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Abstract: Detecting drowsiness among drivers is critical for ensuring road safety and preventing
accidents caused by drowsy or fatigued driving. Research on yawn detection among drivers has
great significance in improving traffic safety. Although various studies have taken place where
deep learning-based approaches are being proposed, there is still room for improvement to develop
better and more accurate drowsiness detection systems using behavioral features such as mouth and
eye movement. This study proposes a deep neural network architecture for drowsiness detection
employing a convolutional neural network (CNN) for driver drowsiness detection. Experiments
involve using the DLIB library to locate key facial points to calculate the mouth aspect ratio (MAR). To
compensate for the small dataset, data augmentation is performed for the ‘yawning’ and ‘no_yawning’
classes. Models are trained and tested involving the original and augmented dataset to analyze the
impact on model performance. Experimental results demonstrate that the proposed CNN model
achieves an average accuracy of 96.69%. Performance comparison with existing state-of-the-art
approaches shows better performance of the proposed model.

Keywords: advanced driver assistance systems; deep learning; drowsiness detection; neural network;
road safety

1. Introduction

Transportation is an essential part of human lives and a significant portion of a
country’s economy comes from the transportation industry. While being a source of safe
and fast travel, lack of driver vigilance, fatigue, and drowsiness may lead to accidents
involving injuries and fatalities [1]. Driver drowsiness is responsible for a large number of
accidents in the world. Different studies report 20% to 50% of accidents are related to driver
fatigue and drowsiness on certain roads [2,3]. Drowsiness is when someone feels dizzy
or experiences involuntary sleep, primarily due to a lack of sleep or mental or physical
fatigue. It can be particularly hazardous when there is a need for a consistently high
level of attention, such as in industrial work, mining, and driving to avoid unwanted and
life-threatening events [4,5]. When it comes to drowsy driving, it has severe implications for
road safety. Along with other contributing factors such as speeding, drinking, and driving,
and not wearing seat belts or helmets, drowsy or fatigued driving is also considered a
major source of road accidents [6,7].

Over the last few years, physical and life losses because of road accidents have in-
creased. According to reports on road safety [8], out of 1.35 million mortalities, approx-
imately 37% of people die yearly due to drivers’ drowsiness in road accidents. Overall,
it is the eighth leading cause of death and ranked the first cause of mortalities for people
aged between 5 and 29. Taking energy drinks, coffee, or stopping to take a short nap while
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traveling for a long time helps drivers stay alert, but the effect remains for the short term [9].
Moreover, these remedies may only be effective when a driver is aware of fatigue [10].

1.1. Research Objectives

Keeping with the above discussion, a driver’s acts are critical to road security, both for
the driver and other people traveling on roads. Due to its significant importance in saving
lives, driver drowsiness detection has received increased attention lately. Several studies are
found in the literature that focus on detecting different levels of alertness in drivers using
unique facial cues such as head poses, eye movement, and other facial expressions [11,12].
While ongoing research shows promising advancements, core challenges, such as accurate
and real-time drowsiness detection, still need to be addressed. Current driver yawning
detection systems are either expensive or need more robustness [13,14].

Drowsiness among drivers causes injuries and sometimes the death of millions of
people annually; there is a need to develop a system with high accuracy, precision, and ro-
bustness. Detection of drowsiness is a critical factor for successfully preventing road
accidents. The objective of this research is to propose a deep neural network model that
performs relatively better in terms of accuracy and other measures.

1.2. Research Contributions

This study aims to propose a more accurate driver drowsiness detection method to
reduce road accidents. The following are the major contributions of this study:

• A deep convolutional neural network (CNN) is designed in this study for driver
drowsiness detection. The model is optimized regarding the number of layers, neurons
in each layer, etc. In addition, a hybrid deep learning model CNN-RNN (recurrent
neural network) that combines CNN and RNN deep learning models is also used.

• Experiments involve using the publicly available YawDD dataset. To reduce the
impact of smaller datasets, data augmentation is used. Separate experiments are
performed using augmented and original datasets for performance comparison.

• For model training, facial features like the mouth aspect ratio (MAR) are used, which
are extracted using the Dlib library. The effectiveness of the proposed model is eval-
uated using multiple performance metrics such as precision, recall, and F1 score.
Moreover, performance comparison with existing state-of-the-art models is also car-
ried out.

The remaining part of this study is organized as follows. Section 2 presents the litera-
ture review on driver drowsiness detection. Section 3 describes the methodology, while
experimental results are explained in Section 4. Lastly, Section 5 presents the conclusion
and future recommendations.

2. Literature Review

Driver drowsiness detection techniques fall into three main categories. The first cate-
gory is the biological feature technique that involves analyzing physiological signals [15],
skin temperature, and galvanic skin response (GSR) to measure physical conditions that
change with the level of drowsiness or fatigue [16–19]. The second category is vehicle move-
ment indicator techniques specifically focused on driving applications to detect abnormal
driving behavior due to fatigue or drowsiness, such as random braking, lane positioning,
abnormal speeding, and abnormal steering. We can observe these kinds of behavior with
the help of different sensors in the vehicle [2,19,20]. Vehicle movement indicator techniques
have several restrictions such as road shape, vehicle type, driver expertise, and the situation,
and more importantly, it needs more time to acquire all these parameters [14,21]. Both
categories are invasive, requiring extra equipment or sensors to detect drowsiness [13].
The stated limitation makes both techniques inappropriate to implement in real-time. Con-
sequently, most studies focus on the third category, which uses the behavioral features
of drivers.
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The behavioral feature technique is noninvasive and involves computer vision for
drowsiness detection. For real-time visual analysis of behavioral features, a camera is
needed [11,12]. Behavioral measures such as unusual eye movement, facial expression,
yawing, and head orientation are measured without attaching any additional equipment.
Consequently, behavioral feature analysis is a cost-effective and easy-to-use solution.

Notably, the integration of deep learning techniques has significantly enhanced sig-
nal and image processing tasks in real word problems [22]. Deep learning has also wit-
nessed remarkable advancements in the field of object detection [23]. These advancements
have revolutionized various industries, including autonomous vehicles [24], security sys-
tems [25], and healthcare [26]. In recent years, deep learning has spearheaded a revolution
in drowsiness detection across all categories, encompassing behavioral, biological, and ve-
hicle movement indicators. The substantial impact of deep learning on these critical aspects
of drowsiness detection has been transformative [2]. This study also considers behavioral
features to detect drowsiness. Below, the relevant literature on drowsiness detection using
deep learning and computer vision is discussed.

The use of spatial and temporal features is predominant in existing studies that utilize
the behavioral data of drivers. For example, the study [27] used spatiotemporal data to
detect fatigue among drivers by analyzing facial features. The authors proposed a fusion-
based system to detect yawns, head pose estimation, and detection of somnolence. Three
datasets were used for analysis: YawDD, DEAP, and MiraclHB. YawDD and MiraclHB
contain behavioral features, whereas the DEAP dataset analyzes human emotional states,
psychological signals, and electroencephalography (EEG). The proposed model achieved
recall and precision of 84% and 85%, respectively. Similarly, ref. [28] focused on early
drowsiness detection using temporal features. Occlusion criteria were used that measure
the distance between the centers of the pupil and the horizontal length of the eye. The re-
searcher used a support vector machine (SVM) classifier on publicly available benchmark
data and achieved 89% accuracy.

Along the same lines, ref. [29] proposed a novel approach with two streams—a spatial–
temporal graph convolutional network. The method leverages both spatial and sequen-
tial features. The two-stream framework employed in the method captures spatial and
temporal features as well as first-order and second-order information at the same time.
The anticipated method was evaluated on the YawDD and NTHU-DDD datasets, achiev-
ing an impressive average accuracy of 93.4% and 92.7%, respectively, demonstrating the
feasibility and effectiveness of the method.

Another study [30] considered the most significant temporal features to detect drowsi-
ness precisely. A novel algorithm was proposed using linear SVM for classification and the
Dlib library to extract facial features for experimental analysis. A rarest IMM face dataset
was used that contained all images with the open eyes of drivers. Samples of individuals
related to diverse civilizations, colors, and environments were added to make the dataset
more challenging and realistic. Occlusion is applied on each incoming frame while prepro-
cessing to overcome the chances of false prediction. After handling the occlusion situation,
the proposed system achieved 94.2% accuracy with open eyes.

Along the same lines, ref. [31] used temporal and spatial face features to detect drowsi-
ness. The UTA-RLDD dataset used for experimentation has 30 h of videos of 60 participants
with three classes: alert, low vigilant, and drowsy. In this study, two different models
were proposed. The first model is based on a long short-term memory (LSTM) architecture
for temporal feature extraction, and the second uses CNN and LSTM for spatial feature
extraction. The Dlib library containing linear SVM classifier was used for temporal features
with 79.9% accuracy; however, due to the multiple feature matrix, the computational time
was increased. For spatial features, the Softmax classifier was used to obtain more accurate
results, i.e., 97.5% accuracy.

According to [32], information related to the mouth and eyes is needed to classify them.
This information is essential to obtain fast results and detect drowsiness states in drivers.
In this regard, the study adopted a MTCNN model for drowsiness detection. Two public
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datasets were combined and used in this study including the YawDD video dataset of
various people from various ethnic backgrounds, and the NTHU-DDD dataset containing
five different scenarios, and each frame was labeled as ‘fatigue’ or ‘not fatigue’. The Dlib
algorithm was implemented to detect the face, mouth, and eye regions. The experiments
were performed at constant frame rates to calculate fatigue. As a result, the model achieved
98.81% accuracy.

Moreover, ref. [33] aimed to extract spatial and temporal features to detect drowsiness
among drivers. The researchers proposed a new deep learning framework to collect drowsi-
ness information from the spatial-temporal domain. The publicly available NTHU-DDD
dataset was used for experimentation involving different participants with and without
eyeglasses and variant illuminations. Different experiments were performed initially where
the proposed approach achieved 82.8% accuracy with 3DcGAN. Additional experiments
showed improved performance with an 87.1% accuracy using 3DcGAN+TLABiLSTM and
91.2% accuracy using 3DcGAN+TLABiLSTM and refinement. Similarly, ref. [34] employed
a combination of multitask convolutional neural network (MTCNN) for face recognition
and Dlib for locating facial key points. For extracting fatigue feature vectors from the facial
key points of each frame, a temporal feature sequence was constructed and fed into an
LSTM network to obtain an ultimate fatigue feature value. The proposed model achieved
an average accuracy of 88% and 90% for YawDD and self-built datasets, respectively.

Real-time driver drowsiness detection is a challenging task, and a few studies have
endeavored to perform this task. For example, ref. [35], drivers’ vigilance status was
studied on real-time data using deep learning. The authors used the Haar-cascade method
and CNN with the UTA-RLDD dataset, and five-fold validation was applied at a rate
of 8.4 frames per second. The dataset contains real states of active and drowsy faces, so
the trained model was expected to be more accurate and realistic. The selected CNN has
low complexity too. The added novelty in the work is the creation of a custom dataset
containing 122 videos of 10 participants. Various tuning hyperparameters were applied
to achieve significant accuracy. On batch sizes of 200 and 500 epochs, it showed the best
accuracy. The experimental results showed a 96.8% accuracy.

The study [36] presented a real-time system to analyze consecutive video frames
using information entropy to detect fatigue. An improved YOLOv3-tiny CNN was used
to capture facial regions. A geometric area called the face feature triangle (FFT) using
the Dlib toolkit, facial landmarks, and coordinates of the facial regions were used to
capture the relevant facial information. By utilizing the FFT, a face feature vector (FFV)
is created that encapsulates all the necessary information to determine the fatigue state
of the drivers. The proposed algorithm achieved a detection speed of over 20 frames per
second with an accuracy rate of 94.32%. Ref. [37] collected real-time data for drowsiness
detection and performed various experiments to validate it. Two hundred and twenty-three
subjects participated, and frames were labeled into four classes. For experiments, data from
10 participants containing 245 videos each with 5 min duration were taken and split into a
three to one ratio for training and validation. Various experiments were performed where
a maximum accuracy of 64% was achieved.

Detecting drowsiness with open eyes is a challenging task. Ref. [30] used computer
vision to detect real-time drowsiness among drivers. The system used eye blink duration
as a key indicator for the accident avoidance system. The proposed approach detects
the open and closed states of the eyes based on the eye aspect ratio (EAR). Experimental
analysis of the YawDD dataset demonstrated that the system achieved an accuracy of
approximately 92.5%.

The authors created a curated dataset of 50 subjects, 30 males and 20 females, with vary-
ing illumination conditions in [38]. Four deep convolutional neural networks (DCNNs)
named Xception, ResNet101, InceptionV4, and ResNext101 with feature pooling methods
were applied to this dataset. Most experiments achieved a 90% accuracy, but these models
require significant computational resources. A low-complexity MobileNetV2 CNN was
trained to maximize efficiency to overcome this problem. Weibull-based ResNext101 and
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MobileNetV2 models achieved 93.80% and 90.50% accuracy, respectively. Experiments
were also performed on the benchmark dataset NTHU-DDD with the proposed algorithm
that achieved an 84.21% accuracy.

The study [19] proposed a reliable fatigue detection system built on the CNN model.
The study also proposed a fusion method to measure multiple physical features. The fusion
method includes Haarlike, 68-Landmarkmodels, PERCLOS, and the MAR ratio. The VGG16
convolutional neural network for fatigue feature learning and the single-shot multi-box
detector algorithm were adopted for better speed and accuracy. The VGG16 model helps
to overcome the problems of poor environment, lighting conditions, and drivers wearing
glasses to provide flexibility. Using four states of mouth, the experiments showed 90%
accuracy on NTHU-DDD and other datasets.

In [39], the RLDD dataset was presented with the videos of 60 participants, of which
51 were male, and 9 were female. There are 180 videos, each 10 min long, with three alerts
for low vigilance and drowsy classes. The researchers used five-fold experiments at a 4:1
training–testing ratio. The model was trained on 7000 blink sequences with a learning rate
of 0.000053. Initially, the LSTM network achieved 61.4% accuracy, then experiments on
the HM-LSTM network showed a 4% increase in accuracy and achieved 65.2% accuracy.
Experiments also indicated that the HM-LSTM network performed well compared to fully
connected layers and human judgment.

Table 1 provides a comparative summary of the discussed research works. The existing
literature on driver drowsiness using facial features indicates that there is still room for
improvement in driver drowsiness detection to improve the robustness and reliability of
these approaches. Behavioral drowsiness detection is a difficult task. There is a need to
develop a more effective and robust drowsiness detection approach.

Table 1. Comparative summary of discussed research works.

Ref. Base Parameters Model Accuracy (Test) Dataset (s)

[27] Facial Regions Fusion System (Analysis of Mixed Datasets) 93.38%, 96.68% YawDD, DEAP,
MiraclHB

[28] Facial Regions SVM+LSTM 89% UTA-RLDD

[19] Eyes and Mouth Multi-physical Feature Fusion Detection Method Detection
Method based on Deep Learning SSD+VGG16

95.7%, 91.4%
(Custom), 91.88%

(Public) Homemade
Dataset, NTHU-DDD

[38] Facial Regions Weibull-based MobileNetV2 Weibull-based ResNext101
MTCNN+Weibull Pooling+ResNext101

93.8%, 90.5%,
84.21%

Custom Dataset (Total
50, 30 male, 20 female)

NTHU-DDD

[29] Facial Regions 2-stream spatial-temporal graph convolutional network
(2s-STGCN) 93.4%, 92.7% YawDD, NTHU-DDD

[35] Facial Regions 3D Deep CNN CNN (LeNet) 96.80% UTA-RLDD Custom
Dataset (10 Subjects)

[30] Facial Regions Linear Support Vector Machine (SVM) as classifier + Dlib 92.5% YawDD

[40] Facial Regions SVM + Dlib facial feature predictor 94.55% IMM face Dataset +
Other Mixed Samples

[31] Facial Regions TFBI LSTM, CNN-LSTM 79.9% Temporal,
97.5% Spatial UTA-RLDD

[34] Mouth and Eyes MTCNN+DLIB+LSTM NN 88%, 90% YawDD Self-Built
Dataset

[32] Eyes and Mouth SVM and Adaboost + Multitask ConNN 98.81% YawDD and NthuDDD

[36] Facial Regions YOLOv3-tiny CNN + Face Feature, Triangle (FFT) + Face Feature
Vector (FFV) 94.32% YawDD

[37] Facial Regions Conv2D-raw + SMOTE 64% Real-Time Generated
Dataset

[33] Facial Regions 3DcGAN+TLABiLSTM+Refinement, 3DcGAN+TLABiLSTM,
3DcGAN

91.20%, 87.1%,
82.8% NthuDDD

[39] Eyes HM-LSTM network, LSTM network 65.2%, 61.4% Custom Dataset
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3. Proposed Methodology

This study proposes a deep neural network model for detecting drowsiness among
drivers using images of behavioral features. The workflow diagram of the proposed ap-
proach is given in Figure 1. The process starts with video data acquisition for various
people driving a vehicle. Videos contain normal driving behavior and yawning while
driving. Region of interest is obtained from the videos for further classification of videos
into yawning and no yawning. Data preparation and data preprocessing tasks are carried
out. Various tasks are performed, such as resizing and cropping the video frames, normal-
izing the data, and extracting relevant features. Data are then split into training and test
subsets for training and testing. This study builds and uses three deep neural networks
for drowsiness detection among drivers. The performance of models is analyzed using
accuracy, precision, recall, and F1 score. Further details of these tasks are provided in the
subsequent sections.

Figure 1. Architecture of proposed methodology.

3.1. Selected Dataset

To develop a drowsiness detection system, we used the YawDD dataset [41] that
contains two sub-datasets named ‘Dash’ and ‘Mirror’ of drivers with various facial char-
acteristics. The ‘Dash’ dataset has 13 female and 16 male participants. Table 2 shows the
details of male and female participants for data collection.
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Table 2. Total number of participants in the dataset.

Gender Dash Mirror Total

Female 13 43 56

Male 16 47 63

Overall 119

These datasets contain videos of male and female drivers in different illumination
conditions. Each participant has a video recorded from the car’s dashboard that contains
scenes of driving, driving while talking, and driving while yawning. The ‘Mirror’ dataset
contains 320 videos of 110 participants recorded from the mirror side of the car using a
camera. Table 3 shows the details about the total number of videos for ‘Dash’ and ‘Mirror’
types for male and female participants.

Table 3. Total number of videos in the dataset.

Gender Dash Mirror Total

Female 13 156 169

Male 16 164 180

Overall 349

There are three/four videos for each participant containing different facial conditions
such as normal, talking or singing, and yawning. In both datasets, participants with and
without glasses/sunglasses from different ethnicities are used for data collection. A few
samples for the ‘yawning’ and ‘no_yawning’ classes are shown in Figure 2.

(a)

(b)
Figure 2. Samples from the YawDD video dataset, (a) Participants not yawning, and (b) Partici-
pants yawning.

3.2. Segmentation and Classification

We classify or label to help distinguish between drowsy and not-drowsy images.
The dataset is in the form of videos. It needs to be segmented and labeled to extract the
area of interest and feed it to the proposed deep neural networks.
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Before preprocessing, the video is converted into frames/images. The classifica-
tion is performed based on the extraction of the region of interest. For this study, we
have used a Dlib face detector library and 68 facial landmark predictors for the eyes and
mouth [40,42]. The mouth region landmarks are extracted from the detected facial land-
marks (“shape[48:68]”), which correspond to the points around the lips. With the help of
these, we can calculate and detect features such as yawning and not yawning classes.

Mouth Aspect Ratio

The mouth aspect ratio (MAR) is the ratio of vertical length between the pair of lips to
the horizontal length across the end edges of the lip. The distance between specific points
on the upper and lower lips is calculated. These points are mouth[2], which is the top point
on the lower lip, and mouth[10], which is the bottom point on the upper lip. The distance
between these two points is referred to as the “yawn_distance”.

The yawn distance is calculated using the Euclidean distance formula between two
specific points on the mouth region’s upper and lower lips. The formula to calculate the
yawn distance is given as

yawn distance =
√
(mouth[10][0]− mouth[2][0])2 + (mouth[10][1]− mouth[2][1])2 (1)

where mouth[2][0] and mouth[2][1] correspond to the coordinates of the top point on the
lower lip, and mouth[10][0] and mouth[10][1] correspond to the coordinates of the bottom
point on the upper lip.

We set a threshold value of 35 to determine the yawn_distance. If the “yawn_distance”
is less than or equal to the threshold, the frame is classified as not yawning, and the frame
is saved in the “not_yawning” folder. If the calculated “yawn_distance” is greater than the
threshold value, the frame is classified as yawning, and the frame is saved in the "yawning"
folder. The used threshold is based on empirical observations on the dataset.

Based on segmentation, the output frames are stored in different relevant folders.
The output images are in a .jpg file extension, each with a size of 640 × 480 pixels. The in-
put videos are of different durations. The used algorithm converts video into images at
24 frames per second. The details of the output images/frames are given in Table 4.

Table 4. Total number of frames for the YawDD dataset.

Output Folder Dash Frames Mirror Frames Total Frames

no_yawning 6567 2832 9399

yawning 3314 2423 5737

3.3. Preprocessing

Before feeding the data to the neural network architecture, we perform further prepro-
cessing. Various tasks like resizing and cropping the video frames, normalizing the data,
and extracting relevant features are performed. The details of each step are provided in
subsequent sections.

3.3.1. Train Test Split

For training, testing, and validation purposes, the system takes the images from the
input folders, splits them randomly, and stores them in the training, testing, and validation
subfolders within the output folder according to the defined split ratios. The defined split
ratio for our study is 70:15:15. The number of images after the train/test split is given
in Table 5.
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Table 5. Train/Test split for the YawDD dataset.

Class Training Validation Testing

Yawning 4015 860 862

Not Yawning 6579 1409 1411

Batch size determines how many images are processed together in each training
iteration. We have set the batch size to 32 for training and validation and 1 for testing.
For testing, a batch size of 1 is often used to evaluate images individually.

3.3.2. Setting Image Dimensions

We have set the input shape to (64, 64, 3), which means all images fed into neural
network architectures are transformed to a 64-pixel width and 64-pixel height and have
red, green, and blue (RGB) channels.

3.3.3. Data Augmentation

In one of the experimental studies, we applied several data augmentation steps such
as rescaling, flipping, zooming, and rotating, as suggested in earlier research [22,43],
to address the issue of limited data availability, which causes over-fitting of the model.
Below, an explanation of each data augmentation method is given along with its impact.
Figure 3 shows the output of each type of augmentation applied in this study.

Figure 3. Samples from data augmentation.

3.3.4. Rescale (Normalization)

The input images are rescaled and set to 1/255 for their pixel values before being fed
into the models. By dividing each pixel value by 255, the values of the pixels are normalized
to the range of [0, 1]. This rescaling helps improve convergence during training [44].

3.3.5. Shear Range

Shearing is a transformation that slants the image in a specified direction. The shear
range parameter specifies the maximum angle in radians for the shearing transformation.
It can help the model become more invariant to shear transformations that might occur in
real-world scenarios. For the experiments, we set the shear range value to 0.2.

3.3.6. Zoom Range

Zooming applies a scaling transformation to the image. The zoom range parameter
specifies the range by which the image can be zoomed in or out. It can help the model learn
to recognize objects at different scales and improve generalization. In this study, we set the
zoom range value to 0.2.

3.3.7. Horizontal Flip

This method horizontally flips the images with a 50% probability. It is often useful for
tasks where the orientation of the object does not affect the classification result. We have
also performed flipping. It is to be noted that the augmented images are not permanently
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stored. However, during training, different variations of each image will be created on the
fly according to the augmentation parameters.

3.4. Proposed Deep Learning Architectures

Two deep neural network architectures are proposed in this study to process behavioral
features. The first architecture is a CNN, and the second is a hybrid neural network
combining CNN and RNN models.

3.4.1. Deep CNN-1 Architecture

The proposed deep neural network model takes input with the specified shape and
generates a single probability output. The model starts with convolutional layers and max
pooling layers to reduce spatial dimensions. The last part of the framework consists of fully
connected layers (dense layers) leading to the output layer with a sigmoid activation func-
tion. An overview of the proposed deep neural network architecture is given in Figure 4.

Figure 4. Architecture of proposed deep CNN.

The model is structured sequentially, with each layer added sequentially. It begins
with a Conv2D layer consisting of 32 filters, each with a 3 × 3 kernel size. The activation
function used in this layer is a rectified linear unit (ReLU). The input shape of this layer is
specified using the ’input_shape’ parameter.

Following the Conv2D layer, a MaxPooling2D layer is added with a pool size of
2 × 2. This layer performs spatial downsampling, reducing the dimensions of the in-
put. The model then incorporates three more sets of Conv2D and MaxPooling2D layers.
The number of filters is increased to 64, 128, and 256, respectively, while maintaining the
same 2 × 2 pool size. These additional layers aim to extract more intricate features from
the input data. The subsequent flatten layer transforms the output from the previous layers
into a 1-dimensional vector. This step is necessary to connect the convolutional layers to
the dense layers.

The model then employs a series of dense layers, gradually reducing the number of
units from 512 to 32. Each dense layer uses the ReLU activation function and processes
the flattened features. Lastly, the output layer is added, consisting of two units with the
‘sigmoid’ activation function for binary classification according to the specified problem for
this research.

Architectural details of the proposed CNN-1 are provided in Table 6. This model begins
with the initial Conv2D layer, which produces an output with dimensions (None, 62, 62,
32) and has 896 parameters. This is followed by a MaxPooling2D layer, which reduces the
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spatial dimensions of the feature maps to (None, 31, 31, 32) with no additional parameters.
The subsequent layers continue this pattern of alternating Conv2D and MaxPooling2D
layers, progressively reducing the spatial dimensions and increasing the number of feature
maps. The network then transitions to fully connected layers, starting with a flatten layer
that transforms the 2D feature maps into a 1D vector with 1024 elements. The network
further processes this vector through several dense layers, each with a decreasing number
of units, culminating in a final dense layer with one unit, which is typically used for binary
classification tasks. In total, this model has 1,087,809 parameters, all of which are trainable.

Table 6. Architecture of proposed CNN-1 model.

Layer (Type) Output Shape Parameters

conv2d (Conv2D) (None, 62, 62, 32) 896

max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0

conv2d_1 (Conv2D) (None, 29, 29, 64) 18,496

max_pooling2d_1 (MaxPooling2D) (None, 14, 14, 64) 0

conv2d_2 (Conv2D) (None, 12, 12, 128) 73,856

max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 128) 0

conv2d_3 (Conv2D) (None, 4, 4, 256) 295,168

max_pooling2d_3 (MaxPooling2D) (None, 2, 2, 256) 0

flatten (Flatten) (None, 1024) 0

dense (Dense) (None, 512) 524,800

dense_1 (Dense) (None, 256) 131,328

dense_2 (Dense) (None, 128) 32,896

dense_3 (Dense) (None, 64) 8256

dense_4 (Dense) (None, 32) 2080

dense_5 (Dense) (None, 1) 33

3.4.2. Deep CNN-2 Architecture

This CNN model is designed for binary classification and is constructed as a sequential
model, ensuring that data flows sequentially through the network. This is the foundation
for stacking various layers together to create a functional neural network. The core of the
model comprises four convolutional layers. These layers are pivotal in feature extraction
from the input data. A small 3 × 3 filter is employed to scan the input images and create
feature maps. The numbers 32, 64, 128, and 256 indicate the depth of these feature maps.
As the depth increases, the model can learn increasingly complex features. The ‘relu’
activation function is employed in each of these layers. This function introduces non-
linearity by outputting the input if it is positive, and zero otherwise. An overview of the
proposed deep neural network architecture is given in Figure 5.

After each convolutional layer, there is a max-pooling layer. These layers reduce
the spatial dimensions of the feature maps by selecting the maximum value from small
regions (2 × 2). This downsampling helps in simplifying the data and retaining essential
information. Following the convolutional layers, the flatten layer is employed. Its primary
role is to transform the 2D feature maps into a 1D vector. This step is crucial as it readies
the data for the transition from convolutional layers to fully connected layers.

The subsequent fully connected layers (1–5) are fundamental in leveraging the high-
level feature representation produced by the convolutional layers. These layers are similar
to traditional neural network layers, where each neuron is connected to every neuron in
the previous and subsequent layers. The numbers 512, 256, 128, 64, and 32 represent the
number of neurons in each layer. Larger numbers signify a more substantial capacity for
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learning intricate patterns. To introduce non-linearity, the ’relu’ activation function is used
in these layers. Moreover, the addition of dropout layers after the first two fully connected
layers (with a dropout rate of 0.5) serves as a regularization technique. During training,
these layers randomly deactivate a fraction of the input units, preventing overfitting and
enhancing generalization.

Finally, the output layer concludes the model. In this instance, it is comprised of a
single neuron utilizing the ‘sigmoid’ activation function. The ‘sigmoid’ function transforms
the output to a value between 0 and 1, making it suitable for estimating probabilities. This
final output value represents the probability of the input data belonging to the positive class.

Figure 5. Architecture of proposed deep CNN-2.

Table 7 provides the details of layers and the structure of each layer for the CNN-2
model. This model comprises a series of convolutional layers interleaved with activation
functions, max-pooling layers, and fully connected layers. The convolutional layers, repre-
sented by “conv2d”, perform feature extraction from the input data, gradually reducing
the spatial dimensions while increasing the number of feature maps. Following each convo-
lutional layer, there is an “activation” layer, which typically applies a non-linear function to
introduce non-linearity into the model. Max-pooling layers, denoted as “max_pooling2d”,
further reduce the spatial dimensions of the feature maps by downsampling.

The model then transitions to a fully connected architecture with dense layers, marked
as “dense”, which are crucial for making classification decisions. Activation layers follow
these dense layers, adding non-linearity to the network. Dropout layers, such as “dropout”
and “dropout_1”, help prevent overfitting by randomly deactivating a fraction of neurons
during training. The final dense layer, “dense_5”, has a single unit, which is typical for
binary classification tasks. It is important to note that the “activation_9” layer follows the
output layer, but its purpose may vary based on the activation function used.

In total, the model has 1,087,809 parameters, all of which are trainable. These param-
eters are adjusted during the training process to learn and represent features in the data.
The presence of dropout layers helps in mitigating overfitting.
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Table 7. Architecture of proposed CNN-2 model.

Layer (Type) Output Shape Parameters

conv2d (Conv2D) (None, 62, 62, 32) 896

activation (Activation) (None, 62, 62, 32) 0

max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0

conv2d_1 (Conv2D) (None, 29, 29, 64) 18,496

activation_1 (Activation) (None, 29, 29, 64) 0

max_pooling2d_1 (MaxPooling2D) (None, 14, 14, 64) 0

conv2d_2 (Conv2D) (None, 12, 12, 128) 73,856

activation_2 (Activation) (None, 12, 12, 128) 0

max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 128) 0

conv2d_3 (Conv2D) (None, 4, 4, 256) 295,168

activation_3 (Activation) (None, 4, 4, 256) 0

max_pooling2d_3 (MaxPooling2D) (None, 2, 2, 256) 0

flatten (Flatten) (None, 1024) 0

dense (Dense) (None, 512) 524,800

activation_4 (Activation) (None, 512) 0

dropout (Dropout) (None, 512) 0

dense_1 (Dense) (None, 256) 131,328

activation_5 (Activation) (None, 256) 0

dropout_1 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 128) 32,896

activation_6 (Activation) (None, 128) 0

dense_3 (Dense) (None, 64) 8256

activation_7 (Activation) (None, 64) 0

dense_4 (Dense) (None, 32) 2080

activation_8 (Activation) (None, 32) 0

dense_5 (Dense) (None, 1) 33

activation_9 (Activation) (None, 1) 0

3.4.3. Hybrid CNN-RNN Architecture

A deep CNN-RNN hybrid model combines the capabilities of CNN and RNN to
handle sequential data and leverage spatial and temporal relationships. To capture tem-
poral information in the data, hybrid models include recurrent layers such as LSTM and
convolutional layers [31]. As a result, they are compatible with applications that need
sequential data, such as video analysis and speech recognition. The CNN component ex-
tracts spatial characteristics, while the RNN component represents temporal dynamics. The
hybrid model combines the strengths of CNN and RNN models to handle both spatial and
temporal information in the input data. Figure 6 provides an overview of the architecture
and data flow in the hybrid deep CNN-RNN model.

The model begins by initializing a sequential model. Then, CNN layers are added
to extract spatial features from the input data. These layers consist of Conv2D and Max-
Pooling2D layers, which apply filters to capture spatial patterns and downsample the
input. After the CNN layers, a flatten layer is introduced to flatten the output from the
CNN layers into a 1-dimensional vector. This step allows the data to be processed by the
subsequent RNN layers. Following the flatten layer, a reshape layer is added. Its purpose
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is to reshape the output of the CNN layers, adding a time step dimension in preparation
for the RNN layers. This reshaping transforms the output into a shape of (1, −1), where the
first dimension represents the time step and the second dimension represents the flattened
vector from the CNN layers.

Next, RNN layers are incorporated into the model. Specifically, an LSTM layer is used.
LSTMs are a type of RNN that excels at capturing temporal dependencies in sequential data.
This layer allows the model to learn patterns and relationships over time. Finally, an output
layer with two units and a ’sigmoid’ activation function is added. This layer produces the
final prediction, a probability value between 0 and 1. It indicates the likelihood of the input
belonging to the positive class in a binary classification problem.

Table 8 provides a detailed architecture of the hybrid model. This neural network
architecture is a deep and complex model. It starts with a series of convolutional layers,
where the initial Conv2D layer processes input data into feature maps with dimensions
(None, 62, 62, 32) and is accompanied by 896 parameters. Subsequent MaxPooling2D
layers reduce the spatial dimensions of the feature maps. This pattern continues through
multiple Conv2D and MaxPooling2D layers, resulting in a progressive reduction in spatial
dimensions and an increase in the number of feature maps. The model takes an inter-
esting turn at layer 9, introducing another Conv2D layer followed by a MaxPooling2D
layer. However, in layer 10, “max_pooling2d_4”, there is a notable discrepancy where
the spatial dimensions remain the same (4, 4, 512), which might be a data formatting or
architectural choice.

Figure 6. Architecture of hybrid deep CNN-RNN model.

The flatten layer (layer 11) transforms the 2D feature maps into a 1D vector with
8192 elements, setting the stage for subsequent layers. Layer 12, “reshape”, reconfigures the
data into a 3D shape (None, 1, 8192). The model then incorporates an LSTM layer (layer 13),
which is a type of recurrent layer designed for sequential data processing. This LSTM layer
has a very high number of parameters, amounting to 4,260,352.

Finally, the model concludes with a dense layer (layer 14) with a single unit, typically
used for binary classification tasks. The total number of parameters in this model is
5,009,857, all of which are trainable.
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Table 8. Architecture of hybrid (CNN+RNN) model.

Layer (Type) Output Shape Parameters

conv2d (Conv2D) (None, 62, 62, 32) 896

max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0

conv2d_1 (Conv2D) (None, 29, 29, 64) 18,496

max_pooling2d_1 (MaxPooling2D) (None, 14, 14, 64) 0

conv2d_2 (Conv2D) (None, 12, 12, 128) 73,856

max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 128) 0

conv2d_3 (Conv2D) (None, 5, 5, 256) 131,328

max_pooling2d_3 (MaxPooling2D) (None, 5, 5, 256) 0

conv2d_4 (Conv2D) (None, 4, 4, 512) 524,800

max_pooling2d_4 (MaxPooling2D) (None, 4, 4, 512) 0

flatten (Flatten) (None, 8192) 0

reshape (Reshape) (None, 1, 8192) 0

lstm (LSTM) (None, 128) 4,260,352

dense (Dense) (None, 1) 129

For all models, we defined the batch size as 32 for training and validation, specified
the class mode to binary for classification, and set the number of epochs to 80 for training
the model.

We have three distinct architectures with varying numbers of parameters and capa-
bilities, as shown in Table 9. The first two models, labeled as CNN-1 and CNN-2, both
belong to the CNN category. These models share identical total parameters, with a count of
1,087,809, all of which are trainable, meaning they can adapt to learn features from the data.
Notably, they do not possess any non-trainable parameters.

In contrast, the third model, called “Hybrid CNN+RNN”, is a more complex architec-
ture tailored for tasks involving sequential data or time series analysis. It boasts a substan-
tially higher total parameter count of 5,009,857, again with all parameters being trainable.
This model incorporates a convolutional component for feature extraction, followed by re-
current layers, specifically LSTM units, for sequence analysis. The absence of non-trainable
parameters implies that the entire architecture is adaptable to the learning process.

Table 9. Number of parameters for each architecture.

Model Parameters Trainable Parameters Non-Trainable Parameters

CNN-1 1,087,809 1,087,809 0

CNN-2 1,087,809 1,087,809 0

Hybrid CNN+RNN 5,009,857 5,009,857 0

4. Results and Discussions

Six experiments are conducted on the complete dataset. We have proposed three deep
neural network architectures for training and analysis. Each model is trained with and
without data augmentation. The design of a deep learning model for drowsiness detection is
based on several key factors and considerations, primarily to ensure its accuracy, efficiency,
and real-world applicability. As we have the data in the form of frames of videos and we
have binary class problems, that is the reason we develop these model architectures.
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The findings of each experiment are discussed in this section. These experiments
aim to achieve maximum classification accuracy and optimized performance for other
quantitative measures for drowsiness detection among drivers. To measure the effect and
performance of deep learning architecture in predicting yawning among drivers, the perfor-
mance is assessed using standard metrics like accuracy, confusion matrix, precision, recall,
and F1 score. We have used these measures to compare our solution with the relevant
existing literature.

4.1. Experiments with Deep CNN Architecture

The deep CNN base architecture model is used in the experiments using training and
validation data. The model accuracy and loss graphs for the proposed CNN model without
data augmentation are shown in Figure 7. It can be observed that the model starts with
zero training accuracy; however,it improves as the number of epochs proceeds.

Figure 8 shows training and validation accuracy and loss for the CNN-1 model using
the augmented data. Results show that model training and validation accuracy show a
very similar trend as the number of epochs increases, contrary to the graphs on the original
data where the model training and validation accuracy and loss have different trends.

Table 10 shows the training and validation of the proposed CNN-1 model without and
with data augmentation. In the first experiment without data augmentation, the proposed
model achieved a 96.34% accuracy rate for testing and 99.69% in training, respectively.
Similarly, in the second experiment with data augmentation, the proposed architecture
achieved a 95.99% accuracy rate for testing data and 96.85% for training, respectively.
Experimental results show that the proposed architecture without data augmentation has
achieved the highest accuracy.

(a) Model training and validation accuracy (b) Model training and validation loss
Figure 7. Training/validation model accuracy and loss graph without data augmentation.

(a) Model training and validation accuracy (b) Model training and validation loss
Figure 8. Training/validation model accuracy and loss graph with data augmentation.
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Table 10. Accuracy results for proposed CNN model.

Augmentation Training Accuracy Testing Accuracy

Yes 96.85% 95.99%

No 99.69% 96.34%

The performance evaluation matrix, including precision, recall, and F1 score for both
classes of the dataset, are shown in Table 11. The precision score by the proposed CNN
model without data augmentation is 0.9728 for the drivers belonging to the ‘not_yawning’
class and 0.9480 for the drivers belonging to the ‘yawning’ class indicating that 97.28% of
the instances predicted as ‘Not Yawning’ are actually ‘Not Yawning’ and 94.80% of the
instances predicted as ‘Yawning’ are actually ‘Yawning’.

Similarly, the recall for the ‘Not Yawning’ class is 0.9680. For the ‘Yawning’ class,
it is 0.9558, indicating 96.80% and 95.58% of instances were correctly predicted as ‘Not
Yawning’ and ‘Yawning’, respectively. The F1 score is considered more reliable, especially
for scenarios where the class distribution is imbalanced, as it combines both precision and
recall. The F1 score is 0.9704 (97.04%) for 1409 instances for the ‘not_yawning’ class and
0.9519 (95.19%) for 860 instances for the ‘yawning’ class, respectively. It shows that there is
a significant balance between precision and recall.

For experiments involving data augmentation, the results of the CNN-1 model are
slightly different. The precision score by the CNN-1 model is 0.9551 for the ‘not_yawning’
class and 0.9683 for the ‘yawning’ class, which indicates that 95.51% of the instances
predicted as ‘Not Yawning’ are actually ‘Not Yawning’ and 96.83% of the instances predicted
as ‘Yawning’ are actually ‘Yawning’. Similarly, the recall for the ‘Not Yawning’ class is
0.9815. For the ‘Yawning’ class, it is 0.9244, indicating 98.15% and 92.% instances are
correctly predicted as ‘Not Yawning’ and ‘Yawning’, respectively. The F1 score is 0.9682
(96.82%) for 1409 instances for the ‘not_yawning’ class and 0.9459 (95.59%) for 860 instances
for the ‘yawning’ class, respectively; it shows that there is a significant balance between
precision and recall.

Table 11. Results of proposed CNN model.

Augmentation
Not Yawning (0) Yawning (1)

Precision Recall F1-Score Precision Recall F1-Score

No 0.9728 0.9680 0.9704 0.9480 0.9558 0.9519

Yes 0.9551 0.9815 0.9682 0.9683 0.9244 0.9459

The confusion matrix for the proposed CNN-1 model without data augmentation is
given in Figure 9a. It indicates that out of 2269 testing images, 2186 are classified correctly
by the proposed CNN model. It means the accuracy rate for the model is 96.34%. Similarly,
Figure 9b shows the confusion matrix for the proposed architecture with data augmentation,
which indicates that out of 2269 testing images, 2178 are correctly classified. It means that
the accuracy rate for the model is 95.99%.

4.2. Experiments with Deep CNN-2 Architecture

The deep CNN-2 base architecture model is used in the experiments using training
and validation data. The model accuracy and loss graphs for the proposed CNN-2 model
without data augmentation are shown in Figure 10. Similar to the previous model, it starts
with zero training accuracy, but improves as the number of epochs proceeds.
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(a) Without data augmentation (b) With data augmentation
Figure 9. Confusion matrix of proposed CNN without and with data augmentation.

(a) Model training and validation accuracy (b) Model training and validation loss
Figure 10. Training/validation model accuracy and loss graph of CNN-2 model without data
augmentation.

Figure 11 shows training and validation accuracy and loss for the CNN-2 model using
the augmented data. Similar to CNN-1, CNN-2 model training and validation accuracy
shows a very similar trend as the number of epochs increases, contrary to the graphs
on the original data where the model training and validation accuracy and loss have
different trends.

(a) Model training and validation accuracy (b) Model training and validation loss
Figure 11. Training/validation model accuracy and loss graph of CNN-2 model with data augmentation.

Table 12 shows the training and validation of the proposed CNN-2 model without
and with data augmentation. In the first experiment without data augmentation, the pro-
posed CNN-2 model achieved a 96.69% accuracy rate for testing and 99.41% in training,
respectively. Similarly, in the second experiment with data augmentation, the proposed
CNN-2 architecture achieved a 95.50% accuracy rate for testing data and 95.94% for train-
ing, respectively. Experimental results show that the proposed architecture without data
augmentation has achieved the highest accuracy.
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Table 12. Accuracy result for proposed CNN-2 model.

Augmentation Training Accuracy Testing Accuracy

Yes 96.94% 95.50%

No 99.41% 96.69%

The performance evaluation matrix, including precision, recall, and F1 score for both
classes of the dataset, are shown in Table 13. The precision score by the proposed CNN-2
model without data augmentation is 0.9730 for the drivers belonging to the ‘not_yawning’
class and 0.9569 for the drivers belonging to the ‘yawning’ class indicating that 97.30% of
the instances predicted as ‘Not Yawning’ are actually ‘Not Yawning’ and 95.69% of the
instances predicted as ‘Yawning’ are actually ‘Yawning’. Similarly, the recall for the ‘Not
Yawning’ class is 0.9737. For the ‘Yawning’ class, it is 0. 9558, indicating 97.37% and 95.58%
instances were correctly predicted as ‘Not Yawning’ and ‘Yawning’, respectively. The F1
score is 0.9733 (97.33%) for 1409 instances for the ‘not_yawning’ class and 0.9563 (95.63%)
for 860 instances for the ‘yawning’ class, respectively. It shows that there is a significant
balance between precision and recall.

Table 13. Experimental results of proposed CNN-2 model for ‘yawning’ and ‘not yawning’.

Augmentation
Not Yawning (0) Yawning (1)

Precision Recall F1-Score Precision Recall F1-Score

No 0.9730 0.9737 0.9733 0.9569 0.9558 0.9563

Yes 0.9516 0.9772 0.9642 0.9610 0.9186 0.9393

For experiments involving data augmentation, the results of the CNN-2 model are
slightly different. The precision score by the CNN-2 model is 0.9516 for the ‘not_yawning’
class and 0.9610 for the ‘yawning’ class, which indicates that 95.16% of the instances
predicted as ‘Not Yawning’ are actually ‘Not Yawning’ and 96.10% of the instances predicted
as ‘Yawning’ are actually ‘Yawning’. Similarly, the recall for the ‘Not Yawning’ class is
0.9772. For the ‘Yawning’ class, it is 0.9186, indicating 97.72% and 91.86% instances are
correctly predicted as ‘Not Yawning’ and ‘Yawning’, respectively. The F1 score is 0.9642
(96.42%) for 1409 instances for the ‘not_yawning’ class and 0.9393 (93.93%) for 860 instances
for the ‘yawning’ class, respectively; it shows that there is a significant balance between
precision and recall.

The confusion matrix for the proposed CNN-2 model without data augmentation
is given in Figure 12a. It indicates that out of 2269 testing images, 2194 are classified
correctly by the proposed CNN-2 model. It means the accuracy rate for the model is 96.69%.
Similarly, Figure 12b shows the confusion matrix for the proposed architecture with data
augmentation, which indicates that out of 2269 testing images, 2167 are correctly classified.
It means that the accuracy rate for the model is 95.50%.

(a) Without data augmentation (b) With data augmentation
Figure 12. Confusion matrix of proposed CNN-2 without and with data augmentation.
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4.3. Experiments with Deep CNN-RNN Architecture

In the third and fourth experiments, we implement hybrid deep CNN-RNN architec-
ture for driver drowsiness detection. The model accuracy and loss graphs of the hybrid
model without data augmentation are shown in Figure 13. It is observed that the model
starts poorly with training accuracy, but improves as the number of epochs proceeds.
The best accuracy is obtained with 47 epochs, but after that, the training and validation
accuracy start reducing.

(a) Model training and validation accuracy (b) Model training and validation loss
Figure 13. Training/validation model accuracy and loss graph of hybrid CNN-RNN model without
data augmentation.

Figure 14 shows training and validation accuracy and loss of hybrid CNN-RNN
with data augmentation. It can be seen that contrary to the behavior of the model on the
original data where training and validation curves have different trends, model training
and validation curves show very similar trends as the number of epochs grow.

(a) Model training and validation accuracy (b) Model training and validation loss
Figure 14. Training/validation model accuracy and loss graph of hybrid CNN-RNN model with
data augmentation.

Table 14 shows the training and validation accuracy of the hybrid CNN-RNN model
using data augmentation and no augmentation. The proposed hybrid model obtained a
95.24% accuracy without augmentation and 97.55% training accuracy. On the other hand,
with data augmentation, it achieved 95.64% and 96.28% accuracy for testing and training,
respectively. Results show that results are better if the model is trained on the original
dataset without data augmentation.

Table 14. Accuracy result for hybrid CNN-RNN model.

Augmentation Training Accuracy Testing Accuracy

Yes 97.55% 95.25%

No 96.28% 95.64%
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Results regarding precision, recall, and F1 score are given in Table 15. The preci-
sion score for the proposed CNN-RNN model without data augmentation is 0.9514 for
the ‘not_yawning’ class and 0.9541 for the ‘yawning’ class, indicating that 95.14% of the
instances predicted as ‘Not Yawning’ are actually ‘Not Yawning’ and 95.41% of the in-
stances predicted as ‘Yawning’ are actually ‘Yawning’. Similarly, the recall for the ‘Not
Yawning’ and ‘Yawning’ classes is 0.9730 and 0.9186, respectively, indicating 97.30% and
91.86% instances are correctly predicted. The F1 score is 0.9621 (96.21%) for 1409 instances
for the ‘not_yawning’ class and 0.9360 (93.60%) for 860 instances for the ‘yawning’ class,
respectively, showing that the model does not have overfitting.

Table 15. Experimental results of hybrid CNN-RNN model.

Augmentation
Not Yawning (0) Yawning (1)

Precision Recall F1-Score Precision Recall F1-Score

No 0.9514 0.9730 0.9621 0.9541 0.9186 0.9360

Yes 0.9517 0.9794 0.9654 0.9646 0.9186 0.9410

The precision score for the CNN-RNN model using augmented data is 0.9517 for the
‘not_yawning’ class and 0.9646 for the ‘yawning’ class. Results indicate that 95.17% and
96.46% of the ‘Not Yawning’ and ‘Yawning’ classes are predicted correctly. In the same way,
recall scores of 0.9794 and 0.9186 for not yawning and yawning indicate superior results. F1
scores of 0.9654 (96.54%) for 1409 instances of the ‘not_yawning’ class and 0.9410 (95.10%)
for 860 instances of the ‘yawning’ class, respectively, also show a balance between precision
and recall.

The confusion matrix for the proposed CNN model without data augmentation in
Figure 15a indicates that out of 2269 testing images, 2161 are classified correctly by the
hybrid CNN-RNN model. It indicates that the accuracy rate for the model is 95.24%.
Similarly, Figure 15b shows the confusion matrix for the proposed architecture with data
augmentation, which indicates that out of 2269 testing images, 2170 are correctly classified
showing an accuracy rate for the model is 95.64%.

(a) Without data augmentation (b) With data augmentation
Figure 15. Confusion matrix of hybrid CNN-RNN without and with data augmentation.

4.4. Computational Time of Models

We set the batch size to 32 for training and the number of epochs to 80 and trained the
models on the YawDD dataset. Table 16 provides the training time of all models employed
in this study.

Firstly, two variants of CNN were considered. CNN-1, without data augmentation,
exhibited a training and testing time of 3.24 h. When data augmentation techniques were
applied to CNN-1, the time increased slightly to 3.70 h. On the other hand, CNN-2, which
is another variant of the CNN architecture, required 2.89 h for training and testing without
data augmentation and 3.01 h when data augmentation was incorporated. These results
demonstrate that CNN-2 was generally more time-efficient compared to CNN-1, while
data augmentation increased training time for both architectures.
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Additionally, a hybrid CNN-RNN architecture was assessed, again with and without
data augmentation. Without data augmentation, this architecture demanded 3.74 h for
training and testing, making it one of the most time-consuming options in this study.
The introduction of data augmentation increased the time marginally to 3.82 h.

Table 16. Comparison of computational time for each model.

Architecture Total Time (in Hours)

CNN-1 without Data Augmentation 3.24

CNN-1 with Data Augmentation 3.70

CNN-2 without Data Augmentation 2.89

CNN-2 with Data Augmentation 3.01

Hybrid CNN-RNN without Data Augmentation 3.74

Hybrid CNN-RNN with Data Augmentation 3.82

4.5. Comparison with Existing Studies

This study primarily focuses on the effectiveness of our model in detecting drowsiness
indicators within the scope of the provided dataset. The performance of the proposed
CNN model is compared with relevant studies available in the literature for the detection
of drowsiness among drivers. Table 17 shows the performance comparison results. This
study used the YawDD dataset for experimental analysis, so we are considering only those
existing studies for comparison that have used the YawDD dataset for experiments. Based
on classification accuracy, the proposed CNN model outperforms existing studies on driver
drowsiness detection.

Table 17. Proposed model’s comparison with other studies.

Reference Year Methodology Accuracy

[36] 2020 YOLOv3-tiny CNN + Face Feature Triangle + Face Feature Vector 94.32%

[34] 2021 MTCNN+DLIB+LSTM NN 88%

[30] 2021 Dlib + linear Support Vector Machine 92.5%

[29] 2022 2s-STGCN 93.4%

This study 2023 Dlib+ 15 layers CNN without data augmentation 96.69%

To capture facial regions in complex driving conditions, [36] used improved YOLOv3-
tiny CNN. The proposed algorithm in this study achieved an accuracy rate of 94.32% at a
detection speed of over 20 frames per second. In [34], the authors employed a combination
of MTCNN for face detection and Dlib for locating facial key points. The proposed model
achieves an 88% average accuracy. A real-time fatigue detection system has been devel-
oped that calculates eye blink duration as a key indicator for accident avoidance systems.
The experimental analysis on the YawDD dataset shows that it achieves an accuracy of
92.5% [30]. Lastly, [29] proposed an approach using two streams of spatial-temporal graph
convolutional networks for driver drowsiness detection. The model leverages spatial and
temporal features and achieved 93.4% accuracy on the YawDD dataset.

4.6. Discussion

This study proposes a deep CNN model for accurately detecting driver drowsiness
from videos. In addition, a hybrid model comprising CNN and RNN is also designed
for performance comparison. Drivers’ behavioral features are utilized to train and test
the models. Moreover, to resolve the data imbalance problem, data augmentation is also
utilized. A summary of results employing both models and data augmentation is presented
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in Table 18. It shows that the average accuracy for both models is very close. The CNN
model achieves an average accuracy of 98.01% without data augmentation, which is higher
than the average accuracy of the hybrid CNN-RNN model for all experiments.

Table 18. Overall performance of deep learning architectures.

Architecture Training Accuracy Testing Accuracy

CNN-1 without Data Augmentation 99.69% 96.34%

CNN-1 with Data Augmentation 96.85% 95.99%

CNN-2 without Data Augmentation 99.41% 96.69%

CNN-2 with Data Augmentation 95.94% 95.50%

Hybrid CNN-RNN without Data Augmentation 97.55% 95.24%

Hybrid CNN-RNN with Data Augmentation 96.28% 95.64%

Experimental results indicate that in general, the results of deep CNN, which only
considers spatial features, perform slightly better than the hybrid deep CNN-RNN model,
which considers spatial-temporal features. Performance measures like precision, recall,
and F1 score are also considered to compare the results. Overall, both models achieve
amazing performance with and without data augmentation, showing a very close difference.
Although we achieve better accuracy without data augmentation, it is a powerful technique
to enhance model performance and generalization ability. When we look at the training
validation graphs, we can conclude that after data augmentation, the accuracy might be
reduced, but the generalization of the models is enhanced.

While this research has demonstrated the effectiveness of the deep learning model
for drowsiness detection, it is essential to acknowledge certain limitations that are asso-
ciated with the use of DLib and the potential impacts of these limitations in real-world
scenarios [45]. In real-world scenarios, it is challenging to ensure that a driver maintains a
consistent head orientation toward the installed camera. DLib, like many other vision-based
methods, primarily focuses on a single point of monitoring, typically the driver’s face. This
approach does not consider the broader context of the driver’s behavior, which may include
fatigue-related cues from other parts of the body (e.g., body posture or hand movements).

Drowsiness among drivers causes injuries and deaths of millions of people annually,
so there is a need to develop a system with high accuracy, precision, and recall. Detection
of drowsiness is the key factor for successfully preventing road accidents. This study
focused on drowsiness detection among drivers using deep learning architectures. We try
to develop a more accurate model for predicting yawning or drowsiness among drivers.
The results show that the proposed architectures, which only consider spatial features,
perform better without data augmentation on the selected dataset. Overall, all three models
show exceptional performance with and without data augmentation, showing a very
close difference.

Existing research works on drowsiness detection provide various deep learning archi-
tectures and report results regarding accuracy, sensitivity, etc. This study makes a difference
in the following context:

i. Behavioral feature-based drowsiness detection: While drowsiness detection using
facial features is a known area of research, our study specifically focuses on using
behavioral features, such as yawning, as a means to detect drowsiness. This approach
offers a novel perspective on addressing drowsiness detection, which complements
existing methods.

ii. Three deep learning architectures: We propose and compare two deep learning ar-
chitectures, a deep CNN and a hybrid CNN-RNN, for drowsiness detection. Us-
ing a hybrid architecture that considers spatial and temporal features is innovative
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and can potentially lead to more robust results, especially in dynamic scenarios like
drowsy driving.

iii. Data augmentation: Our study highlights the impact of data augmentation techniques
on model performance. This analysis, coupled with the focus on behavioral features,
contributes to the novelty of our research. It demonstrates that data augmentation is a
valuable tool in enhancing the generalization of models in this context.

iv. Comparison with existing studies: Our research includes a comparison with existing
studies, specifically on the same YawDD dataset. By achieving better accuracy com-
pared to these existing studies, our research showcases a novel and effective approach
to drowsiness detection among drivers.

Overall, the novelty of the study lies in the unique combination of using behavioral
features, proposing three deep learning architectures, analyzing the impact of data augmen-
tation, and achieving higher accuracy compared to existing studies, all within the context
of addressing drowsiness detection among drivers.

5. Conclusions and Future Work

Drowsiness among drivers is one of the major causes of road accidents, which can
lead to severe injuries and deaths. It is essential to detect drowsiness among drivers using
low-cost, highly effective methods. For that purpose, this research develops a drowsi-
ness detection model using behavioral features such as changes in the eyes and mouth
during drowsiness. A 15-layer custom CNN model is proposed for driver drowsiness
detection with high accuracy and robustness. The YawDD benchmark dataset is used
for experimental analysis. The dataset was preprocessed involving segmentation and
classification of the video streams into frames for the ’Not Yawning’ and ’Yawning’ classes.
The Dlib with 68 facial landmark predictors is used to detect areas of interest including
eyes and mouth. The proposed CNN model is tested with and without data augmentation
to detect drowsiness. Experimental results demonstrate that the proposed model achieved
an average accuracy of 96.69% without data augmentation, which is superior to existing
models on drowsiness detection. Results depict that using data augmentation marginally
reduces the detection accuracy of the model but improves its robustness and generalization.
This study utilizes only a single dataset, YawDD, indicating a lack of generalization on
other datasets. In the future, we intend to test the model on additional datasets. Moreover,
more facial features such as the eyes, nose, head, and ear can be considered for driver
drowsiness detection.
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