Table 3 [27,28]. The uncertainty of these factors directly leads to the uncertainty
of the thermal response of the grid wire.

Table 3. Classification of uncertainties.

Uncertainty Factor Contents Include

Coefficient of thermal expansion of grid wire a4, thermal expansion
coefficient of the covering layer a3, elastic modulus of the substrate
E3, thermal expansion coefficient of the transition layer a5, and elastic
modulus of the transition layer E;

Grid wire diameter dy, basal thickness /3, and transition layer
thickness h;

Load Force load F and temperature load T4

Physical parameters

Geometric dimensions

The normrnd generator in the MATLAB software is used to generate random numbers
that obey Gaussian distribution. The program segment r = a + (b — a)_* normrnd(M, 1);
is used to generate M random numbers in the interval (4, b). In order to draw a sufficient
number of samples, M = 10% is taken.

Using the SFEM combined with the MCM, the variable is assumed to be a stochastic
variable with a Gaussian distribution [29]. For example, set E = normrnd(Xg, Sg, [1, 1))
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by MATLAB, where XE is the mean value of the elastic modulus, and Sk is the standard
deviation, Sp = Xg x cov. Taking cov = 0.1 for each factor, the stochastic thermal re-
sponse 0y, probability density curves of the high-temperature strain gauge for the above
10 uncertain factors are obtained by the stochastic finite element method (SFEM), as shown
in Figure 14.
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Figure 14. The influence of each factor uncertainty on oy (a) T and ay; (b) ds, a3, E3, ap, Ep, and h3;
(c) F; and (d) hy.

As can be seen from Figure 14, the probability density distribution of the thermal
response basically follows the Gaussian distribution. Through comparison, it can be found
that, among the 10 uncertain factors, the uncertainty of the thermal expansion coefficient
of the grid wire ay and the temperature of the grid wire T4 have the greatest influence
on the dispersion of oyy. It can be seen in Figure 14a that, when a4 follows the normal
distribution (9.5 x 107%,0.95 x 10’6), the mean value of thermal stress oy, of the grid wire
is —0.6394 Pa, and the variance is 0.06404 Pa. When T4 obeys the normal distribution (970,
97), the mean value of thermal stress oy, of the grid wire is —0.6387 Pa, and the variance is
0.06211 Pa. The variance of the thermal response corresponding to other factors is below
4 x 107, as shown in Figure 14b—d. Therefore, the thermal expansion coefficient of the
grid wire a4 and the temperature of the grid wire T4 are determined as the primary sources
of uncertainty.
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4.3. Uncertainty Analysis of Thermal Expansion Coefficient of Grid Wire Based on SFEM

When the input quantity, the thermal expansion coefficient of the grid wire ay, follows
the normal distribution (9.55 x 107°,0.0955 x 10~°), the probability density curve of the
output grid wire thermal strain ¢ follows the normal distribution, basically, as shown in
Figure 15, with the mean value of 9180.7 e and the variance of 92.05 pe. The calculated
95% confidence interval is [8996.64, 9364.86].
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Figure 15. Probability density curve of element 2 thermal strain.

When the mean value of a4 is unchanged, its variance is changed. The coefficient of
variation cov is uniformly selected with 10 values between [0.01, 0.1], and the probability
density curve corresponding to the output thermal strain ¢ is calculated, respectively.
On this basis, 95% confidence intervals under each variance are calculated, as shown in
Figure 16. The confidence interval of the output ¢ increases with the increase of the variance
of the thermal expansion system ay4. The overall fluctuation of the mean is small, but the
amplitude of the fluctuation also increases with the increase of the variance. As a measuring
sensor, the strain gauge has certain precision requirements. The result of deterministic
analysis € = 9200 pe is taken as the exact solution, and the measurement error is considered
reliable within 3%. Therefore, it can be concluded that the variance of a4 should be less
than 0.143 x 10~%/K to ensure the accuracy and effectiveness of the measurement results.

T T T T T T T T T 10,000 T T T T T T T T T T T
11.000 & —&— Upper Confidence Limits —A— Upper Confidence Limits
’ —— Average Value i —— Average Value
|| —@— Lower Confidence Limits —@— Lower Confidence Limits
9600
10,000 1 [T~ =--
L X i
w L _ i w
= nle = » 5 = = o = g % 9200 - ! -
.S 9000 k- 7 s
[+] 1
= | = 3 J
w2 r | 1 wn - — :
8000 | _ 8800 |- : | m
| | | : ]
L | E : ,
7000 | 1 L 1 L 1 . 1 8400 1 . [ L [ 1 L
0.0 0.2 0.4 0.6 0.8 1.0 9.0 9.2 9.4 9.6 9.8 10.0

The & Varianceof the grid wire/(10°/K)
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Figure 16. Influence of digital characteristics of a4 on 95% confidence intervals for thermal strain e.

When the variance of the thermal expansion system a4 is unchanged and is taken
as 0.095 x 107%/K, and the mean value is in the range of [9.0255 x 10~°,9.9755 x 10~°],
a set of probability density curves of thermal strain ¢ is calculated. The variation of the
confidence interval corresponding to the curves with the mean value of a4 is obtained, as
shown in Figure 16. The mean value of ¢ increases with the increase of the mean value
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of a4, and the radius does not change with the change of the mean value. To ensure the
measurement accuracy of 3%, the mean value of a4 should be in the range [9.41 x 1076,
9.61 x 107°].

4.4. Uncertainty Analysis of Temperature of Grid Wire Based on SFEM

Another major uncertainty source of the system is the grid wire temperature T4. When
Ty follows the normal distribution (1243.15, 370.15) K, the probability density curve of the
output grid wire thermal strain e is shown in Figure 17. It basically follows the normal
distribution, with an average value of 9216.4 pe and a variance of 886 e. The calculated
95% confidence interval is [7444, 10,989].

0.25 — T T T T T T T T T T
i u(T)=1243, o(T,)=370 |
0.20 -

Frequency
=
s
T

<o

—

o
I

0.05 -

ooob—2Zt v v o ot b
6000 7000 8000 9000 10,000 11,000 12,000 13,000

Strain/pe

Figure 17. Probability density curve of element 2 thermal strain.

When the mean value of T4 is unchanged, its variance is changed. The coefficient
of variation cov is uniformly selected with 10 values between [0.01, 0.1]. The probability
density curve corresponding to the output thermal strain ¢ is calculated, respectively. On
this basis, 95% confidence intervals under different variances are calculated, as shown in
Figure 18. The confidence interval of output ¢ increases with the increase of T, variance,
and the mean fluctuation increases with the increase of variance. In the case of a grid wire
temperature of 1243.15 K if the measurement error of the strain gauge is required to be
within the range of 3%, the variance of T4 should be less than 288.15 K.
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Figure 18. Influence of digital characteristics of T4 on 95% confidence intervals for thermal strain e.
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When the variance of grid wire temperature T, is unchanged, it is 282.85 K, and the
mean value is uniformly valued in the range of [1194.65, 1291.65]. A group of probability
density curves of thermal strain ¢ are calculated, and the confidence interval corresponding
to the curve is obtained with the mean value of Ty, as shown in Figure 18. The mean value
of ¢ increases with the increase of the mean value of T4, and the interval radius does not
change with the change of the mean value. If the measurement accuracy of 3% is to be
guaranteed, the mean value of T4 should be in the range of [1235.15, 1254.15].

5. Conclusions

In this paper, the stochastic finite element method (SFEM), which combines the Monte
Carlo method and the finite element method, is used to analyze the load transfer process of
the high-temperature strain gauge through a MATLAB program. The calculation results are
compared with the thermal-mechanical coupling model of ANSYS. Through these studies,
some conclusions can be summarized as follows:

(1) The average temperature of the strain gauge obtained by ANSYS is 1258.44 K. The
temperature at the grid wire calculated by MATLAB is 1245.2 K. The difference between
the two is 1.34%. The thermal strain calculated by ANSYS at element 2 is 9141 pe, which is
0.64% different from the equivalent thermal strain calculated by MATLAB at 9200 pe. It is
proven that the program is accurate and effective in calculating this complex structure.

(2) The primary sub-model method used in the calculation process can effectively
reduce the number of model elements, reduce the requirement of computing resources,
and obtain the exact solution of the thermal response of the grid wire.

(3) The SFEM is used to analyze the influence of the uncertainty of 10 inputs (physical
parameters, geometric parameters, and load) on the output, thermal stress, and thermal
strain of the grid wire. When the coefficient of variation of each parameter is the same
value 0.1, the thermal expansion coefficient of the grid wire a4 and the thermal load T4 have
the most significant influence on the thermal response dispersion. When the a4 follows
the normal distribution (9.5 x 107¢, 0.95 x 107°), the mean value of thermal stress oy
of the grid wire is -0.6394 Pa, and the variance is 0.06404 Pa. When the T, follows the
normal distribution (1243.15, 370.15), the mean value of o, is 0.6387 Pa and the variance is
0.06211 Pa.

(4) The influence of the digital characteristics of a4 and T4 on the 95% confidence
interval of thermal strain ¢ is analyzed. In order to ensure the measurement accuracy of 3%,
the mean value of a4 should be in the range of [9.41 x 107°,9.61 x 107°], and the variance
of ay should be less than 0.143 x 10~°/K. The mean value of T4 should be in the range
[1235.15, 1254.15], and the variance of T4 should be less than 288.15 K.

It can be concluded from the above analysis that the MATLAB program can realize
the analysis of the load transfer process of high-temperature strain gauges. The method
of layered modeling is also applicable to the analysis of the mechanical characteristics of
other laminated structures. The primary sub-model can obtain local fine results, and it
is also applicable to other situations where the local performance is concerned, such as
the situation of a high local stress concentration caused by small holes and grooves. The
SFEM combining the MCM and the FFEM is an effective method to analyze stochastic
problems. In the future, an uncertainty analysis of the fatigue life of strain gauges will
be performed.
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