
Citation: Jeng, S.-L.; Chiang, C.

End-to-End Autonomous Navigation

Based on Deep Reinforcement

Learning with a Survival Penalty

Function. Sensors 2023, 23, 8651.

https://doi.org/10.3390/s23208651

Academic Editors: Araceli Sanchis de

Miguel and Agapito Ledezma Espino

Received: 20 September 2023

Revised: 16 October 2023

Accepted: 19 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

End-to-End Autonomous Navigation Based on Deep
Reinforcement Learning with a Survival Penalty Function
Shyr-Long Jeng 1,* and Chienhsun Chiang 2

1 Department of Mechanical Engineering, Lunghwa University of Science and Technology,
Taoyuan City 333326, Taiwan

2 Department of Mechanical Engineering, National Yang Ming Chiao Tung University,
Hsinchu City 300093, Taiwan; chienhsunchiang.en10@nycu.edu.tw

* Correspondence: aetsl@gm.lhu.edu.tw; Tel.: +886-2-8209-3211 (ext. 5113)

Abstract: An end-to-end approach to autonomous navigation that is based on deep reinforcement
learning (DRL) with a survival penalty function is proposed in this paper. Two actor–critic (AC)
frameworks, namely, deep deterministic policy gradient (DDPG) and twin-delayed DDPG (TD3),
are employed to enable a nonholonomic wheeled mobile robot (WMR) to perform navigation in
dynamic environments containing obstacles and for which no maps are available. A comprehensive
reward based on the survival penalty function is introduced; this approach effectively solves the
sparse reward problem and enables the WMR to move toward its target. Consecutive episodes are
connected to increase the cumulative penalty for scenarios involving obstacles; this method prevents
training failure and enables the WMR to plan a collision-free path. Simulations are conducted for four
scenarios—movement in an obstacle-free space, in a parking lot, at an intersection without and with
a central obstacle, and in a multiple obstacle space—to demonstrate the efficiency and operational
safety of our method. For the same navigation environment, compared with the DDPG algorithm,
the TD3 algorithm exhibits faster numerical convergence and higher stability in the training phase, as
well as a higher task execution success rate in the evaluation phase.

Keywords: actor–critic (AC) method; autonomous; reinforcement learning (RL); wheeled mobile
robots (WMRs)

1. Introduction

Autonomous intelligent mobile robots [1] are suitable for completing various tasks in
dangerous and complex environments; such tasks include urban rescue, public security
patrol, and epidemic prevention. Motion planning, in which information obtained from the
external environment by sensors is used to evaluate the optimal collision-free path between
a starting point and an ending point, is an essential technique in autonomous navigation.
Traditional motion planning [2] is a core component of the pipeline framework and must
be integrated with other subtasks—such as perception, localization, and control—to accom-
plish autonomous driving tasks; these tasks [3] are often inflexible and require substantial
computational resources and numerous manual heuristic functions because they involve
real-time sensory information. The pipeline framework for autonomous driving consists
of many interconnected modules, and in the end-to-end method, the entire framework
is treated as a single learning task. In end-to-end autonomous motion [2,4], raw sensor
data are directly used as the input to a neural network, which outputs low-level control
commands. This method is attractive because complex modules do not need to be designed;
instead, a network with a simple structure is constructed, and the entire motion process is
optimized into a single machine-learning task.

On the basis of their principles and era of development, robot planning methods
can be divided into traditional and learning-based methods. Traditional methods include
graph search algorithms, sample-based algorithms, interpolating curve algorithms, and

Sensors 2023, 23, 8651. https://doi.org/10.3390/s23208651 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23208651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7367-7520
https://doi.org/10.3390/s23208651
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23208651?type=check_update&version=2

Sensors 2023, 23, 8651 2 of 27

reaction-based algorithms [1]. The Dijkstra method [5] is based on a greedy and optimal
graph search; however, it lacks directionality during pathfinding. In the A* method [6],
a heuristic function is employed to measure the distance between the real-time search
location and the target location; this process results in a targeted search and a higher
search speed than that achieved in the Dijkstra method. A rapidly exploring random tree
(RRT) [7] is a sample-based approach that generates a sequence of dynamically feasible
kinematic connections. The RRT method is sensitive to the sampling distribution, and
no guarantee exists that the time taken to converge to the optimal solution would be
sufficiently short. The interpolating curve algorithm draws a smooth path based on
computer-aided geometric design. Typical path smoothing and curve generation rules
include line and circle [8], clothoid curves [9], polynomial curves [10], Bezier curves [11],
and spline curves [12]. The potential field method (PFM), the velocity obstacle method
(VOM), and the dynamic window approach (DWA) are three reaction-based algorithms
that are widely used in engineering and manufacturing. The PFM [13] uses the gradient of
a potential field to move the robot from an initial to a target point. The VOM [14] relies on
current positions and velocities of robots and obstacles to calculate a reachable avoidance
velocity (RAV) space. A proper avoidance velocity is selected from the RAV to avoid static
and moving obstacles. The DWA [15] is about selecting the appropriate translational and
rotational velocity to maximize an objective function within a dynamic window, which is
an online collision avoidance strategy. The shortcoming of traditional methods is that they
require knowledge of the environment prior to planning. These methods are unsuitable
for solving path-planning problems in environments with unknown characteristics. In
addition, when a traditional method is used, trajectory optimization must be performed
at the back end after the path search has been performed at the front end, and trajectory
optimization requires considerable calculations.

Reinforcement learning (RL) [16–18] is a goal-directed computational approach. In
contrast to supervised and unsupervised learning methods, RL involves using the reward
of interacting with an unknown dynamic environment as a feedback signal, rather than
using many labeled samples [19]. RL methods can be categorized into value-based, policy-
based, and actor–critic (AC)-based frameworks. Value-based RL is the simplest RL method,
and it performs well in most discrete action spaces. In policy-based RL, stochastic poli-
cies are optimized by directly mapping states to actions through a probability function.
The AC-based framework [20] combines the advantages of value-based and policy-based
frameworks and typically includes actor and critic networks. The actor is a policy network
that maps input states to output actions, and the critic is a value network that evaluates the
quality for each state–action pair.

An RL agent learns by directly interacting with the environment without supervision
and without a model of the environment. At the end of an episode, the agent generally
receives positive rewards through environmental feedback. For long-distance navigation
in environments containing obstacles, robots have difficulty obtaining the final positive
reward signal. The sparse reward problem [21] leads to slow learning and difficult conver-
gence. Reward shaping [22] is a means of manually tuning and modifying fine-grained
reward signal values for robots in different states. The tuning that is performed in reward
shaping is intuitive and highly dependent on the expert experience of the person con-
ducting the process. Inappropriate rewards might lead to changes in the optimal policy
and produce abnormal behavior. In the curiosity-driven method [23], the sparse reward
problem is solved by exploiting existing trajectories. An intrinsic curiosity module extracts
additional intrinsic reward signals from the environment and encourages the agent to
explore effectively. Hindsight experience replay (HER) [24] is another approach used for
addressing the sparse reward problem. In HER, additional reward signals are explored
and acquired during training by mapping the no-reward state to new targets and by re-
placing previous targets. Another approach for addressing reward sparsity is hierarchical
RL (HRL) [25,26], in which the original task is hierarchically decomposed into multiple
continuous and easy-to-solve subtasks, which are then further divided and completed to

Sensors 2023, 23, 8651 3 of 27

provide dense reward signals to the agent. The reward function is difficult to configure for
some specific and complex planning tasks. In inverse RL (IRL) [27], expert trajectories are
utilized for inversely learning the reward function, and policies are then optimized. IRL is
an imitation-learning paradigm [28], as is behavior cloning, which relies on a supervised
learning process and suffers from a mismatch between the participant’s strategy and the
expert’s strategy.

AC-based deep RL (DRL) approaches—including the deep deterministic policy gradi-
ent (DDPG) [29], twin-delayed DDPG (TD3) [30], and soft AC (SAC) [31] algorithms—are
often used to optimize action sequences for robots. Vecerik et al. [32] proposed a general
and model-free DDPG-based approach for solving high-dimensional robotics problems.
Other studies [33,34] have proposed DDPG-based path-planning methods in which HER
is used to overcome the performance degradation caused by sparse rewards. TD3 with
traditional global path planning was employed in [35] to improve the generalization of
the developed model. In [30] and [36], the TD3 and HRL methods were combined, the
state–action space was divided in accordance with the information maximization criterion,
and a deterministic option policy was then learned for each region of the state–action
space. The SAC algorithm [31,37] uses a stochastic policy and obtains the optimal policy by
optimizing the entropy. HER is used in the SAC algorithm to improve sampling efficiency
and results in favorable exploration performance.

In an environment exposed to multiple obstacles, the agent learns how to avoid obsta-
cles and reach its destination without collision. The DWA [15] is a traditional method of
static obstacle avoidance. Due to complex conditions and equations, dynamic obstacles
require a large amount of computing time to predict the next movement of the obstacle.
CADRL [38] and MRCA [39] are representative obstacle avoidance methods based on
reinforcement learning. CADRL aims to avoid pedestrians and needs to obtain pedestrian
position, speed, and body shape information. The disadvantage is that it cannot be avoided
if the pedestrian is not detected. MRCA can avoid various dynamic obstacles through
the distance information of LiDAR without detecting dynamic objects. In a multi-agent
learning environment, it is relatively difficult for MRCA to comprehensively avoid dy-
namic obstacles through multiple different avoidance strategies or no avoidance strategies.
Liang et al. [40] used multiple perception sensors including 2-D LiDAR and depth cameras
for smooth collision avoidance. Choi et al. [41] proposed a framework in decentralized
collision avoidance in which each agent independently makes its decision without commu-
nication with others. A collision avoidance/mitigation system [42] was proposed to rapidly
evaluate potential risks associated with all surrounding vehicles and to maneuver the vehi-
cle into a safer region when faced with critically dangerous situations through a predictive
occupancy map. A two-stage RL-based collision avoidance approach [43] was proposed.
The first stage is a supervised training method with a loss function that encourages the
agent to follow the well-known reciprocal collision avoidance strategy. The second stage is
using a traditional RL training method to maximize reward function and refine the policy.
A hybrid algorithm [44] of RL and force-based motion planning was presented to solve the
distributed motion-planning problem in dense and dynamic environments. A new reward
function provides conservative behavior by changing collision punishment to decrease the
chance of collision in crowded environments. Many studies [26,40,41,45] adopt the method
of imposing a large penalty on the reward when the robot collides with an obstacle or
approaches an obstacle. The survival penalty imposes a negative reward at each time step,
which encourages the robot to reach the goal as quickly as possible. Obstacle avoidance
based solely on reinforcement learning may lead to path-finding problems in some cases.
To solve this problem and improve navigation efficiency, the path planner is integrated
with reinforcement learning-based multi-obstacle avoidance.

To address the severe problem of reward sparsity in complex environments, survival
penalties can be applied as rewards to ensure successful learning. A survival penalty-based
approach is used within an AC framework to solve a motion-planning problem in which
the target position and orientation are aligned simultaneously. We design a comprehensive

Sensors 2023, 23, 8651 4 of 27

reward function and conduct it in three navigation scenarios to ensure that the goal can be
approached while avoiding obstacles dynamically.

The remainder of this paper is organized as follows. Section 2 details the navigation
problem and the requirements for a WMR. Section 3 briefly describes two AC frameworks,
namely, DDPG and TD3. In the aforementioned section, we elaborate on the observation
state, action space, and reward function and then construct the environment and agent
for DRL. Section 4 presents details on the proposed model’s training and evaluation and
on simulation results for four scenarios. Section 5 discusses the rationality of the survival
penalty function and the potential applications of this study. Finally, Section 6 provides the
conclusions of this study.

2. Problem Statement and Preliminaries

A path is a route from one point in space to another. The path-planning problem is
closely related to the collision avoidance problem. Although most studies have aimed to
solve the path-planning problem in a flexible and efficient manner, they have considered
only motion planning involving position transitions, without considering orientation-
related tasks. In this paper, we propose a planning approach in which orientation and
localization tasks are tackled simultaneously for further investigating the potential of
WMRs. We address attitude adjustment in the final goal of the WMR’s task. As illustrated
in Figure 1, our goal is for the WMR to move in a timesaving manner and without colliding
with obstacles while possessing the required orientation. The proposed method can be
applied to many situations. For example, the operation of an automated parking system
is a position and orientation colocalization problem. The system must locate the target
parking space, define a path that avoids obstacles, and park in the space with the correct
orientation and high accuracy [46]. The proposed method involves the planning of collision-
free paths during precise directional navigation. To meet requirements for position and
orientation transformation, kinematic constraints as well as position and attitude constraints
are considered.

Sensors 2023, 23, x 5 of 28

Figure 1. Kinematic model of a WMR.

The attitude of the WMR is described by the following generalized coordinate vector
with five components: 𝒒𝒒 = [𝑋𝑋𝑐𝑐 ,𝑌𝑌𝑐𝑐 ,ψ, 𝜃𝜃𝑅𝑅,𝜃𝜃𝐿𝐿]𝑇𝑇 ∈ 𝑅𝑅5, where (𝑋𝑋𝑐𝑐,𝑌𝑌𝑐𝑐) are the inertial coordi-
nates of the WMR’s center of mass, 𝜓𝜓 is the yaw angle of the WMR relative to the hori-
zontal inertial axis 𝑋𝑋, and 𝜃𝜃𝑅𝑅 and 𝜃𝜃𝐿𝐿 are the rotation angles of the right and left driving
wheels, respectively. The width of the WMR is 2𝑏𝑏, the distance between the center of mass
and geometric center of the WMR platform is 𝑑𝑑, and the driving wheel radius is 𝑟𝑟. As
shown in Figure 1, the centroid 𝑃𝑃𝐶𝐶 of the WMR does not coincide with its geometric cen-
ter 𝑃𝑃𝑂𝑂. The WMR is subject to three nonholonomic constraints when its wheels are rolling
and not slipping.

𝑨𝑨(𝒒𝒒)𝒒𝒒 = 0, (1)

where

𝑨𝑨(𝒒𝒒) = �
−sinψ cosψ −𝑑𝑑 0 0
cosψ sinψ 𝑏𝑏 −𝑟𝑟 0
cosψ sinψ −𝑏𝑏 0 −𝑟𝑟

�

is the nonholonomic constraint matrix.
Let 𝜃̇𝜃𝑅𝑅 and 𝜃𝜃𝐿𝐿̇ represent the angular velocities of the right and left driving wheels,

respectively. If 𝝎𝝎(𝒕𝒕) = � 𝜃̇𝜃𝑅𝑅, 𝜃𝜃𝐿𝐿̇ �
𝑇𝑇 is considered a control input, the kinematic model of the

WMR [47] can be expressed as follows:

𝒒̇𝒒 = 𝑺𝑺(𝒒𝒒)𝝎𝝎(𝒕𝒕) (2)

where

Figure 1. Kinematic model of a WMR.

Sensors 2023, 23, 8651 5 of 27

As depicted in Figure 1, a differential-drive WMR consists of two rear driving wheels
parallel to the back-to-front axis of the body and a caster wheel that supports the robotic
platform. The WMR is moved by two direct motors driving the wheels. The global inertia
is fixed in the plane of motion, and the moving WMR has a local body frame. The global
inertial frame and local body frame are denoted by X–Y and x–y, respectively. The origin of
the local frame’s coordinate system is the center of gravity of the WMR. The x-direction is
the direction that the WMR is facing, whereas the y-direction points to the left if the WMR
is facing forward. The WMR is assumed to be in contact with a nondeformable horizontal
plane on which it purely rolls and never slips during motion.

The attitude of the WMR is described by the following generalized coordinate vector
with five components: q = [Xc, Yc, ψ, θR, θL]

T ∈ R5, where (Xc, Yc) are the inertial
coordinates of the WMR’s center of mass, ψ is the yaw angle of the WMR relative to the
horizontal inertial axis X, and θR and θL are the rotation angles of the right and left driving
wheels, respectively. The width of the WMR is 2b, the distance between the center of mass
and geometric center of the WMR platform is d, and the driving wheel radius is r. As
shown in Figure 1, the centroid PC of the WMR does not coincide with its geometric center
PO. The WMR is subject to three nonholonomic constraints when its wheels are rolling and
not slipping.

A(q)q = 0, (1)

where

A(q) =

− sinψ cosψ −d 0 0
cosψ sinψ b −r 0
cosψ sinψ −b 0 −r


is the nonholonomic constraint matrix.

Let
.
θR and

.
θL represent the angular velocities of the right and left driving wheels,

respectively. If ω(t) =
[.
θR,

.
θL

]T
is considered a control input, the kinematic model of the

WMR [47] can be expressed as follows:

.
q = S(q)ω(t) (2)

where

S(q) =
1
2



r cosψ− d·r
b sinψ r cosψ− d·r

b sinψ

r sinψ− d·r
b cosψ rsinψ− d·r

b cosψ
r
b

−r
b

2 0

0 2


.

The line velocity and angular velocity of the WMR at point PC are denoted by v and ω,
respectively. The relationship between v, ω,

.
θR, and

.
θL is as follows: .

θR
.

θL

 =

 1
r

b
r

1
r

−b
r

[v
ω

]
. (3)

Equation (3) is substituted into (2) to obtain the ordinary form of a WMR with
two actuated wheels, which is expressed as follows:

.
q = J(q)

[
v
ω

]
, (4)

Sensors 2023, 23, 8651 6 of 27

where

J(q) =



cosψ −d·sinψ

sinψ d· cosψ

0 1
1
r

b
r

1
r

−b
r


,

which satisfies the equation A(q)J(q) = 0.

3. Reinforcement Learning
3.1. DDPG Algorithm

As shown in Figure 2, the DDPG algorithm [29] combines a replay buffer, a determinis-
tic policy, and an AC architecture to solve decision problems in a continuous task space. The
term θQ represents the parameter of the critic network, which approximates the state–action
value Q

(
s, a
∣∣θQ), whereas θµ is the parameter of the actor network, which approximates

the deterministic policy µ(s|θµ). The actor outputs the probability distribution of an action,
whereas the critic uses the state–action value Q

(
s, a
∣∣θQ) to evaluate the performance of

the actor and guide the actor’s next action.

Sensors 2023, 23, x 7 of 28

selects an action by using the estimate of 𝑄𝑄[𝑠𝑠, 𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇)|𝜃𝜃𝑄𝑄] obtained by the critic network;
thus, the estimate should be as close as possible to the target value.

Figure 2. Flowchart of the DDPG algorithm.

For the TD method, the objective function of the critic network that minimizes the
mean square error (MSE) between the target value 𝑦𝑦𝑡𝑡 and the estimated value
𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇)|𝜃𝜃𝑄𝑄) can be expressed as follows:

𝒥𝒥(𝜃𝜃𝑄𝑄) = 𝔼𝔼 ��𝑦𝑦𝑡𝑡 − 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇)|𝜃𝜃𝑄𝑄)�2� (7)

The parameter 𝜃𝜃𝑄𝑄 of the critic network is optimized using the gradient descent al-
gorithm. In this case, the gradient is calculated as follows:

∇𝜃𝜃𝑄𝑄𝒥𝒥(𝜃𝜃𝑄𝑄) ≈ 𝔼𝔼��𝑦𝑦𝑡𝑡 − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇)|𝜃𝜃𝑄𝑄)� ∙ ∇𝜃𝜃𝑄𝑄𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇)|𝜃𝜃𝑄𝑄)� (8)

Conversely, the parameter 𝜃𝜃𝜇𝜇 of the actor network is optimized using the gradient
ascent algorithm. In this case, the gradient is computed as follows:

∇𝜃𝜃𝜇𝜇𝒥𝒥(𝜃𝜃𝜇𝜇) ≈ 𝔼𝔼[∇𝜃𝜃𝜇𝜇𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎|𝜃𝜃𝜇𝜇)] = 𝔼𝔼�∇𝜃𝜃𝜇𝜇𝜇𝜇(𝑠𝑠𝑡𝑡 ,𝜃𝜃𝜇𝜇) ∙ ∇𝜃𝜃𝑄𝑄𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇)|𝜃𝜃𝑄𝑄)� (9)

The gradient is computed using the chain rule as the expected value of the product
between the gradient of the critic network with respect to the state–action and the gradient
of the actor network with respect to its action. The actor is updated to make the output
action be more favorably evaluated by the critic.

In the DDPG algorithm, a replay buffer is used to break the Markov nature of sam-
pled data, and two target networks are employed to ensure the stability of the training
process. The TD method is used to redefine the objective functions of the critic network
and actor network as follows:

Figure 2. Flowchart of the DDPG algorithm.

The objective function in the DDPG algorithm is maximization of the expected cumu-
lative reward R(τ) in episode τ; this function is expressed as follows:

J
(

θQ
)
= Eτ∼πθ(τ)

[R(τ)] ≈ E
[

Q
(

s, a
∣∣∣θQ
)]

(5)

In the DDPG approach, Monte Carlo-based updating is converted into a temporal
difference (TD) method. The actual reward is compared with the critic’s estimate to obtain

Sensors 2023, 23, 8651 7 of 27

the TD error, which is used to adjust the parameters of the critic network and thus obtain a
more accurate estimate. When Monte Carlo methods are used, the actual reward cannot be
determined until the end of the RL episode. In the TD method, only the next interaction
state st+1 must be reached before the TD target can be formed and Q

(
st, at

∣∣θQ) can be
updated. The TD target value yt at time step t is expressed as follows:

yt = rt + γQtarget
(

st+1, µtarget
(

st+1

∣∣∣θµtarget
)∣∣∣θQtarget

)
, (6)

where rt represents the current reward; st+1 represents the state in time step t + 1; θQtarget

and θµtarget
are copies of θQ and θµ, respectively, and the target networks for low-frequency

updates; Qtarget(·) is the state–action value obtained by the critic target network; and
µtarget(·) is the action obtained by the actor target network. The actor selects an action by
using the estimate of Q

[
s, µ(s|θµ)

∣∣θQ] obtained by the critic network; thus, the estimate
should be as close as possible to the target value.

For the TD method, the objective function of the critic network that minimizes the mean
square error (MSE) between the target value yt and the estimated value Q

(
st, µ(st|θµ)

∣∣θQ)
can be expressed as follows:

J
(

θQ
)
= E

[(
yt −Q

(
st, µ(st|θµ)

∣∣∣θQ
))2

]
(7)

The parameter θQ of the critic network is optimized using the gradient descent algo-
rithm. In this case, the gradient is calculated as follows:

∇θQJ
(

θQ
)
≈ E

[(
yt −Q

(
st, µ(st|θµ)

∣∣∣θQ
))
·∇θQ Q

(
st, µ(st|θµ)

∣∣∣θQ
)]

(8)

Conversely, the parameter θµ of the actor network is optimized using the gradient
ascent algorithm. In this case, the gradient is computed as follows:

∇θµJ (θµ) ≈ E[∇θµ Q(st, a|θµ)] = E
[
∇θµ µ(st, θµ)·∇θQ Q

(
st, µ(st|θµ)

∣∣∣θQ
)]

(9)

The gradient is computed using the chain rule as the expected value of the product
between the gradient of the critic network with respect to the state–action and the gradient
of the actor network with respect to its action. The actor is updated to make the output
action be more favorably evaluated by the critic.

In the DDPG algorithm, a replay buffer is used to break the Markov nature of sampled
data, and two target networks are employed to ensure the stability of the training process.
The TD method is used to redefine the objective functions of the critic network and actor
network as follows:

J
(

θQ
)
=

1
N ∑t

(
yt −Q

(
st, µ(st|θµ)

∣∣∣θQ
))2

, (10a)

J (θµ) =
1
N ∑t Q(st, a|θµ), (10b)

where N is the number of < st, at, rt, st+1 > tuples sampled from the replay buffer. The
objective gradients for the critic and actor networks are expressed as follows:

∇θQJ
(

θQ
)
= ∇θQ

1
N ∑t

(
yt −Q

(
st, µ(st|θµ)

∣∣∣θQ
))2

(11a)

∇θµJ (θµ) ∼=
1
N ∑

i
∇θµ µ(si, θµ)·∇θQ Q

(
st, µ(st|θµ)

∣∣∣θQ
)

(11b)

Sensors 2023, 23, 8651 8 of 27

The parameters θQ and θµ of the critic and actor networks, respectively, are updated
as follows:

θQ
i+1 = θQ

i − αQ∇θQJ
(

θQ
)

, (12a)

θ
µ
i+1 = θ

µ
i + αµ∇θµ J(θµ), (12b)

where αQ and αµ are the learning rates of the critic and actor networks, respectively. The
target functions of the critic and actor networks are updated at low frequency toward the
main networks as follows:

θQtarget

i+1 = τθQ + (1− τ)θQtarget

i , (13a)

θ
µtarget

i+1 = τθµ + (1− τ)θ
µtarget

i , (13b)

where τ is a smoothing factor. These new target functions are obtained using a soft update
method that improves the stability of network convergence.

3.2. TD3 Algorithm

A common mode of failure for the DDPG algorithm involves the learned Q function
beginning to overestimate the Q values substantially. Errors of the Q function are intro-
duced into the training of the actor network, which leads to policy violation. The TD3
algorithm [30], which is an improvement of the DDPG algorithm, can reduce overestimation
of the value function. In the TD3 algorithm, delayed actor updates, dual critics and actors,
and additional clip noise are employed to control actions. As shown in Figure 3, two critic
functions, namely, Q1

(
s, a
∣∣θQ1

)
and Q2

(
s, a
∣∣θQ2

)
, are learned concurrently through MSE

minimization in almost the same way that the single critic function is learned in the DDPG
algorithm. The predicted value of yt that is selected is the smaller of the predictions of the
two target critics:

yt = rt + γ minj=1,2Qtarget
j

(
si+1, clip

(
µtarget

(
si+1

∣∣∣θµtarget
))
|θQtarget

j

)
, (14)

where j represents the two target critics, and the clip function constrains future actions
within the lower and upper bounds specified for the controls. As an output, the clip
function returns its argument unless this argument violates the bound, in which case the
argument is set to be equal to the bound. Each critic computes the MSE of the TD error e
within the batch as follows:

MSE e2 =
1
N ∑t

(
yt −minj=1,2Qj

(
st, at

∣∣∣θQj
))2

, (15)

where N is the batch sampled from the replay buffer R. The lowest prediction from a pair of
critics is employed to prevent overestimation of the value function. The parameters of the
critic functions θQ1 and θQ2 are updated through one step of gradient descent as follows:

∇
θ

QjJ
(

θQ
)
= ∇θQ

1
N ∑t

(
yt −minj=1,2Qj

(
st, at

∣∣∣ θQj
))2

. (16)

Using a small critical value of the target and regressing to that value helps to prevent
overestimation of the Q function. The parameters of the target actor and target critic are
updated less frequently in the TD3 algorithm than in the DDPG algorithm.

Sensors 2023, 23, 8651 9 of 27

Sensors 2023, 23, x 9 of 28

∇𝜃𝜃𝑄𝑄𝑗𝑗𝒥𝒥(𝜃𝜃𝑄𝑄) = ∇𝜃𝜃𝑄𝑄
1
𝑁𝑁
∑ �𝑦𝑦𝑡𝑡 − min𝑗𝑗=1,2𝑄𝑄𝑗𝑗�𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡| 𝜃𝜃𝑄𝑄𝑗𝑗��

2
𝑡𝑡 . (16)

Using a small critical value of the target and regressing to that value helps to prevent
overestimation of the Q function. The parameters of the target actor and target critic are
updated less frequently in the TD3 algorithm than in the DDPG algorithm.

Figure 3. Flowchart of the TD3 algorithm.

3.3. Setting of the State and Action
The motion planning required to perform a given WMR task can be fundamentally

divided into navigation and obstacle avoidance. The navigation module obtains infor-
mation on the relative attitude of the WMR with respect to the target, whereas the anti-
collision planning module receives raw LiDAR sensor data that contain information on
the unknown and dynamic environment in which the WMR is moving [48]. The WMR’s
system uses the aforementioned information for agent training and to determine the
WMR’s next action. The current pose and target pose are denoted as (𝑋𝑋𝑐𝑐 ,𝑌𝑌𝑐𝑐 ,𝜓𝜓) and
�𝑋𝑋𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑌𝑌𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�, respectively (Figure 4a). To speed up the training and improve the
convergence stability of the algorithm, the pose state vector 𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑 is set to be a six-dimen-
sional vector normalized in the range [−1, 1]. This vector is expressed as follows:

(a)

Figure 3. Flowchart of the TD3 algorithm.

3.3. Setting of the State and Action

The motion planning required to perform a given WMR task can be fundamentally di-
vided into navigation and obstacle avoidance. The navigation module obtains information
on the relative attitude of the WMR with respect to the target, whereas the anti-collision
planning module receives raw LiDAR sensor data that contain information on the unknown
and dynamic environment in which the WMR is moving [48]. The WMR’s system uses the
aforementioned information for agent training and to determine the WMR’s next action.
The current pose and target pose are denoted as (Xc, Yc, ψ) and

(
Xc,goal , Yc,goal , ψgoal

)
,

respectively (Figure 4a). To speed up the training and improve the convergence stability of
the algorithm, the pose state vector spos is set to be a six-dimensional vector normalized in
the range [−1, 1]. This vector is expressed as follows:

spos =

[
xrel

drel,max
,

yrel
drel,max

,
drel

drel,max
,

ψ2,rel

π
,

ψ3,rel

π
,

ψ4,rel

π

]T
, (17)

where xrel and yrel are the coordinates of the WMR’s current position in the body coordinate
system based on the WMR’s target position, drel is the distance between the current position
and the target position, drel,max is the maximum drel value, ψ2,rel is the azimuth angle of
viewing the current WMR from the tail of the target, ψ3,rel is the angle of viewing the target
from the first-person perspective in WMR, and ψ4,rel is the relative yaw angle with respect
to the target. These parameters are expressed as follows:

drel =

√(
Xc,goal − Xc

)2
+
(

Yc,goal −Yc

)2
(18a)

ψ1,rel = tan2−1

(
Yc,goal −Yc

Xc,goal − Xc

)
(18b)

ψ2,rel = ψ1,rel − ψgoal − π (18c)

xrel = drel · cos(ψ2,rel + π) (18d)

yrel = drel · sin(ψ2,rel + π) (18e)

Sensors 2023, 23, 8651 10 of 27

ψ3,rel = ψ1,rel − ψ− π (18f)

ψ4,rel = ψ− ψgoal (18g)

Sensors 2023, 23, x 9 of 28

∇𝜃𝜃𝑄𝑄𝑗𝑗𝒥𝒥(𝜃𝜃𝑄𝑄) = ∇𝜃𝜃𝑄𝑄
1
𝑁𝑁
∑ �𝑦𝑦𝑡𝑡 − min𝑗𝑗=1,2𝑄𝑄𝑗𝑗�𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡| 𝜃𝜃𝑄𝑄𝑗𝑗��

2
𝑡𝑡 . (16)

Using a small critical value of the target and regressing to that value helps to prevent
overestimation of the Q function. The parameters of the target actor and target critic are
updated less frequently in the TD3 algorithm than in the DDPG algorithm.

Figure 3. Flowchart of the TD3 algorithm.

3.3. Setting of the State and Action
The motion planning required to perform a given WMR task can be fundamentally

divided into navigation and obstacle avoidance. The navigation module obtains infor-
mation on the relative attitude of the WMR with respect to the target, whereas the anti-
collision planning module receives raw LiDAR sensor data that contain information on
the unknown and dynamic environment in which the WMR is moving [48]. The WMR’s
system uses the aforementioned information for agent training and to determine the
WMR’s next action. The current pose and target pose are denoted as (𝑋𝑋𝑐𝑐 ,𝑌𝑌𝑐𝑐 ,𝜓𝜓) and
�𝑋𝑋𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,𝑌𝑌𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ,𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�, respectively (Figure 4a). To speed up the training and improve the
convergence stability of the algorithm, the pose state vector 𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑 is set to be a six-dimen-
sional vector normalized in the range [−1, 1]. This vector is expressed as follows:

(a)

Sensors 2023, 23, x 10 of 28

(b)

Figure 4. State space of the WMR: (a) WMR pose information, (b) environmental information pro-
vided by a LiDAR sensor scan.

𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑 = � 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚

, 𝜓𝜓2,𝑟𝑟𝑟𝑟𝑟𝑟
𝜋𝜋

, 𝜓𝜓3,𝑟𝑟𝑟𝑟𝑟𝑟
𝜋𝜋

, 𝜓𝜓4,𝑟𝑟𝑟𝑟𝑟𝑟
𝜋𝜋
�
𝑇𝑇
, (17)

where 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟 are the coordinates of the WMR’s current position in the body coor-
dinate system based on the WMR’s target position, 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 is the distance between the cur-
rent position and the target position, 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 value, 𝜓𝜓2,𝑟𝑟𝑟𝑟𝑟𝑟 is the
azimuth angle of viewing the current WMR from the tail of the target, 𝜓𝜓3,𝑟𝑟𝑟𝑟𝑟𝑟 is the angle
of viewing the target from the first-person perspective in WMR, and 𝜓𝜓4,𝑟𝑟𝑟𝑟𝑟𝑟 is the relative
yaw angle with respect to the target. These parameters are expressed as follows:

𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = ��𝑋𝑋𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑋𝑋𝑐𝑐�
2 + �𝑌𝑌𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑌𝑌𝑐𝑐�

2 (18a)

𝜓𝜓1,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡𝑡𝑡𝑡𝑡2−1 �
𝑌𝑌𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑌𝑌𝑐𝑐
𝑋𝑋𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑋𝑋𝑐𝑐

� (18b)

𝜓𝜓2,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜓𝜓1,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝜋𝜋 (18c)

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 ∙ cos (𝜓𝜓2,𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜋𝜋) (18d)

𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 ∙ sin (𝜓𝜓2,𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜋𝜋) (18e)

𝜓𝜓3,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜓𝜓1,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜓𝜓 − 𝜋𝜋 (18f)

𝜓𝜓4,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜓𝜓 − 𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (18g)

As the WMR successfully navigates itself to the target, all elements in the pose state
vector 𝒔𝒔𝒑𝒑𝒑𝒑𝒑𝒑 approach 0.

To plan an obstacle-free path, the robot’s system must extract information from the
environment by using sensor data and thereby generate commands that ensure obstacle
avoidance. Figure 4b shows an example of LiDAR data obtained in the horizontal plane.
Laser scanning is performed between 120° and −120°, and sensors are established to detect

Figure 4. State space of the WMR: (a) WMR pose information, (b) environmental information
provided by a LiDAR sensor scan.

As the WMR successfully navigates itself to the target, all elements in the pose state
vector spos approach 0.

To plan an obstacle-free path, the robot’s system must extract information from the
environment by using sensor data and thereby generate commands that ensure obstacle
avoidance. Figure 4b shows an example of LiDAR data obtained in the horizontal plane.
Laser scanning is performed between 120◦ and −120◦, and sensors are established to detect
reflectance of laser beams at intervals of 12◦. If the sensor does not detect any object within
a certain distance, the distance of the nearest obstacle is considered to be equal to the
maximum detectable distance dmax,LiDAR; otherwise, the length is the distance between the

Sensors 2023, 23, 8651 11 of 27

WMR and the detected obstacle. The range information of LiDAR is normalized into the
range [0, 1] and is expressed as follows:

sLiDAR =

[
d0, detect

dmax,LiDAR
,

d1, detect

dmax,LiDAR
, . . . ,

d20, detect

dmax,LiDAR

]T
(19)

where di,LiDAR is the length detected by the ith laser sensor. The input state information
st at time step t includes the pose information spos relative to the target and the obstacle
information sLiDAR relative to the obstacle; this information comprises the following set:

st =
[
spos, sLiDAR

]T (20)

The action to be taken by the WMR is the set of the linear forward velocity v and the
angular velocity ω around the centroid of the WMR.

at = [v, ω]T (21)

3.4. Survival Penalty Function

When the reward function is used as a training metric to encourage or discourage action,
this function has a strong influence on learning performance. In many studies [19,26,49], the
distance drel between the current position and the target position has been employed as the
main parameter of the reward function. When a positive reward design is used, the closer the
WMR is to the target, the higher the reward. Once the agent successfully reaches the target
area, it obtains the highest reward. In the illustration presented in Figure 5a, the WMR is
initially at the left side and reaches the final position on the right side. The maximum distance
dmax for a straight track is set as 10 intervals. The positive reward rpos is proportional to the
distance from the starting point and is expressed as follows:

rpos = dmax − drel . (22)

Path planning is performed at regular intervals. When the WMR is traveling at a
forward velocity of 1 and 2 intervals per time step, the agent receives a cumulative reward of
55 and 30, respectively, after completing episodic work. The goal in DRL is to guide an agent
that is attempting to maximize the cumulative reward from the initial state distribution.
A potential drawback of only implementing positive rewards is that the agent employs a
slow movement policy to perform the situational task and thereby obtains a relatively high
cumulative reward. In study [18], auxiliary negative rewards have also been assigned to
penalize near-standstill action when the WMR is traveling below a certain speed.

The survival penalty function in which a negative relative distance drel is used as the
reward for straight-line forward motion is defined as follows:

rneg = −drel (23)

As displayed in Figure 5b, the highest penalty is awarded at the starting point, which
is the farthest point from the target, whereas the lowest penalty is awarded at the end point.
For forward velocities of 1 and 2 intervals per time step, the cumulative rewards are −55
and −30, respectively. The agent essentially moves the WMR from the starting point to the
destination and thus completes the linear motion task as quickly as possible. The linear
motion condition can be implemented by adopting the maximum driving speed strategy.
During turning maneuvers, a smaller turning radius can be produced by reducing the
driving speed and altering the rotation angle. Survival penalty functions have the intrinsic
advantage of guiding the agent to complete the motion task in the fewest number of steps;
thus, the decisions made are different to those made in positive reward design.

Sensors 2023, 23, 8651 12 of 27

Figure 5. Cumulative rewards of the linear motion using positive and negative rewards: (a) positive
reward, (b) negative reward.

To guide the WMR precisely into the target area and simultaneously achieve the correct
position and orientation, the intersecting xrel–yrel space of the coordinate plane is roughly
divided into four quadrants, as illustrated in Figure 6. In human driving behavior, a vehicle
is driven into the correct position by approaching the target from the rear. We first consider
the case in which the WMR is behind the target, that is, xrel < 0. We define a locking angle
ψlock as follows:

ψlock = max
(⌊

ψ2,rel
⌋
,
⌊
ψ3,rel

⌋
,
⌊
ψ4,rel

⌋)
, (24)

where ψ2,rel , ψ3,rel , and ψ4,rel are calculated using (18c), (18f), and (18g), respectively. When
the locking angle ψlock is less than 36◦, the agent might force the robot to head toward the
locking angle and then accurately approach the desired orientation and position (Figure 6a).
The smaller the locking angle, the smaller the penalty awarded. When the locking angle is
greater than 36◦ but less than 90◦, the main goal of the agent is to keep the WMR away from
the yre f -axis by enforcing a clearage distance |xlock1| and to move the WMR progressively
closer to the xre f -axis. When the locking angle is greater than 90◦, xrel remains in the range
[xlock2, xlock1], and a change-of-orientation motion is performed to turn the vehicle toward
the destination. To prevent the clearage distance from being too small or too large for large

Sensors 2023, 23, 8651 13 of 27

orientation adjustments, the two boundary distances xlock1 and xlock2 are set as −60 and
−90, respectively. The negative reward when the WMR is in the second or third quadrant
is as follows:

rpenalty1 =



− drel
drel,max

− byrelc
drel,max

− ψlock
π if ψlock < 18◦

−0.5− byrelc
drel,max

− ψlock
π if ψlock < 36◦

if ψlock ≤ 90◦

−0.8− byrelc
drel,max

− xrel−xlock1
−xlock1

if xrel ≥ xlock1

−0.8− byrelc
drel,max

other

if ψlock > 90◦

−1− ψlock
π − xrel−xlock1

−xlock1
if xrel ≥ xlock1

−1− ψlock
π − xrel−xlock2

xlock1
if xrel ≤ xlock2

−1− ψlock
π other

(25)

Sensors 2023, 23, x 14 of 28

𝑟௣௘௡௔௟௧௬ଶ ൌ
⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧ if ห𝜓ସ,௥௘௟ห ൐ 144° െ2 ൅ ห𝜓ସ,௥௘௟ห𝜋 െ 𝑥௥௘௟𝑑௥௘௟,௠௔௫ െ 𝑦௪௔௬ െ |𝑦௥௘௟|𝑦௪௔௬ if |𝑦௥௘௟| ൑ 𝑦௪௔௬െ2 ൅ ห𝜓ସ,௥௘௟ห𝜋 െ 𝑥௥௘௟𝑑௥௘௟,௠௔௫ other otherെ3 ൅ ห𝜓ସ,௥௘௟ห𝜋 െ 𝑦௪௔௬ െ |𝑦௥௘௟|𝑦௪௔௬ if |𝑦௥௘௟| ൑ 𝑦௪௔௬െ3 ൅ ห𝜓ସ,௥௘௟ห𝜋 other

 (26)

The survival penalty functions expressed in (25) and (26) indicate that negative rewards
(punishments) are always awarded as the WMR transitions from a high-penalty state to a
low-penalty state. An additional reward is provided at the end of each episode: 5 and −10
for successful completion of the navigation task and for a failed mission, respectively.

Figure 6. Survival penalty function that guides the WMR’s movement.

3.5. Collision Avoidance Constraints
During the training phase, when navigation paths are being explored, scenarios in-

volving collisions between the WMR and the environment or obstacles are easily gener-
ated. In many studies [26,49], scholars have penalized collision situations by terminating
the exploration episode and introducing additional negative rewards. The closer the de-
tected obstacle is, the greater the punishment. By instead applying positive rewards, the
agent can avoid unrewarding collision paths as much as possible and continue to explore
paths that correctly achieve the navigation goal while accumulating large rewards. How-
ever, this strategy is not possible when applying the survival penalty method. One reason

The first quadrant The second quadrant

The third quadrant The fourth quadrant

𝑥௥௘௟

𝑦௥௘௟

○1

○2

○3
○4

𝑥௟௢௖௞ଵ 𝑥௟௢௖௞ଶ

𝑦௪௔௬

െ𝑦௪௔௬

○5

○6

Danger

36°

18°

(𝜓௟௢௖௞ ൏18°)

(𝜓௟௢௖௞ ൏36°)

(𝜓௟௢௖௞ ൑90°) (𝜓௟௢௖௞ ൐90°)

(ห𝜓ସ,௥௘௟ห ൐ 144)
(ห𝜓ସ,௥௘௟ห ൑ 144°)

Figure 6. Survival penalty function that guides the WMR’s movement.

The constant negative bias in the first term of each penalty equation results in the
WMR being primarily steered in the correct direction, with the lock angle being reduced
and the punishment lowered as the WMR approaches the target.

The second case we consider is that in which the WMR is located in the first or fourth
quadrant. The objective of the reward function in this case is to guide the WMR away
from the dangerous passageway adjacent to the target area and into the rear of the target.
When the alignment angle

∣∣ψ4,rel
∣∣ is greater than 144◦, the front of the WMR is pointed

away from the positive xre f -axis direction and slightly toward the rear of the target. The
size of the main penalty is determined by the values of

∣∣ψ4,rel
∣∣ and xrel , and this penalty

guides the WMR to move to the second or third quadrant. An auxiliary penalty is added to

Sensors 2023, 23, 8651 14 of 27

prevent the WMR from passing through the dangerous passageway close to the xre f -axis.
The clear distance of yway is set as 60. When the WMR is facing the positive xre f -axis—that
is,
∣∣ψ4,rel

∣∣ ≤ 144◦—the WMR performs a U-turn in the first or the fourth quadrant, which
causes

∣∣ψ4,rel
∣∣ to increase. The negative reward when the WMR is in the first or the fourth

quadrant is expressed as follows:

rpenalty2 =



if
∣∣ψ4,rel

∣∣ > 144◦

−2 + |ψ4,rel |
π − xrel

drel,max
− yway−|yrel |

yway
if |yrel | ≤ yway

−2 + |ψ4,rel |
π − xrel

drel,max
other

other

−3 + |ψ4,rel |
π − yway−|yrel |

yway
if |yrel | ≤ yway

−3 + |ψ4,rel |
π other

(26)

The survival penalty functions expressed in (25) and (26) indicate that negative rewards
(punishments) are always awarded as the WMR transitions from a high-penalty state to a
low-penalty state. An additional reward is provided at the end of each episode: 5 and −10
for successful completion of the navigation task and for a failed mission, respectively.

3.5. Collision Avoidance Constraints

During the training phase, when navigation paths are being explored, scenarios in-
volving collisions between the WMR and the environment or obstacles are easily generated.
In many studies [26,49], scholars have penalized collision situations by terminating the
exploration episode and introducing additional negative rewards. The closer the detected
obstacle is, the greater the punishment. By instead applying positive rewards, the agent
can avoid unrewarding collision paths as much as possible and continue to explore paths
that correctly achieve the navigation goal while accumulating large rewards. However, this
strategy is not possible when applying the survival penalty method. One reason for this
restriction is that a sudden large penalty might cause the numerical calculation to become
unstable and might make it difficult for convergence to be achieved. Another reason is
that the agent can easily conclude that a path involving a collision but with few generation
steps and a small cumulative penalty is the optimal path, thereby resulting in poor action
generation and training failure.

We introduce a simple method that involves exploiting the survival penalty function to
manage obstacle avoidance. The TD3 and DDPG algorithms are off-policy algorithms that
create experience replay buffers to store historical experiences, randomly sample transitions
from these experiences, and then employ these sample data to update the actor and critic
networks. The existence of the experience replay buffer helps the agent to learn from
previous experiences and improve the efficiency of sample utilization. Figure 7 displays
two historical experiences: two consecutive episodes i and i + 1, where episode i involves a
collision. The episodes i and i + 1 consist of n and m steps, respectively, each of which stores
an experience [st, at, rt, st+1] tuple. To increase the cumulative penalty for the collision
episode, we can concatenate these two episodes into a new episode. At the end step n of
collision episode i, the original next state send is linked to the state of the first step of episode
i + 1. The new episode thus consists of n + m steps. The TD method can be used to increase
the cumulative penalty of the original collision episode i by the cumulative penalty of
episode i + 1, whereas the cumulative penalty of episode i + 1 is maintained the same.

Sensors 2023, 23, 8651 15 of 27

Sensors 2023, 23, x 15 of 28

for this restriction is that a sudden large penalty might cause the numerical calculation to
become unstable and might make it difficult for convergence to be achieved. Another rea-
son is that the agent can easily conclude that a path involving a collision but with few
generation steps and a small cumulative penalty is the optimal path, thereby resulting in
poor action generation and training failure.

We introduce a simple method that involves exploiting the survival penalty function
to manage obstacle avoidance. The TD3 and DDPG algorithms are off-policy algorithms
that create experience replay buffers to store historical experiences, randomly sample
transitions from these experiences, and then employ these sample data to update the actor
and critic networks. The existence of the experience replay buffer helps the agent to learn
from previous experiences and improve the efficiency of sample utilization. Figure 7 dis-
plays two historical experiences: two consecutive episodes 𝑖𝑖 and 𝑖𝑖 + 1, where episode 𝑖𝑖
involves a collision. The episodes 𝑖𝑖 and 𝑖𝑖 + 1 consist of 𝑛𝑛 and 𝑚𝑚 steps, respectively, each
of which stores an experience [𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1] tuple. To increase the cumulative penalty for
the collision episode, we can concatenate these two episodes into a new episode. At the
end step 𝑛𝑛 of collision episode 𝑖𝑖, the original next state 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 is linked to the state of the
first step of episode 𝑖𝑖 + 1. The new episode thus consists of 𝑛𝑛 + 𝑚𝑚 steps. The TD method
can be used to increase the cumulative penalty of the original collision episode 𝑖𝑖 by the
cumulative penalty of episode 𝑖𝑖 + 1, whereas the cumulative penalty of episode 𝑖𝑖 + 1 is
maintained the same.

Figure 7. Preprocessing the replay buffer for obstacle avoidance. Red circle indicates the original
next state 𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 is linked to the state of the first step of episode 𝑖𝑖 + 1.

4. Simulation and Results
4.1. Network Parameter Settings

Table 1 provides details on the architectures of the actor and critic networks used in
the simulations performed in this study. The six-dimensional relative target information
and 21-dimensional laser range findings of these networks are merged into a 27-dimen-
sional input vector. The input layer of the actor network is followed by three fully con-
nected layers, each of which contains 512 nodes and uses the rectified linear unit (ReLU)

Figure 7. Preprocessing the replay buffer for obstacle avoidance. Red circle indicates the original next
state send is linked to the state of the first step of episode i + 1.

4. Simulation and Results
4.1. Network Parameter Settings

Table 1 provides details on the architectures of the actor and critic networks used in the
simulations performed in this study. The six-dimensional relative target information and
21-dimensional laser range findings of these networks are merged into a 27-dimensional
input vector. The input layer of the actor network is followed by three fully connected
layers, each of which contains 512 nodes and uses the rectified linear unit (ReLU) activation
function. The outputs of the output layer include the linear and rotational velocities
generated by the hyperbolic tangent function. The range covered by the linear velocity and
angular velocity is [−1, 1]. The output actions are multiplied by two scale parameters to
determine the final linear and angular velocities that should be directly executed by the
WMR. The critic network consists of an input layer, three fully connected layers, and an
output layer. Each fully connected layer contains 512 nodes and uses the ReLU activation
function. The state–action pair predicts the Q value. The input layer of the critic network
is the same as that of the actor network. The output of the critic network’s first fully
connected layer is concatenated with the output of the actor network. The critic network,
the inputs to which are state–action pairs, finally generates a continuous value through a
linear activation function.

Table 1. Architectures of the actor and critic networks.

Layers
Actor Network Critic Network

Units Activation # Units Activation

Input layer 27 Relu 27 Relu
Hidden layer 1 512 Relu 512 + 2 Relu
Hidden layer 2 512 Relu 512 Relu
Hidden layer 3 512 Hyper. tangent 512 Linear
Output layer 2 1

Sensors 2023, 23, 8651 16 of 27

Table 2 lists the hyperparameter settings employed during the simulation. The dis-
count factor γ is set as 0.99, the learning rate of the actor and critic networks is set as
0.00001, and τ = 0.01 for the soft updating of the target networks. The size of the replay
buffer is 40,000, and the batch size of updating is 128. Moreover, the maximum number of
steps in each episode is set as 300. Simulations are performed on a computer with an Intel
i7-11 CPU with 32 GB of memory and an Nvidia RTX 4090 GPU. Python 3.10 is used as the
project interpreter. The deep-learning framework PyTorch 2.0 is employed for training the
networks in a Windows system.

Table 2. Hyperparameter settings in the simulation.

Hyperparameter Symbol Value

Discounter factor γ 0.99
Learning rate of actor network αµ 0.00001
Learning rate of critic network αQ 0.00001
Soft update rate τ 0.01
Max. Epsilon-Greedy εmax 1.0
Min. Epsilon-Greedy εmin 0.5
Replay buffer size 40,000
Batch size 128
Max. episode 1500
Max. step per episode 300
Optimization Adam

4.2. Virtual Environments

To prove the effectiveness and superiority of the proposed survival penalty function,
simulations are performed that involve the DDPG and TD3 algorithms with the same
reward functions and hyperparameters. Navigation tasks in four virtual environments are
investigated. Table 3 presents the physical parameters of and constraints on the WMR in
the learning environment.

Table 3. Geometrical parameters of and constraints on the WMR.

Description Symbol Value

Car width 2 × b 24
Car length l 30
Distance between center of mass and
geometric center of platform d 10

Driving wheel radius r 5
Driving wheel width 4
Driving wheel distance 28
Max. alignment position error 3
Max. alignment orientation error ±5◦

4.2.1. Free Obstacle Scenario

In this scenario, we construct a virtual navigation environment in which the initial and
target yaw angles have the same magnitude but opposite signs. The distance between the
initial and target points is set as 300. The navigation task is accomplished using a survival
penalty function. Figure 8 shows the cumulative reward curves when the yaw angle is
set as 90◦ and the DDPG and TD3 algorithms are employed. The red and blue curves
generated by the DDPG and TD3 algorithms, respectively, reveal large fluctuations in the
estimated cumulative rewards at the beginning of training. The TD3 algorithm converges
faster than does the DDPG algorithm; the reward curves of the DDPG and TD3 algorithms
become consistent after approximately 400 and 600 episodes of training, respectively. In the
stable region (i.e., after the aforementioned numbers of episodes), the mean and variance
of the blue curve are slightly lower and smaller, respectively, than those of the red curve.

Sensors 2023, 23, 8651 17 of 27

The estimated cumulative reward is considerably larger than the ground-truth cumulative
reward, which indicates that the AC framework always overestimates the cumulative
reward. Because the TD3 algorithm employs two critic networks, this algorithm exhibits a
smaller difference between the ground-truth reward and the estimated reward than does
the DDPG algorithm.

Sensors 2023, 23, x 17 of 28

Table 3. Geometrical parameters of and constraints on the WMR.

Description Symbol Value
Car width 2 × 𝑏𝑏 24
Car length 𝑙𝑙 30
Distance between center of mass and geometric center of platform d 10
Driving wheel radius 𝑟𝑟 5
Driving wheel width 4
Driving wheel distance 28
Max. alignment position error 3
Max. alignment orientation error ±5°

4.2.1. Free Obstacle Scenario
In this scenario, we construct a virtual navigation environment in which the initial

and target yaw angles have the same magnitude but opposite signs. The distance between
the initial and target points is set as 300. The navigation task is accomplished using a sur-
vival penalty function. Figure 8 shows the cumulative reward curves when the yaw angle
is set as 90° and the DDPG and TD3 algorithms are employed. The red and blue curves
generated by the DDPG and TD3 algorithms, respectively, reveal large fluctuations in the
estimated cumulative rewards at the beginning of training. The TD3 algorithm converges
faster than does the DDPG algorithm; the reward curves of the DDPG and TD3 algorithms
become consistent after approximately 400 and 600 episodes of training, respectively. In
the stable region (i.e., after the aforementioned numbers of episodes), the mean and vari-
ance of the blue curve are slightly lower and smaller, respectively, than those of the red
curve. The estimated cumulative reward is considerably larger than the ground-truth cu-
mulative reward, which indicates that the AC framework always overestimates the cumu-
lative reward. Because the TD3 algorithm employs two critic networks, this algorithm ex-
hibits a smaller difference between the ground-truth reward and the estimated reward
than does the DDPG algorithm.

Figure 8. Comparison of cumulative rewards between DDPG and TD3 algorithms at yaw angle of
90°. Note: The vertical blue and red lines indicate that the estimated rewards calculated by the TD3
and DDPG algorithms gradually become stable and consistent after approximately 400 and 600 ep-
isodes of training, respectively.

Table 4 lists the simulation results obtained for autonomous navigation in virtual en-
vironments for various yaw angle pairs, including the estimated cumulative reward,
ground-truth cumulative reward, Δ reward, steps per episode, and success rate. The Δ

Figure 8. Comparison of cumulative rewards between DDPG and TD3 algorithms at yaw angle
of 90◦. Note: The vertical blue and red lines indicate that the estimated rewards calculated by the
TD3 and DDPG algorithms gradually become stable and consistent after approximately 400 and
600 episodes of training, respectively.

Table 4 lists the simulation results obtained for autonomous navigation in virtual
environments for various yaw angle pairs, including the estimated cumulative reward,
ground-truth cumulative reward, ∆ reward, steps per episode, and success rate. The ∆
reward column is calculated by subtracting the ground-truth cumulative reward from the
estimated cumulative reward. The estimated cumulative reward is always greater than
the ground-truth cumulative reward. The autonomous path created by the TD3 algorithm
has fewer execution steps than that created by the DDPG algorithm and thus leads to
the navigation task being completed more quickly in the same operating environment.
Similarly, the navigation success rate achieved using the TD3 algorithm is considerably
higher than that achieved using the DDPG algorithm.

Table 4. Simulation results obtained for autonomous navigation under various yaw angle configurations.

Scenario

DDPG TD3

Esti.
Reward

G.-T.
Reward

∆
Reward Step Succe.

Rate
Esti.

Reward
G.-T.

Reward
∆

Reward Step Succe.
Rate

0◦ −8.41 −13.36 4.95 70.2 0.97 −10.86 −11.50 0.64 54.6 1.00
20◦ −18.80 −23.14 4.34 64.3 0.71 −20.42 −21.87 1.44 55.9 0.96
40◦ −30.93 −36.10 5.16 75.5 0.88 −33.01 −35.23 2.22 64.0 0.90
60◦ −47.61 −56.10 8.49 77.4 0.93 −50.75 −56.15 5.40 69.3 0.95
80◦ −54.75 −64.51 9.76 77.7 0.97 −57.50 −64.23 6.73 74.6 0.93

100◦ −69.09 −77.86 8.77 87.2 0.90 −71.19 −77.06 5.87 86.2 0.97
120◦ −82.86 −92.73 9.87 106.9 0.93 −85.47 −92.49 7.02 103.9 0.99
140◦ −98.53 −112.12 13.59 122.3 0.96 −101.22 −110.84 9.62 118.3 0.99
160◦ −113.84 −129.81 15.97 134.2 0.95 −115.89 −127.43 11.54 127.9 0.97
180◦ −158.19 −179.89 21.71 151.8 0.65 −162.40 −180.08 17.68 146.7 0.89

Sensors 2023, 23, 8651 18 of 27

Figure 9 displays the autonomous paths planned by the system for initial yaw angles of
0◦, 40◦, 80◦, 120◦, 140◦, 160◦, and 180◦. The red and blue curves represent the autonomous
paths created by the DDPG and TD3 algorithms, respectively. The green lines radiating
from the WMR are the LiDAR scan lines. The paths generated by the TD3 algorithm have
small turning radii and involve considerable straight-line movement. The shapes of these
paths approximate a section of a rounded rectangle.

Sensors 2023, 23, x 19 of 28

(a) (b)

(c) (d)

Figure 9. Navigation paths for various initial and target yaw angles: (a) yaw angles of 0° and 40°,
(b) yaw angles of 80° and 100°, (c) yaw angles of 120° and 140°, and (d) yaw angles of 160° and 180°.

(a)

Figure 9. Navigation paths for various initial and target yaw angles: (a) yaw angles of 0◦ and 40◦,
(b) yaw angles of 80◦ and 100◦, (c) yaw angles of 120◦ and 140◦, and (d) yaw angles of 160◦ and 180◦.

Figure 10 shows the trajectories of the normalized forward linear velocity v and angular
velocity ω at a yaw angle of 80◦. A maximum normalized linear speed of 1 represents
maximum forward speed, and a minimum normalized linear speed of −1 represents zero
forward speed. Positive and negative normalized angular velocities reveal the directional
angular rates of the WMR to the left and right, respectively. The thick black dashed line
in Figure 10 shows the evaluation results using the TD3 algorithm when the greedy noise
ε is set to zero. The WMR starts at maximum forward linear speed and performs a right
turn maneuver. After approximately 16 steps, the WMR adjusts to linear motion, and the
normalized angular velocity ω approaches zero. After 36 steps, the WMR gradually turns

Sensors 2023, 23, 8651 19 of 27

right again and enters the target area. In the final stages of the navigation task, the WMR
reduces linear velocity and varies angular velocity at high frequency to align with the target
yaw angle. The WMR navigation path shown in Figure 9b uses 0.5 epsilon greedy noise to
increase the path exploration capability. As shown in Figure 10, the fluctuation of the blue
line produced by the TD3 algorithm with epsilon greedy noise 0.5 is significantly smaller
than that of the red line generated by the DDPG algorithm. The total number of steps for
the navigation simulation without/with epsilon greedy noise using the TD3 algorithm
is 64 and 69, respectively. The TD3 algorithm has better noise immunity than the DDPG
algorithm. In this study, the input state information st and reward function rt do not refer to
the speed information of the WMR. The trajectories of forward linear velocity v and angular
velocity ω are not very smooth. Liang [40] imposed a penalized reward associated with
angular velocity exceeding a threshold to reduce oscillatory behavior. Chai [26] proposed a
hierarchical control framework, which consists of an upper motion-planning layer and a
lower tracking layer to form a collision-free algorithm to achieve autonomous exploration
with high motion performance. Navigation tasks are suitable for low-speed movements.

Sensors 2023, 23, x 19 of 28

(a) (b)

(c) (d)

Figure 9. Navigation paths for various initial and target yaw angles: (a) yaw angles of 0° and 40°,
(b) yaw angles of 80° and 100°, (c) yaw angles of 120° and 140°, and (d) yaw angles of 160° and 180°.

(a)

Sensors 2023, 23, x 20 of 28

(b)

Figure 10. The trajectories of linear and angular velocities at yaw angle of 80°: (a) linear forward
velocity and (b) angular velocity.

4.2.2. Parking Scenario
To demonstrate the general ability of the proposed method to adapt to other envi-

ronments, we consider a parking scenario. The virtual environment that is simulated con-
sists of two parallel rows of parking spaces in a space with upper and lower boundaries
(Figure 11), and partitions exist on both sides of each parking space. The lower-left park-
ing space is considered the starting point, and the remaining seven parking spaces are the
target positions. At the origin and destination, the front of the WMR is pointing inside and
outside the parking lot, respectively. Figure 11a,b display the autonomous paths planned
by the DDPG and TD3 algorithms, respectively, for movement from the fixed initial con-
figuration to the seven parking spaces. In none of the paths does the WMR collide with
the partitions on either side of the parking spaces. The WMR can move in a straight line,
straight offset, or U-turn and successfully enter the desired parking space.

Table 5 summarizes the statistics for each of the seven autonomous parking scenarios,
with 100 evaluations performed using an epsilon greedy noise of 0.5. The DDPG and TD3
algorithms produce almost the same ground-truth cumulative reward for each case. For
all episodes, the TD3 algorithm exhibits considerably lower overestimation of cumulative
rewards than the DDPG algorithm does. The TD3 algorithm can accomplish path plan-
ning with few steps in each navigation round and exhibits a high success rate.

Table 5. Simulation results obtained in the parking lot scenario.

Scenario
DDPG TD3

Esti.
Reward

G.-T.
Reward

𝚫𝚫 Reward Step Succe.
Rate

Esti.
Reward

G.-T.
Reward

𝚫𝚫 Reward Step Succe.
Rate

1 −43.48 −54.96 11.48 60.09 0.93 −46.04 −54.90 8.86 58.76 0.98
2 −51.56 −61.94 10.38 63.47 0.90 −53.98 −61.55 7.57 59.40 0.96
3 −63.95 −75.31 11.36 82.63 0.86 −66.28 −74.99 8.70 77.61 0.96
4 0.45 −2.58 3.03 37.10 0.87 −1.93 −2.07 0.15 32.22 0.98
5 −20.90 −25.29 4.39 43.04 0.94 −23.25 −25.25 2.00 41.44 0.97
6 −41.30 −47.83 6.53 66.36 0.92 −43.63 −47.82 4.19 61.79 0.97
7 −56.99 −65.60 8.61 87.21 0.90 −59.88 −65.58 5.70 78.10 0.93

Figure 10. The trajectories of linear and angular velocities at yaw angle of 80◦: (a) linear forward
velocity and (b) angular velocity.

Sensors 2023, 23, 8651 20 of 27

4.2.2. Parking Scenario

To demonstrate the general ability of the proposed method to adapt to other envi-
ronments, we consider a parking scenario. The virtual environment that is simulated
consists of two parallel rows of parking spaces in a space with upper and lower boundaries
(Figure 11), and partitions exist on both sides of each parking space. The lower-left parking
space is considered the starting point, and the remaining seven parking spaces are the target
positions. At the origin and destination, the front of the WMR is pointing inside and outside
the parking lot, respectively. Figure 11a,b display the autonomous paths planned by the
DDPG and TD3 algorithms, respectively, for movement from the fixed initial configuration
to the seven parking spaces. In none of the paths does the WMR collide with the partitions
on either side of the parking spaces. The WMR can move in a straight line, straight offset,
or U-turn and successfully enter the desired parking space.

Figure 11. Path planning in a parking scenario when the DDPG and TD3 algorithms are used:
(a) DDPG and (b) TD3. Note: Numbers indicate parking locations.

Table 5 summarizes the statistics for each of the seven autonomous parking scenarios,
with 100 evaluations performed using an epsilon greedy noise of 0.5. The DDPG and TD3
algorithms produce almost the same ground-truth cumulative reward for each case. For
all episodes, the TD3 algorithm exhibits considerably lower overestimation of cumulative
rewards than the DDPG algorithm does. The TD3 algorithm can accomplish path planning
with few steps in each navigation round and exhibits a high success rate.

Table 5. Simulation results obtained in the parking lot scenario.

Scenario

DDPG TD3

Esti.
Reward

G.-T.
Reward

∆
Reward Step Succe.

Rate
Esti.

Reward
G.-T.

Reward
∆

Reward Step Succe.
Rate

1 −43.48 −54.96 11.48 60.09 0.93 −46.04 −54.90 8.86 58.76 0.98
2 −51.56 −61.94 10.38 63.47 0.90 −53.98 −61.55 7.57 59.40 0.96
3 −63.95 −75.31 11.36 82.63 0.86 −66.28 −74.99 8.70 77.61 0.96
4 0.45 −2.58 3.03 37.10 0.87 −1.93 −2.07 0.15 32.22 0.98
5 −20.90 −25.29 4.39 43.04 0.94 −23.25 −25.25 2.00 41.44 0.97
6 −41.30 −47.83 6.53 66.36 0.92 −43.63 −47.82 4.19 61.79 0.97
7 −56.99 −65.60 8.61 87.21 0.90 −59.88 −65.58 5.70 78.10 0.93

4.2.3. Intersection Scenario

A virtual environment is designed that simulates a general intersection, as illustrated
in Figure 12. The WMR starts from entrance 4 of the intersection (on the left in Figure 12),
and the four possible destinations are the four exits, namely, the exits that can be reached
by turning left, going straight, turning right, or making a U-turn. Figure 12a displays a
general two-way intersection, whereas Figure 12b illustrates the same intersection but with
an impassable circle in its center. The WMR should not collide with the lane separators or
the central part of the roundabout. The red and blue curves displayed in Figure 12 indicate

Sensors 2023, 23, 8651 21 of 27

the autonomous paths generated by the DDPG and TD3 algorithms, respectively. In the
case of turning left or going straight, the generated paths are considerably different for the
two considered types of intersection (i.e., with and without an obstacle). When the agent
encounters an obstacle, it passes parallel to the boundary of the obstacle and maintains a
certain distance from it. For the intersection containing no obstacle, the autonomous paths
generated by the DDPG and TD3 algorithms are almost coincident (Figure 12a), whereas in
the environment containing an obstacle, the paths are slightly different (Figure 12b).

Sensors 2023, 23, x 21 of 28

(a) (b)

Figure 11. Path planning in a parking scenario when the DDPG and TD3 algorithms are used: (a)
DDPG and (b) TD3. Note: Numbers indicate parking locations.

4.2.3. Intersection Scenario
A virtual environment is designed that simulates a general intersection, as illustrated

in Figure 12. The WMR starts from entrance 4 of the intersection (on the left in Figure 12),
and the four possible destinations are the four exits, namely, the exits that can be reached
by turning left, going straight, turning right, or making a U-turn. Figure 12a displays a gen-
eral two-way intersection, whereas Figure 12b illustrates the same intersection but with an
impassable circle in its center. The WMR should not collide with the lane separators or the
central part of the roundabout. The red and blue curves displayed in Figure 12 indicate the
autonomous paths generated by the DDPG and TD3 algorithms, respectively. In the case of
turning left or going straight, the generated paths are considerably different for the two con-
sidered types of intersection (i.e., with and without an obstacle). When the agent encounters
an obstacle, it passes parallel to the boundary of the obstacle and maintains a certain dis-
tance from it. For the intersection containing no obstacle, the autonomous paths generated
by the DDPG and TD3 algorithms are almost coincident (Figure 12a), whereas in the envi-
ronment containing an obstacle, the paths are slightly different (Figure 12b).

(a)

Sensors 2023, 23, x 22 of 28

(b)

Figure 12. Routing plan for an intersection without and with an obstacle: (a) obstacle-free scenario
and (b) scenario with an obstacle. Note: Numbers represent the exit numbers.

Table 6 presents the numerical statistics for the DDPG and TD3 algorithms in the
intersection scenario. These algorithms achieve almost the same ground-truth cumulative
rewards in each case. For the environment containing an obstacle, the cumulative reward
computed using the DDPG algorithm exhibits a large overestimation compared with the
ground-truth cumulative reward, which leads to many steps being required to accomplish
the navigation task and a low success rate per episode. The TD3 algorithm, which uses
the survival penalty function, not only manages complex and different environments but
also exhibits higher stability and efficiency than the DDPG algorithm does.

Table 6. Simulation results obtained in the intersection scenario.

Scenario
DDPG TD3

Esti.
Reward

G.T.
Reward

𝚫𝚫 Reward Step Succe.
Rate

Esti.
Reward

G.T.
Reward

𝚫𝚫 Reward Step Succe.
Rate

1 −13.33 −17.12 3.79 32.04 0.89 −14.86 −18.01 3.15 32.81 0.97
2 −8.76 −12.02 3.26 56.99 0.77 −10.35 −11.60 1.26 54.63 0.99
3 −30.49 −37.51 7.02 65.37 0.84 −32.54 −37.57 5.03 63.45 0.96
4 −43.74 −54.09 10.35 56.99 0.89 −45.76 −54.48 8.72 57.39 0.97

1 * 38.53 −18.01 56.54 38.31 0.84 −15.57 −17.49 1.92 33.67 0.96
2 * 33.60 −14.93 48.53 61.27 0.74 −13.87 −14.17 0.29 55.72 0.97
3 * −4.05 −53.84 49.79 67.86 0.64 −50.54 −54.51 3.97 65.68 0.80
4 * 1.76 −55.38 57.14 62.21 0.86 −46.76 −54.81 8.05 57.12 0.99

Asterisks represent scenarios containing a circular obstacle.

4.2.4. Multi-Obstacle Scenario
The virtual environment is designed to demonstrate the adaptability of our approach

to scenarios with multiple obstacles. The scenario shown in Figure 13 has three obstacles.
WMR starts from the left side of the figure with a starting yaw angle of 0°. The destination
is on the right, but the four possible target yaw angles are set to 0°, 90°, 180°, and 270°. For
the first navigation situation where the target yaw angle is 0°, the paths generated by the
DDPG and TD3 algorithms pass below and above obstacle 1, respectively, and then enter
the target location from the corridor between obstacle 2 and obstacle 3. When the target
yaw angle is 90° or 270°, the paths established by the two algorithms almost overlap. The
WMR passes through the upper or lower side of obstacles 2 and 3, respectively, and enters
the target area. When the target yaw angle is 180°, the red line path generated by DDPG
and the blue line path generated by TD3 enter the tail of the target area from above obsta-
cle 2 and below obstacle 3, respectively, perform a U-turn, and successfully complete the

Figure 12. Routing plan for an intersection without and with an obstacle: (a) obstacle-free scenario
and (b) scenario with an obstacle. Note: Numbers represent the exit numbers.

Table 6 presents the numerical statistics for the DDPG and TD3 algorithms in the
intersection scenario. These algorithms achieve almost the same ground-truth cumulative
rewards in each case. For the environment containing an obstacle, the cumulative reward
computed using the DDPG algorithm exhibits a large overestimation compared with the
ground-truth cumulative reward, which leads to many steps being required to accomplish
the navigation task and a low success rate per episode. The TD3 algorithm, which uses the
survival penalty function, not only manages complex and different environments but also
exhibits higher stability and efficiency than the DDPG algorithm does.

Sensors 2023, 23, 8651 22 of 27

Table 6. Simulation results obtained in the intersection scenario.

Scenario
DDPG TD3

Esti.
Reward

G.T.
Reward

∆

Reward Step Succe.
Rate

Esti.
Reward

G.T.
Reward

∆

Reward Step Succe.
Rate

1 −13.33 −17.12 3.79 32.04 0.89 −14.86 −18.01 3.15 32.81 0.97
2 −8.76 −12.02 3.26 56.99 0.77 −10.35 −11.60 1.26 54.63 0.99
3 −30.49 −37.51 7.02 65.37 0.84 −32.54 −37.57 5.03 63.45 0.96
4 −43.74 −54.09 10.35 56.99 0.89 −45.76 −54.48 8.72 57.39 0.97

1 * 38.53 −18.01 56.54 38.31 0.84 −15.57 −17.49 1.92 33.67 0.96
2 * 33.60 −14.93 48.53 61.27 0.74 −13.87 −14.17 0.29 55.72 0.97
3 * −4.05 −53.84 49.79 67.86 0.64 −50.54 −54.51 3.97 65.68 0.80
4 * 1.76 −55.38 57.14 62.21 0.86 −46.76 −54.81 8.05 57.12 0.99

Asterisks represent scenarios containing a circular obstacle.

4.2.4. Multi-Obstacle Scenario

The virtual environment is designed to demonstrate the adaptability of our approach
to scenarios with multiple obstacles. The scenario shown in Figure 13 has three obstacles.
WMR starts from the left side of the figure with a starting yaw angle of 0◦. The destination
is on the right, but the four possible target yaw angles are set to 0◦, 90◦, 180◦, and 270◦.
For the first navigation situation where the target yaw angle is 0◦, the paths generated by
the DDPG and TD3 algorithms pass below and above obstacle 1, respectively, and then
enter the target location from the corridor between obstacle 2 and obstacle 3. When the
target yaw angle is 90◦ or 270◦, the paths established by the two algorithms almost overlap.
The WMR passes through the upper or lower side of obstacles 2 and 3, respectively, and
enters the target area. When the target yaw angle is 180◦, the red line path generated by
DDPG and the blue line path generated by TD3 enter the tail of the target area from above
obstacle 2 and below obstacle 3, respectively, perform a U-turn, and successfully complete
the navigation task. Although the target position in the navigation situation is the same,
different collision-free autonomous paths will be generated sequentially for different target
yaw angles. Table 7 summarizes the simulation results of four navigation situations in
multi-obstacle scenarios. Due to the vertical symmetry of the multi-obstacle design, the
average step size of the 270◦ target yaw angle calculated by the TD3 algorithm is almost
the same as the average step size of the 90◦ target yaw angle. The TD3 algorithm shows
higher stability than the DDPG algorithm.

Table 7. Simulation results obtained in the multi-obstacle scenario.

Scenario

DDPG TD3

Esti.
Reward

G.T.
Reward

∆

Reward Step Succe.
Rate

Esti.
Reward

G.T.
Reward ∆ Step Succe.

Rate

0◦ −27.57 −35.01 7.44 92.68 0.96 −31.30 −33.18 1.88 77.16 1.00
90◦ −84.27 −97.32 13.04 95.92 0.98 −88.93 −95.07 6.14 94.23 0.98
180◦ −119.18 −135.27 16.10 148.69 0.94 −126.30 −134.62 8.32 127.15 0.96
270◦ −82.85 −99.34 16.50 147.56 0.81 −90.14 −95.45 5.31 94.09 0.92

In order to further verify the actual performance of our method, we conducted com-
parative simulations using these two algorithms in four virtual environments. A common
failure mode of the DDPG algorithm [30] is that the learned Q-function starts to dramati-
cally overestimate Q-values, which then leads to policy failure because it exploits errors
in the Q-function. The TD3 algorithm is designed to solve the overestimation bias of the
value function by learning two Q functions instead of one Q function. The TD3 algorithm
chooses the smaller of the two Q-functions to form the target error loss function. Using a
smaller Q value as a target and regressing back to that value helps avoid overestimation
in the Q function. To obtain good policy exploration, we add epsilon noise to its action.

Sensors 2023, 23, 8651 23 of 27

As shown in Tables 4–7, the average estimated cumulative reward (Q value) calculated by
these two algorithms is always greater than the average ground-truth cumulative reward
after 100 episode evaluations. The average estimated cumulative reward calculated by the
TD3 algorithm is smaller than the one calculated by the DDPG algorithm. This means that
using the smaller target values of the two Q functions of the TD3 algorithm can effectively
reduce the impact of estimation errors, improve the average success rate of path planning,
and reduce the average number of navigation steps.

Sensors 2023, 23, x 23 of 28

navigation task. Although the target position in the navigation situation is the same, dif-
ferent collision-free autonomous paths will be generated sequentially for different target
yaw angles. Table 7 summarizes the simulation results of four navigation situations in
multi-obstacle scenarios. Due to the vertical symmetry of the multi-obstacle design, the
average step size of the 270° target yaw angle calculated by the TD3 algorithm is almost
the same as the average step size of the 90° target yaw angle. The TD3 algorithm shows
higher stability than the DDPG algorithm.

(a) (b)

(c) (d)

Figure 13. Routing plan for multiple obstacles: (a) 𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0°, (b) 𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 90°, (c) 𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 180°, and
(d) 𝜓𝜓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 270°. Note: Numbers represent the obstacle numbers.

Table 7. Simulation results obtained in the multi-obstacle scenario.

Scenario
DDPG TD3

Esti.
Reward

G.T.
Reward

𝚫𝚫 Reward Step Succe.
Rate

Esti.
Reward

G.T.
Reward

𝚫𝚫 Reward Step Succe.
Rate

0° −27.57 −35.01 7.44 92.68 0.96 −31.30 −33.18 1.88 77.16 1.00
90° −84.27 −97.32 13.04 95.92 0.98 −88.93 −95.07 6.14 94.23 0.98

180° −119.18 −135.27 16.10 148.69 0.94 −126.30 −134.62 8.32 127.15 0.96
270° −82.85 −99.34 16.50 147.56 0.81 −90.14 −95.45 5.31 94.09 0.92

In order to further verify the actual performance of our method, we conducted com-
parative simulations using these two algorithms in four virtual environments. A common
failure mode of the DDPG algorithm [30] is that the learned Q-function starts to dramati-
cally overestimate Q-values, which then leads to policy failure because it exploits errors
in the Q-function. The TD3 algorithm is designed to solve the overestimation bias of the
value function by learning two Q functions instead of one Q function. The TD3 algorithm
chooses the smaller of the two Q-functions to form the target error loss function. Using a
smaller Q value as a target and regressing back to that value helps avoid overestimation
in the Q function. To obtain good policy exploration, we add epsilon noise to its action.
As shown in Tables 4–7, the average estimated cumulative reward (Q value) calculated by
these two algorithms is always greater than the average ground-truth cumulative reward

Figure 13. Routing plan for multiple obstacles: (a) ψgoal = 0◦, (b) ψgoal = 90◦, (c) ψgoal = 180◦, and
(d) ψgoal = 270◦. Note: Numbers represent the obstacle numbers.

In our simulations, the DDPG agent easily forgets previously learned knowledge.
During the training process of the obstacle-free scenes, the agent sequentially learns the
optimal paths from the configurations of yaw angles of 0◦, 20◦, . . ., 180◦. When the overall
configurations are performed, the autonomous path of the 0◦ yaw angle configuration
becomes poor. The 0◦ yaw angle configuration needs to be retrained for improving the path
quality. Backpropagation, which performs a backward pass to adjust neural network model
parameters, may refresh or update previously learned weights. As shown in Figure 9a,
the autonomous path derived by the DDPG algorithm still fluctuates slightly, whereas
it is a straight line when only training the 0◦ yaw angle configuration. The memory-
forgetting phenomenon causes the success rate of yaw angle configurations of 20◦ and 180◦

to be obviously low for DDPG, as shown in Table 4. For multiple obstacle environment
configurations, as shown in Figure 13, compared with traditional path-planning methods
such as A* and RRT, the agent needs to spend a lot of training time to explore and gradually
regress an obstacle-free path. However, the traditional path-planning method is not suitable
for yaw angle configurations of 90◦, 180◦, and 270◦.

5. Discussion

The reward function is an incentive mechanism that tells the agent what is correct and
what is wrong through rewards and penalties. RL applications can be transformed into
sequential decision-making problems, and states, actions, and rewards can be established.
The agent’s goal is to maximize the total reward. Designing and implementing a reward

Sensors 2023, 23, 8651 24 of 27

function that is consistent with an application is challenging. For example, the application
of RL in electric vehicle battery-charging management [50] uses positive rewards to allow
management to play a major role in coordinating the charging and discharging mechanism
and effectively achieve a safe, efficient, and reliable power system. In autonomous naviga-
tion applications, as shown in Figure 5, negative rewards can encourage agents to move to
the destination as quickly as possible. On the contrary, positive rewards may lead the agent
to increase the navigation time (steps) and obtain the maximum reward. In our study, since
the navigation time of each navigation situation varies greatly, it is not directly designed as
a penalty parameter.

TD3 and DDPG are model-free RL off-policy RL algorithms. Model-free algorithms
learn directly from experience and can operate without complete knowledge of environ-
mental dynamics or transition models. Simulated environments are the most common
method of training agents. The kinematic model of WMR is based on a two-dimensional
framework in the x- and y-directions. When a vehicle travels on uneven terrain, the vehicle
will generate significant vertical vibrations. Movements in the z-direction may affect the
precise positioning of the vehicle, which is a key requirement for autonomous navigation.
Bikes, tripod cars, and four-wheel drive cars are real vehicles with different motion struc-
tures. The simulation environment could use an accurate vehicle model to generate relevant
experience, but this would require a lot of computer time to solve the nonlinear vehicle
equations. The agent relies on sampling to estimate the value function, resulting in noisy
estimates and slower convergence, but model-free algorithms can be used in large, complex
environments. Our approach can be extended to complex 3D environment applications
such as UAVs or robotic manipulators. The goal of path-planning techniques is not only to
discover optimal and collision-free paths, but also to minimize various issues such as path
length, travel time, and energy consumption that require further research. Using multiple
robots to conduct collaborative multi-observation of multiple moving targets is a future
research direction.

The main contributions of this study are summarized as follows:

(1) Appropriate reward functions are designed by considering human driving experiences
and using a survival penalty method so that a wheeled mobile robot (WMR) can
receive negative reward feedback at every step. The reward function varies continually
on the basis of observation and action. Dense reward signals are found to improve
convergence during training, and this finding verifies the feasibility of solving the
sparse reward problem encountered in autonomous driving tasks for WMRs.

(2) Two consecutive RL episodes are connected to increase the cumulative penalty. This
process is performed when the WMR collides with an obstacle. The agent is prevented
from selecting the wrong path, learns a path in which obstacles are avoided, and
successfully and safely reaches the target.

(3) The effectiveness and robustness of the proposed method is evaluated for three
navigation scenarios. The simulation results indicate that the proposed method can
effectively solve the problem of planning a path along which a WMR can drive to its
destination in a complex environment. The results also indicate that the proposed
method is robust and self-adaptive.

(4) By using the DDPG and TD3 algorithms with the same AC framework, the WMR
can safely and quickly reach its target under the simultaneous alignment of position
and orientation. For the same environment and standard, compared with the DDPG
algorithm, the TD3 algorithm requires considerably fewer computations and has
higher real-time performance.

(5) The path-planning method has the ability to handle orientation and positioning simul-
taneously. In an environment without map information, the intermediate waypoints
between the departure point and the destination do not need to be pre-determined
segmentally, and an end-to-end obstacle-free autonomous U-turn path can be realized.
End-to-end vehicle navigation has the potential to be used in high-end industrial
robot applications such as electric vehicle parking and forklift picking and placing.

Sensors 2023, 23, 8651 25 of 27

6. Conclusions

For the autonomous navigation of a WMR, the target location as well as a target
orientation are considered task constraints. Traditional random-action exploration leads
to high-probability sparse reward systems. After each action in our method, the agent
acquires information regarding the relative position and orientation of the target state,
and this information is suitable for providing a dense reward signal, with the provision
of a certain immediate reward being a considerably better option than the provision of
no reward at all. The survival penalty function utilizes negative rewards to guide the
agent to achieve the goal as quickly as possible. The concept underlying the design of the
survival penalty function is similar to that underlying human driving behavior, and the
negative reward provides a useful means of exploration for the training of agents. Training
paradigms based on different task goals can enable the state update policy to be iteratively
improved on the basis of the dense feedback signal provided by the environment during
the interaction process. Every action taken by the WMR should be rewarded so that it can
most effectively assess the quality of its actions and alleviate training difficulty.

The DDPG and TD3 algorithms are deterministic policy gradient algorithms based on
the AC framework. In the proposed method, these two algorithms are incorporated with
high-precision LiDAR range findings. A process in which two consecutive RL episodes
in the experience pool are connected; this process helps the WMR to avoid collisions
and enables paths to be planned for environments containing obstacles. The optimal
policy can be regarded as a mapping from state to action, which enables the WMR to
perform the optimally rewarded actions given the current state of the environment. We
conduct simulations for three scenarios to verify the performance of the proposed approach:
scenarios involving obstacle-free spaces, a parking lot, and intersections without and with
obstacles. The actor network relies heavily on the critic network; thus, the performance
of the DDPG algorithm is highly sensitive to critic learning. The DDPG algorithm is
unstable because of its sensitivity to its hyperparameters and tends to converge to very
poor solutions or even diverge. The TD3 algorithm, which has an auxiliary critic network,
more accurately estimates cumulative rewards than does the DDPG algorithm and prevents
high levels of cumulative reward overestimation. The simulations conducted in the three
scenarios reveal that compared with the DDPG algorithm, the TD3 algorithm converges
considerably faster, has a superior convergence effect, and exhibits higher efficiency and
adaptability in complex dynamic environments. The TD3 algorithm results in the effective
avoidance of obstacles in environments and a high rate of successful task completion.

Author Contributions: Conceptualization, S.-L.J.; methodology, S.-L.J.; software, C.C.; validation, C.C.;
formal analysis, S.-L.J.; investigation, C.C.; writing—original draft preparation, C.C.; writing—review
and editing, S.-L.J.; visualization, C.C.; supervision, S.-L.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Science Council of Taiwan, R.O.C., under
Contract NSTC 111-2622-E-262-003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, C.; Huang, B.; Fränti, P. A review of motion planning algorithms for intelligent robots. J. Intell. Manuf. 2022, 33, 387–424.

[CrossRef]
2. Teng, S.; Hu, X.; Deng, P.; Li, B.; Li, Y.; Ai, Y.; Chen, L. Motion planning for autonomous driving: The state of the art and future

perspectives. IEEE Trans. Intell. Veh. 2023, 8, 3692–3711. [CrossRef]
3. Jeng, S.L.; Chieng, W.H.; Wang, Y.C. Real-Time Heuristic Motion Planning for Autonomous Vehicle Driving. J. Chin. Soc. Mech.

Eng. 2021, 42, 187–196.

https://doi.org/10.1007/s10845-021-01867-z
https://doi.org/10.1109/TIV.2023.3274536

Sensors 2023, 23, 8651 26 of 27

4. Zeng, W.; Luo, W.; Suo, S.; Sadat, A.; Yang, B.; Casas, S.; Urtasun, R. End-to-end interpretable neural motion planner. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 8660–8669.

5. Wang, H.; Yu, Y.; Yuan, Q. Application of Dijkstra algorithm in robot path-planning. In Proceedings of the 2011 Second
International Conference on Mechanic Automation and Control Engineering, Hohhot, China, 15–17 July 2011; pp. 1067–1069.

6. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path planning with modified a star algorithm for a
mobile robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

7. Karaman, S.; Walter, M.R.; Perez, A.; Frazzoli, E.; Teller, S. Anytime motion planning using the RRT. In Proceedings of the 2011
IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1478–1483.

8. Reeds, J.A.; Shepp, L.A. Optimal paths for a car that goes both forward and backward. Pac. J. Math. 1990, 145, 367–393. [CrossRef]
9. Funke, J.; Theodosis, P.; Hindiyeh, R.; Stanek, G.; Kritatakirana, K.; Gerdes, C.; Langer, D.; Hernandez, M.; Müller-Bessler, B.;

Huhnke, B. Up to the limits: Autonomous Audi TTS. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid,
Spain, 3–7 June 2012; pp. 541–547.

10. Xu, W.; Wei, J.; Dolan, J.M.; Zhao, H.; Zha, H. A real-time motion planner with trajectory optimization for autonomous vehicles.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012;
pp. 2061–2067.

11. Bautista, G.D.; Perez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans.
Intell. Transp. Syst. 2015, 17, 1135–1145.

12. Farouki, R.T.; Sakkalis, T. Pythagorean-hodograph space curves. Adv. Comput. Math. 1994, 2, 41–66. [CrossRef]
13. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
14. Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772.

[CrossRef]
15. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 10, 580977.

[CrossRef]
16. Aradi, S. Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Trans. Intell. Transp. Syst.

2020, 23, 740–759. [CrossRef]
17. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous

driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4909–4926. [CrossRef]
18. Sandakalum, T.; Ang, M.H., Jr. Motion planning for mobile manipulators—A systematic review. Machines 2022, 10, 97. [CrossRef]
19. Dong, L.; He, Z.; Song, C.; Sun, C. A review of mobile robot motion planning methods: From classical motion planning workflows

to reinforcement learning-based architectures. J. Syst. Eng. Electron. 2023, 34, 439–459. [CrossRef]
20. Yu, X.; Sun, Y.; Wang, X.; Zhang, G. End-to-end AUV motion planning method based on soft actor-critic. Sensors 2021, 21, 5893.

[CrossRef]
21. Wang, C.; Wang, J.; Wang, J.; Zhang, X. Deep-reinforcement-learning-based autonomous UAV navigation with sparse rewards.

IEEE Internet Things J. 2020, 7, 6180–6190. [CrossRef]
22. Hu, Y.; Wang, W.; Jia, H.; Wang, Y.; Chen, Y.; Hao, J.; Fan, C. Learning to utilize shaping rewards: A new approach of reward

shaping. Adv. Neural Inf. Process. Syst. 2020, 33, 15931–15941.
23. Wu, Y.; Liao, S.; Liu, X.; Li, Z.; Lu, R. Deep reinforcement learning on autonomous driving policy with auxiliary critic network.

IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3680–3690. [CrossRef]
24. Lee, M.H.; Moon, J. Deep Reinforcement Learning-based UAV Navigation and Control: A Soft Actor-Critic with Hindsight

Experience Replay Approach. arXiv 2021, arXiv:2106.01016.
25. Hutsebaut-Buysse, M.; Mets, K.; Latré, S. Hierarchical reinforcement learning: A survey and open research challenges. Mach.

Learn. Knowl. Extr. 2022, 4, 172–221. [CrossRef]
26. Chai, R.; Niu, H.; Carrasco, J.; Arvin, F.; Yin, H.; Lennox, B. Design and experimental validation of deep reinforcement learning-

based fast trajectory planning and control for mobile robot in unknown environment. IEEE Trans. Neural Netw. Learn. Syst. 2022,
1–15. [CrossRef] [PubMed]

27. You, C.; Lu, J.; Filev, D.; Tsiotras, P. Advanced planning for autonomous vehicles using reinforcement learning and deep inverse
reinforcement learning. Robot. Auton. Syst. 2019, 114, 1–18. [CrossRef]

28. Le Mero, L.; Yi, D.; Dianati, M.; Mouzakitis, A. A survey on imitation learning techniques for end-to-end autonomous vehicles.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 14128–14147. [CrossRef]

29. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Wierstra, D. Continuous control with deep reinforcement
learning. arXiv 2015, arXiv:1509.02971.

30. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

31. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

32. Vecerik, M.; Hester, T.; Scholz, J.; Wang, F.; Pietquin, O.; Piot, B.; Riedmiller, M. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. arXiv 2017, arXiv:1707.08817.

https://doi.org/10.1016/j.proeng.2014.12.098
https://doi.org/10.2140/pjm.1990.145.367
https://doi.org/10.1007/BF02519035
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/TITS.2020.3024655
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.3390/machines10020097
https://doi.org/10.23919/JSEE.2023.000051
https://doi.org/10.3390/s21175893
https://doi.org/10.1109/JIOT.2020.2973193
https://doi.org/10.1109/TNNLS.2021.3116063
https://doi.org/10.3390/make4010009
https://doi.org/10.1109/TNNLS.2022.3209154
https://www.ncbi.nlm.nih.gov/pubmed/36215389
https://doi.org/10.1016/j.robot.2019.01.003
https://doi.org/10.1109/TITS.2022.3144867

Sensors 2023, 23, 8651 27 of 27

33. Park, M.; Lee, S.Y.; Hong, J.S.; Kwon, N.K. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in
Sparse Reward Environments. Sensors 2022, 22, 9574. [CrossRef] [PubMed]

34. Wang, S.; Cao, Y.; Zheng, X.; Zhang, T. Collision-free trajectory planning for a 6-DoF free-floating space robot via hierarchical
decoupling optimization. IEEE Robot. Autom. Lett. 2022, 7, 4953–4960. [CrossRef]

35. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep reinforcement learning for indoor mobile robot path planning. Sensors 2020, 20, 5493. [CrossRef]
[PubMed]

36. Kim, M.; Han, D.K.; Park, J.H.; Kim, J.S. Motion planning of robot manipulators for a smoother path using a twin delayed deep
deterministic policy gradient with hindsight experience replay. Appl. Sci. 2020, 10, 575. [CrossRef]

37. Wong, C.C.; Chien, S.Y.; Feng, H.M.; Aoyama, H. Motion planning for dual-arm robot based on soft actor-critic. IEEE Access 2021,
9, 26871–26885. [CrossRef]

38. Chen, Y.F.; Everett, M.; Liu, M.; How, J.P. Socially aware motion planning with deep reinforcement learning. In Proceedings of the
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September
2017; pp. 1343–1350.

39. Long, P.; Fan, T.; Liao, X.; Liu, W.; Zhang, H.; Pan, J. Towards optimally decentralized multi-robot collision avoidance via deep
reinforcement learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
QLD, Australia, 21–25 May 2018; pp. 6252–6259.

40. Liang, J.; Patel, U.; Sathyamoorthy, A.J.; Manocha, D. Realtime collision avoidance for mobile robots in dense crowds using
implicit multi-sensor fusion and deep reinforcement learning. arXiv 2020, arXiv:2004.03089.

41. Choi, J.; Lee, G.; Lee, C. Reinforcement learning-based dynamic obstacle avoidance and integration of path planning. Intell. Serv.
Robot. 2021, 14, 663–677. [CrossRef]

42. Lee, K.; Kum, D. Collision avoidance/mitigation system: Motion planning of autonomous vehicle via predictive occupancy map.
IEEE Access 2019, 7, 52846–52857. [CrossRef]

43. Wang, D.; Fan, T.; Han, T.; Pan, J. A two-stage reinforcement learning approach for multi-UAV collision avoidance under imperfect
sensing. IEEE Robot. Autom. Lett. 2020, 5, 3098–3105. [CrossRef]

44. Semnani, S.H.; Liu, H.; Everett, M.; De Ruiter, A.; How, J.P. Multi-agent motion planning for dense and dynamic environments
via deep reinforcement learning. IEEE Robot. Autom. Lett. 2020, 5, 3221–3226. [CrossRef]

45. Feng, S.; Sebastian, B.; Ben-Tzvi, P. A collision avoidance method based on deep reinforcement learning. Robotics 2021, 10, 73.
[CrossRef]

46. Zhang, P.; Xiong, L.; Yu, Z.; Fang, P.; Yan, S.; Yao, J.; Zhou, Y. Reinforcement learning-based end-to-end parking for automatic
parking system. Sensors 2019, 19, 3996. [CrossRef]

47. Fukao, T.; Nakagawa, H.; Adachi, N. Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 2000,
16, 609–615. [CrossRef]

48. Beomsoo, H.; Ravankar, A.A.; Emaru, T. Mobile robot navigation based on deep reinforcement learning with 2d-lidar sensor
using stochastic approach. In Proceedings of the 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR),
Tokoname, Japan, 4–6 March 2021; pp. 417–422.

49. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 31–36.

50. Abdullah, H.M.; Gastli, A.; Ben-Brahim, L. Reinforcement learning based EV charging management systems—A review. IEEE
Access 2021, 9, 41506–41531. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s22249574
https://www.ncbi.nlm.nih.gov/pubmed/36559941
https://doi.org/10.1109/LRA.2022.3152698
https://doi.org/10.3390/s20195493
https://www.ncbi.nlm.nih.gov/pubmed/32992750
https://doi.org/10.3390/app10020575
https://doi.org/10.1109/ACCESS.2021.3056903
https://doi.org/10.1007/s11370-021-00387-2
https://doi.org/10.1109/ACCESS.2019.2912067
https://doi.org/10.1109/LRA.2020.2974648
https://doi.org/10.1109/LRA.2020.2974695
https://doi.org/10.3390/robotics10020073
https://doi.org/10.3390/s19183996
https://doi.org/10.1109/70.880812
https://doi.org/10.1109/ACCESS.2021.3064354

	Introduction
	Problem Statement and Preliminaries
	Reinforcement Learning
	DDPG Algorithm
	TD3 Algorithm
	Setting of the State and Action
	Survival Penalty Function
	Collision Avoidance Constraints

	Simulation and Results
	Network Parameter Settings
	Virtual Environments
	Free Obstacle Scenario
	Parking Scenario
	Intersection Scenario
	Multi-Obstacle Scenario

	Discussion
	Conclusions
	References

