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Abstract: The pH behavior in the µm to cm thick diffusion boundary layer (DBL) surrounding many
aquatic species is dependent on light-controlled metabolic activities. This DBL microenvironment
exhibits different pH behavior to bulk seawater, which can reduce the exposure of calcifying species
to ocean acidification conditions. A low-cost time-domain dual-lifetime referencing (t-DLR) interro-
gation system and an optical fiber fluorescent pH sensor were developed for pH measurements in
the DBL interface. The pH sensor utilized dual-layer sol-gel coatings of pH-sensitive iminocoumarin
and pH-insensitive Ru(dpp)3-PAN. The sensor has a dynamic range of 7.41 (±0.20) to 9.42 ± 0.23 pH
units (95% CI, T = 20 ◦C, S = 35), a response time (t90) of 29 to 100 s, and minimal salinity dependency.
The pH sensor has a precision of approximately 0.02 pHT units, which meets the Global Ocean Acidi-
fication Observing Network (GOA-ON) “weather” measurement quality guideline. The suitability of
the t-DLR optical fiber pH sensor was demonstrated through real-time measurements in the DBL
of green seaweed Ulva sp. This research highlights the practicability of optical fiber pH sensors by
demonstrating real-time pH measurements of metabolic-induced pH changes.

Keywords: optical fiber fluorescent pH sensor; dual-layer sensing film; time-domain dual-lifetime
referencing; ocean acidification; marine microenvironments; inverse calibration

1. Introduction

The oceans play a significant role in climate mitigation by absorbing approximately
30% of anthropogenic CO2 emissions [1], causing the pH of the ocean’s surface to decline by
ca. 0.1 pH units [2–5]. Ocean acidification (OA) results in a shift of the carbonate equilibria,
and the reduction in

[
CO2−

3

]
has made it challenging for marine calcifying species to main-

tain their shells and skeletons [6–9]. Numerous laboratory experiments [10–14], modeling
studies [15–17], and field observations [18,19] strongly suggest that OA will impact marine
biodiversity and alter ecosystem processes [4–6,9,20].

OA laboratory studies have shown that photosynthetic marine species, such as
macroalgae [13,14,21,22], can biologically modify the local chemical microenvironment
within their discrete µm to cm thick diffusion boundary layer (DBL) [10,23,24]. Nutrient
exchange between the organism and the bulk environment is via a diffusion process [10].
Metabolic gases and ions within the DBL result in a concentration gradient that forms
a distinct microenvironment and shows a different pH behavior compared to bulk sea-
water. The pH of the seawater in this region increases under light irradiation due to
photosynthesis and reduces in the dark due to respiration [13,14]. A high thickness and
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concentration gradient of DBL has been shown to reduce the OA effect on vulnerable calci-
fying species [10–12]. The thickness and chemical composition of the DBL are governed by
external environmental factors such as flow rate and light conditions [10,21,25].

To understand the impact of OA on marine species, pH sensors capable of making
measurements in microenvironments are required. The studies of OA’s impact on marine
species [26,27] typically utilize miniaturized electrochemical sensors [23,28] to measure
the changes in pH, oxygen concentration, and thickness gradient of the DBL [23,24,29–31].
These sensors are fragile and prone to electromagnetic field interference. The commercially
available microsensors are limited to a few specialized suppliers [32,33], and have a high
replacement cost (hundreds of USD). There is a demand for small-sized sensors that are
cost-effective and possess remote and real-time monitoring properties [34–36].

Ongoing research efforts are dedicated to exploring innovative approaches to create
miniaturized, more durable, and cost-effective electrochemical pH sensors. The compre-
hensive review of the newly emerging pH sensor materials by Avolio et al. [37] provides an
up-to-date overview of various pH measurement techniques. The review covers established
electrochemical pH-sensing methods as well as recent advancements in a broad spectrum
of sensor materials, such as inorganic, organic, and nano-engineered devices. These studies
hold promise for various environmental monitoring applications and are instrumental in
informing our approach to optical fiber pH sensor development, particularly in addressing
the unique challenges posed by marine microenvironments.

In recent years, significant research has been dedicated to the development of optical
pH sensing [38]. There are a great number of optical sensing approaches with numerous
specific features, of which planar sensors [39,40] and optical fiber sensors [34,36,41] are
well-established. Many state-of-the-art optical sensors are based on nanoparticles with pH-
sensing properties [42,43]. The small dimensions of nanoparticles significantly minimize
the diffusion passage of analytes, thus having a fast pH response. At present, these
nanoparticles are mainly used for in vivo intracellular pH-sensing applications [44,45],
although their practicality can be limited by cytotoxicity and the complexity of biological
delivery systems.

Optical fiber sensors are insensitive to electromagnetic field interference. They have
the capability of remote and continuous sensing, and their microstructures offer minimal
invasiveness [46,47]. In addition, optical fiber pH sensors have low sensor fabrication costs,
offering an alternative solution to pH measurements in marine microenvironments [48].
Typically, optical fiber pH sensors are based on fibers coated with a pH-sensitive indicator
immobilized in a polymeric or sol-gel-derived matrix. The interaction of evanescent waves
(EW) with the pH-sensitive layer enables the determination of pH in the surrounding
medium [49,50].

Optical fiber fluorescent pH sensors are well-suited for pH measurements in chal-
lenging locations such as marine environments [48]. The dual-lifetime referencing (DLR)
approach uses the ratio of two luminophores with distinct differences in their decay time: a
pH-sensitive fluorescent indicator and a pH-insensitive phosphorescent dye reference. pH
is derived from the ratio of the fluorescent intensity determined either in the time (t-DLR) or
frequency domain (f -DLR) [51]. This approach allows the signal to be referenced internally,
independent of fluorophore concentration and variations in excitation intensity [39,52–55].
Nonetheless, current DLR measurements require sophisticated and costly devices. The
objective of this study was to develop a t-DLR interrogation system using fluorescent
optical fiber pH sensors for marine environments. The t-DLR instrumentation utilized
low-cost electronic components and commercially available optical elements, reducing the
cost of the system from ca. USD 12,000–16,000 USD to USD 3400 USD (Table S1).

To facilitate the use of DLR in marine environments, suitable pH-sensitive fluorophores
(pH 7.5 to 9.0) are required. Most fluorophores that meet this requirement have a hy-
drophilic nature, are sensitive to ionic strength (IS), and have a high material cost (Table S2).
In contrast, iminocoumarin overcomes most of these disadvantages [56–59] and it was
synthesized and used as the pH-sensitive indicator in this study. The t-DLR application for
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pH measurement also requires a pH-insensitive reference with long fluorescence lifetime.
Tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride complex (Ru(dpp)3) was
chosen due to its good photostability and long lifetime. Encapsulation of Ru(dpp)3 in solid
matrices and as nanospheres [60–62] has been widely used in the development of oxygen
sensors [63,64], temperature sensors [65], and applied as the pH-insensitive reference in
DLR pH sensors [55,66–68]. Here, Ru(dpp)3 was encapsulated into a low-gas-permeable
polymer, polyacrylonitrile (PAN) [60–62,69], to prevent oxygen quenching.

The effect of photobleaching is a factor that cannot be offset using DLR [38]. Studies
have shown that immobilization of organic dyes in a sol-gel matrix greatly improves the
photostability of the dye molecules [70–72]. The sol-gel silica network imposed a caging
effect on the dye molecule, hindering the intermolecular motions and reducing diffusion of
triplet quenchers, thereby minimizing the reactive singlet oxygen species. Both factors can
greatly reduce the photodegradation of the dye molecule.

The pH sensor in this work was based on EW sensing. In this application, iminocoumarin
and Ru(dpp)3-PAN particles were entrapped in an optimized sol-gel matrix of tetraorthosil-
icate (TEOS) and dimethyldiethoxy silane (DDS) [48] and then directly coated onto the
optical fiber core as a dual-layer pH-sensing film. This dual-layer pH sensor had a pKa’ of
8.66 (T = 20 ◦C, S = 35), was insensitive to salinity, and had negligible dye leaching. The pH
sensor had an accuracy of 0.023 pH units and a precision of 0.021 pH units, which conforms
to the GOA-ON “weather” measurement quality guideline [73] for the identification of
relative spatial patterns, and short-term variation in biological and environmental studies.
The suitability of the low-cost t-DLR optical fiber pH sensor was demonstrated through the
detection of metabolic-induced pH changes in the DBL of the green seaweed Ulva sp. [74].

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals were reagent grade and used without further purification. Solutions
were prepared using Milli-Q water (Millipore S.A., Molsheim, France, 18.2 Ω), and all
chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise
stated. 4-(diethylamino)salicylaldehyde (98%), (2-benzimidazolyl)acetonitrile (97%), piperi-
dine, and dry methanol (MOLECULAR SIEVES, 3Å, CHEM store, Dunedin, New Zealand)
were used to synthesize iminocoumarin. Ru(dpp)3 (Santa Cruz Biotechnology, Dallas, TX,
USA), PAN (MW 150,000), and N,N’-dimethylformamide (DMF) (Ajax Finechem, Seven
Hills, NSW, Australia) were used to prepare Ru(dpp)3-PAN particles. Trifluoroacetic acid-d
(TFA-d) and dimethyl sulfoxide-d6 (DMSO-d6) were used in 1H and 13C NMR spectroscopy.

Sol-gel matrices were prepared using TEOS and DDS (97%), Triton™ X-100 (Romil,
Cambridge, UK), ethanol, and 0.1 M hydrochloric acid (HCl, Milli-Q). Artificial seawa-
ter (ASW) was prepared based on Roy et al. [75], and Tris buffers in ASW (pHT range
8.16 to 9.45) using pH total scale (pHT) [76] were prepared according to Pratt [77] with
Tris(hydroxymethyl)aminomethane (99.8%, BDH). The pH reference was a pH electrode
calibrated using Tris buffer (pHT = 8.092 at 25 ◦C), prepared by the NIWA/University of
Otago Research Centre for Oceanography [78]. Aqueous solutions of 0.2 M HCl and 0.2 M
NaOH with IS adjusted to 0.7 M with NaCl were used in the pH titration.

2.2. Iminocoumarin Synthesis and Encapsulation of Ru(dpp)3 in PAN

Iminocoumarin was synthesized according to a previously described method [79,80].
The structure and purity of the synthesized indicator were characterized through HR-MS
(Shimadzu LCMS-9030) (Figure S1), 1H (Figure S2), and 13C NMR spectroscopy (Figure S3).
The preparation of Ru(dpp)3-PAN was a modification of the procedure of Borisov et al. [61].
The additional steps included centrifugation of the suspension, followed by dialysis of
the slurry in Milli-Q for 3 days, and then particles of Ru(dpp)3-PAN were obtained by
freeze-drying for 48 h. The 1H NMR of Ru(dpp)3-PAN showed no DMF peaks [81] at 7.95,
2.89, and 2.75 ppm (Figure S4). The particle size of Ru(dpp)3-PAN was analyzed using
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dynamic light scattering (Figure S5), indicating that highly agglomerated particles (zeta
potential −5.52 ± 0.1 mV) were obtained via a freeze-drying process.

The properties of the fluorescence spectra of iminocoumarin, Ru(dpp)3, and Ru(dpp)3-
PAN immobilized in sol-gel (Ru(dpp)3-PAN-SG)—absorption (ex), emission (em), extinc-
tion coefficient (ε), absolute fluorescence quantum yield (Φ), and fluorescence lifetime
(τ)—were evaluated (FS5 and FLUORACLE software version 1.9.4, Edinburgh Instruments,
Livingston, UK). Fluorescence spectra of iminocoumarin showed the indicator was pH-
dependent (Figure S6). The brightness of iminocoumarin satisfied the requirement of
fluorescent sensing using thin film (Φ × ε >20,000) [38]. The PAN and sol-gel shielding
layers prevented Ru(dpp)3 oxygen quenching (Φ = 40.3%), compared to the un-shielded
Ru(dpp)3 (Φ = 6.17%). Immobilization of both iminocoumarin and Ru(dpp)3-PAN showed
an absorbance band (λ = 465 ± 15 nm), and two emission peaks (λ = 530 and 610 nm)
(Figure S7). The excitation overlapping region allowed a single light source to excite both
luminophores simultaneously. The fluorescence properties are summarized in Table 1.

Table 1. Spectra and fluorescence properties of iminocoumarin, Ru(dpp)3, and Ru(dpp)3-PAN-SG
(evaluated under ambient conditions).

λ (nm) τ (ns) Φ ε Brightness

ex em τ1 τ2 * χ2 (%) (L mol−1 cm−1) Φ × ε
Iminocoumarin Ethanol 431 503 2.30 1.271 57.9 52,219 30,235

pH 5.0 467 526 1.25 4.57 1.174 58.6 51,156 29,977
pH 9.0 455 503 1.49 5.04 1.263 80.9 43,281 35,014

Ru(dpp)3 Ethanol 476 612 6.17 30,589 1887
Ru(dpp)3-PAN-SG pH 8.2 468 620 11.66 1.104 40.3

* Chi-square: quality of fit.

2.3. Dual-Layer Sol-Gel pH-Sensing Coating

The optical fiber pH sensor was fabricated from a 12 cm long fiber (FT400UMT,
Thorlabs). The sol-gel matrix and the 2 cm pH-sensing region were prepared according
to previous methods [31]. The pH sensor was configured as two layers of sol-gel coating,
the first (inner) layer containing Ru(dpp)3-PAN and the second (outer) layer containing
iminocoumarin (Table S3).

To minimize agglomeration, Ru(dpp)3-PAN sol was sonicated before dip-coating and
agitated (2200 rpm) during the dip-coating process. The Ru(dpp)3-PAN sol was applied as
the first coat onto the fiber core. After 3 days, the iminocoumarin sol was dip-coated over
the Ru(dpp)3-PAN sol-gel coating to avoid redissolution of the Ru(dpp)3-PAN layer. The
sensing film thickness (6.6 µm) was determined microscopically (Leica DFC295) (Figure S8).

2.4. The t-DLR Interrogation System
2.4.1. pH Measurement Based on the t-DLR Principle

The acquisition of fluorescence excitation and emission intensity was carried out
during the excitation period (tex) when the light was switched on (LED-on), and the
fluorescence decay period (tem) when the light was switched off (LED-off). The ratio of
the excitation and emission-integrated areas was used to determine the pH of the analyte
solution (Figure 1).



Sensors 2023, 23, 8865 5 of 20

Sensors 2023, 23, x FOR PEER REVIEW 5 of 20 
 

 

2.4. The t-DLR Interrogation System 
2.4.1. pH Measurement Based on the t-DLR Principle 

The acquisition of fluorescence excitation and emission intensity was carried out 
during the excitation period (tex) when the light was switched on (LED-on), and the 
fluorescence decay period (tem) when the light was switched off (LED-off). The ratio of the 
excitation and emission-integrated areas was used to determine the pH of the analyte 
solution (Figure 1). 

 
Figure 1. t-DLR schematic. The excitation intensity (Iex) during the LED-on (tex) consists of both pH-
sensitive (▬, IpH-ex) and pH-insensitive dye (⁃⁃⁃, Iref-ex) intensities. The shaded emission intensity 
during the LED-off (tem) is assumed to be solely the pH-insensitive dye (Iref-em). 

During the LED-on pulse time (tex), the excitation intensity (Iex) (Equation (1)) 
consisted of the sum of intensities from both the short-lived pH-sensitive iminocoumarin 
(IpH-ex) and the long-lived pH-insensitive Ru(dpp)3-PAN (Iref-ex). 

Iex = IpH-ex + Iref-ex (1) 

Due to the rapid decay of the pH-sensitive dye, the emission intensity (Iem) during 
the LED-off (tem) period is assumed to consist exclusively of the long-lived pH-insensitive 
Ru(dpp)3-PAN. To ensure the complete decay of the iminocoumarin, and to exclude the 
LED “settling time” which occurs as the current builds up and discharges during the 
switch-on and switch-off periods, a time delay (1.1 μs) between the end of tex and the start 
of tem was applied. The intensities Iex and Iref-em over the selected LED-on (tex) and LED-off 
(tem) duration, respectively, were integrated using a MATLAB trapezoidal algorithm. The 
integrated intensities over the excitation and emission periods, Dex and Dem, were then 
used to calculate the ratio, R, of the two periods: 

𝑅 = ׬  (IpH-ex + Iref-ex) dt
tex2

tex1׬ Iref-em dt
tem2

tem1

 = 
Dex

Dem
 (2) 

2.4.2. t-DLR instrumentation and Dual-Layer pH Sensor Response to pH Variation 
The t-DLR signal interrogation system (Figure S9) used custom-made electronic 

elements assembled with commercial optical and electronic components. A lens tube 
spacer (04ETS1-S1-1L, Unice, Taoyuan City, Taiwan) joined the photomultiplier tube 
(PMT 9220, Hamamatsu, Hamamatsu City, Japan) through the light-tight PMT housing 
(PXT1/M, Thorlabs,  Saint-Laurent, QC, Canada) to a fluorescence filter cube (DFM1/M, 
Thorlabs, Newton, NJ, USA), which was used to mount fluorescent filters: an excitation 
filter (ET470/40x GFP, Chroma, Bellows Falls, VT, USA), a dichroic mirror (DMLP490R, 
Thorlabs, USA), and an emission filter (ET510LP, Chroma). The optical pathway was 
formed using fiber optic patch cables (FT400UMT, Thorlabs, USA), linking the fiber-

Figure 1. t-DLR schematic. The excitation intensity (Iex) during the LED-on (tex) consists of both
pH-sensitive (

Sensors 2023, 23, x FOR PEER REVIEW 5 of 20 
 

 

2.4. The t-DLR Interrogation System 
2.4.1. pH Measurement Based on the t-DLR Principle 

The acquisition of fluorescence excitation and emission intensity was carried out 
during the excitation period (tex) when the light was switched on (LED-on), and the 
fluorescence decay period (tem) when the light was switched off (LED-off). The ratio of the 
excitation and emission-integrated areas was used to determine the pH of the analyte 
solution (Figure 1). 

 
Figure 1. t-DLR schematic. The excitation intensity (Iex) during the LED-on (tex) consists of both pH-
sensitive (▬, IpH-ex) and pH-insensitive dye (⁃⁃⁃, Iref-ex) intensities. The shaded emission intensity 
during the LED-off (tem) is assumed to be solely the pH-insensitive dye (Iref-em). 

During the LED-on pulse time (tex), the excitation intensity (Iex) (Equation (1)) 
consisted of the sum of intensities from both the short-lived pH-sensitive iminocoumarin 
(IpH-ex) and the long-lived pH-insensitive Ru(dpp)3-PAN (Iref-ex). 

Iex = IpH-ex + Iref-ex (1) 

Due to the rapid decay of the pH-sensitive dye, the emission intensity (Iem) during 
the LED-off (tem) period is assumed to consist exclusively of the long-lived pH-insensitive 
Ru(dpp)3-PAN. To ensure the complete decay of the iminocoumarin, and to exclude the 
LED “settling time” which occurs as the current builds up and discharges during the 
switch-on and switch-off periods, a time delay (1.1 μs) between the end of tex and the start 
of tem was applied. The intensities Iex and Iref-em over the selected LED-on (tex) and LED-off 
(tem) duration, respectively, were integrated using a MATLAB trapezoidal algorithm. The 
integrated intensities over the excitation and emission periods, Dex and Dem, were then 
used to calculate the ratio, R, of the two periods: 

𝑅 = ׬  (IpH-ex + Iref-ex) dt
tex2

tex1׬ Iref-em dt
tem2

tem1

 = 
Dex

Dem
 (2) 

2.4.2. t-DLR instrumentation and Dual-Layer pH Sensor Response to pH Variation 
The t-DLR signal interrogation system (Figure S9) used custom-made electronic 

elements assembled with commercial optical and electronic components. A lens tube 
spacer (04ETS1-S1-1L, Unice, Taoyuan City, Taiwan) joined the photomultiplier tube 
(PMT 9220, Hamamatsu, Hamamatsu City, Japan) through the light-tight PMT housing 
(PXT1/M, Thorlabs,  Saint-Laurent, QC, Canada) to a fluorescence filter cube (DFM1/M, 
Thorlabs, Newton, NJ, USA), which was used to mount fluorescent filters: an excitation 
filter (ET470/40x GFP, Chroma, Bellows Falls, VT, USA), a dichroic mirror (DMLP490R, 
Thorlabs, USA), and an emission filter (ET510LP, Chroma). The optical pathway was 
formed using fiber optic patch cables (FT400UMT, Thorlabs, USA), linking the fiber-

IpH-ex) and pH-insensitive dye (

Sensors 2023, 23, x FOR PEER REVIEW 5 of 20 
 

 

2.4. The t-DLR Interrogation System 
2.4.1. pH Measurement Based on the t-DLR Principle 

The acquisition of fluorescence excitation and emission intensity was carried out 
during the excitation period (tex) when the light was switched on (LED-on), and the 
fluorescence decay period (tem) when the light was switched off (LED-off). The ratio of the 
excitation and emission-integrated areas was used to determine the pH of the analyte 
solution (Figure 1). 

 
Figure 1. t-DLR schematic. The excitation intensity (Iex) during the LED-on (tex) consists of both pH-
sensitive (▬, IpH-ex) and pH-insensitive dye (⁃⁃⁃, Iref-ex) intensities. The shaded emission intensity 
during the LED-off (tem) is assumed to be solely the pH-insensitive dye (Iref-em). 

During the LED-on pulse time (tex), the excitation intensity (Iex) (Equation (1)) 
consisted of the sum of intensities from both the short-lived pH-sensitive iminocoumarin 
(IpH-ex) and the long-lived pH-insensitive Ru(dpp)3-PAN (Iref-ex). 

Iex = IpH-ex + Iref-ex (1) 

Due to the rapid decay of the pH-sensitive dye, the emission intensity (Iem) during 
the LED-off (tem) period is assumed to consist exclusively of the long-lived pH-insensitive 
Ru(dpp)3-PAN. To ensure the complete decay of the iminocoumarin, and to exclude the 
LED “settling time” which occurs as the current builds up and discharges during the 
switch-on and switch-off periods, a time delay (1.1 μs) between the end of tex and the start 
of tem was applied. The intensities Iex and Iref-em over the selected LED-on (tex) and LED-off 
(tem) duration, respectively, were integrated using a MATLAB trapezoidal algorithm. The 
integrated intensities over the excitation and emission periods, Dex and Dem, were then 
used to calculate the ratio, R, of the two periods: 

𝑅 = ׬  (IpH-ex + Iref-ex) dt
tex2

tex1׬ Iref-em dt
tem2

tem1

 = 
Dex

Dem
 (2) 

2.4.2. t-DLR instrumentation and Dual-Layer pH Sensor Response to pH Variation 
The t-DLR signal interrogation system (Figure S9) used custom-made electronic 

elements assembled with commercial optical and electronic components. A lens tube 
spacer (04ETS1-S1-1L, Unice, Taoyuan City, Taiwan) joined the photomultiplier tube 
(PMT 9220, Hamamatsu, Hamamatsu City, Japan) through the light-tight PMT housing 
(PXT1/M, Thorlabs,  Saint-Laurent, QC, Canada) to a fluorescence filter cube (DFM1/M, 
Thorlabs, Newton, NJ, USA), which was used to mount fluorescent filters: an excitation 
filter (ET470/40x GFP, Chroma, Bellows Falls, VT, USA), a dichroic mirror (DMLP490R, 
Thorlabs, USA), and an emission filter (ET510LP, Chroma). The optical pathway was 
formed using fiber optic patch cables (FT400UMT, Thorlabs, USA), linking the fiber-

, Iref-ex) intensities. The shaded emission intensity
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During the LED-on pulse time (tex), the excitation intensity (Iex) (Equation (1)) con-
sisted of the sum of intensities from both the short-lived pH-sensitive iminocoumarin
(IpH-ex) and the long-lived pH-insensitive Ru(dpp)3-PAN (Iref-ex).

Iex = IpH-ex + Iref-ex (1)

Due to the rapid decay of the pH-sensitive dye, the emission intensity (Iem) during
the LED-off (tem) period is assumed to consist exclusively of the long-lived pH-insensitive
Ru(dpp)3-PAN. To ensure the complete decay of the iminocoumarin, and to exclude the
LED “settling time” which occurs as the current builds up and discharges during the
switch-on and switch-off periods, a time delay (1.1 µs) between the end of tex and the start
of tem was applied. The intensities Iex and Iref-em over the selected LED-on (tex) and LED-off
(tem) duration, respectively, were integrated using a MATLAB trapezoidal algorithm. The
integrated intensities over the excitation and emission periods, Dex and Dem, were then
used to calculate the ratio, R, of the two periods:

R =

∫ tex2
tex1

(
IpH−ex+Iref−ex) dt∫ tem2
tem1

Iref−emdt
=

Dex

Dem
(2)

2.4.2. t-DLR instrumentation and Dual-Layer pH Sensor Response to pH Variation

The t-DLR signal interrogation system (Figure S9) used custom-made electronic ele-
ments assembled with commercial optical and electronic components. A lens tube spacer
(04ETS1-S1-1L, Unice, Taoyuan City, Taiwan) joined the photomultiplier tube (PMT 9220,
Hamamatsu, Hamamatsu City, Japan) through the light-tight PMT housing (PXT1/M, Thor-
labs, Saint-Laurent, QC, Canada) to a fluorescence filter cube (DFM1/M, Thorlabs, Newton,
NJ, USA), which was used to mount fluorescent filters: an excitation filter (ET470/40x GFP,
Chroma, Bellows Falls, VT, USA), a dichroic mirror (DMLP490R, Thorlabs, USA), and an
emission filter (ET510LP, Chroma). The optical pathway was formed using fiber optic patch
cables (FT400UMT, Thorlabs, USA), linking the fiber-coupled light-emitting diode (LED,
λ470nm) (M470F3, Thorlabs, Dortmund, Germany), filter cube, and pH sensor.

An arbitrary waveform generator (AWG) (FY8300S, FeelElec Technology, Zhengzhou,
China) in conjunction with a custom-built LED driver (Figure S10) pulsed the LED at
20 kHz (10 µs on, 40 µs off) to generate the excitation and emission periods. The detected
fluorescence signals were amplified via a custom-built 2-stage PMT amplifier (Figure S11).
A digital oscilloscope (PicoScope) (2406B, Pico Technologies, St Neots, UK) set the trigger
conditions, enabling the repetitive signals to be stabilized and captured as waveforms using
PicoScope® 6—PC Oscilloscope software (version: 6.14.61.6219, Pico Technology Ltd., St
Neots, UK).
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The acquisition time was 1.5 s per pH reading, which comprised 6250 data points (8 ns
sample interval), 30 PicoScope data files, and 1000 × 30 cycles (Figure S12a). To improve
the signal-to-noise ratio (SNR), the on–off cycles were averaged as a pulse wave (1 × 30,000
cycles) (Figure S12b). The background signal obtained from a sol-gel-coated optical fiber
without luminophores was subtracted from the measured signals (Figure S12c), enabling
the R ratio calculation. Following averaging and baseline adjustment, the excitation and
emission profile of the luminophores were revealed as a pulsed signal. The intensity of the
excitation period (tex) increased with the increase in pH, while the intensity of the decay
curve during the emission period (tem) remained unchanged with pH variations (Figure 2).
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2.5. Characterization of the Optical Fiber Fluorescent pH Sensor

Photostability, indicator leaching, pH sensor usable lifetime, and response time of
the pH sensor were investigated using a reflection probe (RP29, Thorlabs), a UV-Vis
spectrometer (STS-VIS, Ocean Optics, Orlando, FL, USA), and the fiber-coupled LED. A
LabVIEW interface (National Instruments) was used to record the UV-Vis intensity spectra
(acquired every 0.22 min), pH electrode readings, and temperature. All other experiments
were conducted at 20 ± 0.1 ◦C in ASW (S = 35), using the t-DLR interrogation system.

2.5.1. Photostability and Indicator Leaching of the pH Sensor

To investigate the pH sensor signal drift due to photobleaching, three optical fiber
sensors were fabricated: iminocoumarin, Ru(dpp)3-PAN, and the dual-layer sol-gel coating.
The sensors were held in a dark and dry chamber and separately exposed to the LED for
four hours. The optical intensity difference over the experimental period was used to derive
the sensor’s intensity drift over time.

To investigate the dual-layer pH sensor signal drift due to indicator leaching, the pH
sensor was held in ASW (approximately pHT = 8) in a dark chamber. The intensity at time
0, 5.5, and 22 h was used to determine the sol-gel-immobilized indicators’ resistance to
leaching in a seawater environment.

2.5.2. The Usable Lifetime of the pH Sensor

To investigate the applicable lifetime of the dual-layer pH sensor, an experimental
period of approximately 150 min was used. This chosen time period would represent
an estimated 12 h continuous operation of the pH sensor, using t-DLR interrogation at
a frequency of 20 kHz (20% duty cycle). This experiment was carried out in a dark
environment, and the sensor was held in ASW (S = 35, T = 20 ◦C) and continuously exposed
to the LED light (λ = 470 nm). The pHT of the ASW was repeatedly increased and decreased
between pHT 6.6 and 9.8 using 0.2 M HCl and 0.2 M NaOH solutions (IS = 0.7 M). The
pHT readings of an ASW Tris buffer-calibrated pH electrode were used as the reference.
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The optical signal of the pH sensor in ASW was acquired every 0.22 min (integration
time = 250 ms, average = 50). The optical spectra of the pH sensor were normalized against
the average intensity between wavelengths 338 and 420 nm, where the pH sensor has
no response to pH changes. Subsequently, the normalized intensity of the pH sensor at
wavelengths of iminocoumarin was plotted against time.

2.5.3. pH Sensor Response Time

The sensor response time is an important characteristic of optical sensors since it is
influenced by the properties of the thin film, the entrapped indicator, and the dynamics
within the solution [82]. A reversibility experiment was used to investigate the pH sensor
response time. The dual-layer pH sensor was held in ASW and with the LED on. The ASW
pH was repeatedly increased and decreased between pHT 8.0 and 9.2 using 0.2 M HCl
and 0.2 M NaOH for 65 min. The wavelength where the pH sensor was insensitive to pH
change (320–420 nm) was normalized, and the wavelengths where iminocoumarin was most
sensitive to pH change (535–545 nm) were plotted against time. The ResponseCurveFit.m
MATLAB algorithm [83] was used to derive sensor response time (t90, t95, t99).

2.5.4. Determination of Apparent pKa’ and LOD of the Dual-Layer pH Sensor via
Inverse Calibration

The relationship between pH and R can be described using the modified Henderson–
Hasselbalch equation:

pHT = β× log
(R pH − RHIn

)
(R Ind− − RpH

) + pK
′
a (3)

Data were collected through pH titration of ASW. This was conducted in a water-
jacketed chamber with temperature monitored with a K-type thermocouple (±0.1 ◦C,
NI-USB-TC01, National Instruments, Austin, TX, USA). The pH reference was of a non-
refillable pH electrode (ECFC7252201B, Eutech Instruments, Singapore) connected to a
high-input impedance electrode interface (EMF2, Lawson Labs, Malvern, PA, USA).

The pH of ASW was initially reduced to pH 6 with the addition of 0.2 M HCl. Then,
the pH was increased in small steps (approximately 0.1–0.2 pH units) with 0.2 M NaOH to
pH >10. The intensity change was found to be minimal when iminocoumarin was in its
protonated (pHHIn < 7.0) or deprotonated (pHInd- > 9.7) form. After each NaOH addition,
five minutes were allowed for equilibration, and then R was calculated using the method
described in Section 2.4.1. This allowed the estimation of pKa’ as the intercept from a linear
regression, provided standard regression assumptions were met in the data.

To accomplish this, it is important to consider broader concepts from linear and
nonlinear calibration. First, we note that Equation (3) can be rewritten, where RpH is a
nonlinear function of pHT. Specifically, the response of this pH sensor is a sigmoidal curve,
where pH is correctly treated as the independent variable and R as the response variable.
The equation has lower and upper asymptotes, creating a range of pH values that cannot
be reliably distinguished from each other (Figure 3).

One approach to modeling these data would be through nonlinear regression, where
uncertainty in pH would be estimated by inverting prediction intervals from the regression
curve [84], an approach termed ‘classical’ calibration. Unfortunately, classical nonlinear
calibration is numerically challenging for this equation due to parameter identifiability
issues unless calibration data are carefully chosen, and a simpler approach is desired.
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The alternative is to swap response and independent variables, an approach termed
‘inverse’ calibration. Here, that means treating pH as the response and R as the independent
variable as in Equation (3), and then performing a linear regression. Inverse calibration in
this setting allows the use of standard linear regression tools, vastly simplifying calculations
and providing good numerical stability. In linear systems, both classical and inverse calibra-
tion are commonly used with relatively small differences between them [85,86]. However,
inverse calibration can perform poorly in nonlinear systems due to the differences in vari-
ability on the inverted scale, and failures are particularly pronounced at asymptotes [87].
So, in order to use inverse calibration for this sensor, an approximately linear range must
first be identified and analysis restricted to that range. The approach here was based on first
finding the limit of discrimination (LOD) on the R scale and visually inspecting whether
that range would also be suitable for defining the approximately linear range. Because
there are both lower and upper asymptotes, this leads to both lower and upper LODs.

The LOD of the pH sensor on the R scale is defined as the [H3O+] in the analyte
solution that can be reliably distinguished from the background level. Based on standard
acceptable false positive and false negative rates of 0.05 [88], this leads to

LODLower, R = baselineLower + 3.3 × sb, Lower (4)

LODUpper, R = baselineUpper − 3.3 × sb, Upper (5)

where baselineLower and baselineUpper are the averaged R values in the respective asymp-
totes, i.e., pHprotonated, Lower < 7.0 and pHdeprotonated, Upper > 9.7, respectively, while sb, Lower
and sb, Upper are the standard deviations in the respective regions. Conveniently, these also
produced values that were in the approximately linear range of the response (Figure 3),
and so were also used to restrict the range of data for performing inverse calibration.

Once data were restricted to the approximately linear range, a regression was per-
formed based on Equation (3). From this, pKa’ is estimated by the intercept, and LOD on
the pH scale is estimated using the estimated intercept and the estimated slope by

LODLower, pH = β× log
(LOD Lower, R − RHIn

)
(R Ind− − LODLower, R

) + pK
′
a (6)
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LODUpper, pH = β× log
(LOD Upper, R − RHIn

)
(R Ind− − LODUpper, R

) + pK
′
a (7)

The dynamic range of the optical fiber sensor was defined as the range from the limit
of quantification, and pKa’ was determined from the repetition of pH titrations using eight
pH sensors from three different batches with results presented as 95% confidence intervals
(N = 8, 95% CI). The standard deviation (s) of pH is calculated after conversion to [H3O+],
and pKa’ results are presented as pH (pHmin, pHmax) (s, N = sample size).

2.5.5. Investigation of Environmental Influences on the pH Sensor

For the investigation of temperature influence on the pH sensor, the temperature
of ASW (S = 35) was varied between 10 and 25 ◦C with a 5 ◦C interval, reflecting the
temperature range (T = 8 to 22 ◦C) normally encountered in New Zealand waters [89]. For
the investigation of salinity influence on the pH sensor, ASW with salinity at 35.0, 32.5, 30.0,
27.5, and 25.0 was prepared (T = 20 ◦C). This range (S = 25 to 35) mirrors estuarine and
coastal systems. The pH titration of each of the temperature and salinity conditions was
repeated three times.

2.5.6. Sensor Precision and Accuracy

This pH sensor is intended to be used for the measurement of pH changes at the
seaweed–DBL interface. The average temperature of Dunedin, New Zealand, is <15 ◦C
and the seawater pH is approximately 8 [90,91]. Thus, seven Tris buffers (approximately
evenly spaced, pHT 8.28 to 9.45) were prepared and used to derive sensor precision. The
experiment was repeated three times with a total of nine pH measurements for each Tris
buffer. The first replicates were used for sensor calibration, and the replicate measurements
were analyzed through pooled standard deviation (spooled) to report sensor precision. The

difference between the mean pH (
−

pH) from the pH sensor and the pH electrode was used
to determine sensor accuracy.

2.5.7. pH Measurement within the DBL of Ulva sp.

Ulva sp. was collected from Kuri Bush (4th December 2022, S 46◦ 2′ 0′′, E 170◦ 14′

0′′), and seawater (filtered and UV sterilized) was collected from the Portobello Marine
Laboratory (2nd and 11th December 2022, S 45◦ 56′ 56′′, E 170◦ 19′ 51′′), Dunedin, New
Zealand. The DBL experiment was conducted in a temperature-controlled room (13 ± 1 ◦C)
to simulate the in situ temperature (13–14 ◦C [90]). During the light-on periods, cool white
fluorescent bulbs (18 W, Phillips, Amsterdam, Netherlands) provided photosynthetically ac-
tive radiation of 32± 3 µmol quanta m−2 s−1 (4π quantum meter, Biospherical Instruments,
San Diego, CA, USA).

Approximately 5.5 g wet Ulva sp. was attached to a 20 × 7 cm2 polypropylene mesh
and held in 1.8 L of seawater (S = 32.2). The pH sensor was placed at the DBL interface of
the Ulva sp., at approximately 2 mm, assuming that this distance encompassed the DBL
thickness, which is approximately µm to cm [13]. The reference pH electrode was placed at
the opposite end of the chamber (2 L beaker), approximately 16 cm away from the seaweed,
representing the bulk environment. Prior to pH measurement, Ulva sp. in the seawater was
undisturbed with alternate light:dark cycles (12:12 h) allowing the build-up of the DBL.

At the end of the undisturbed periods of 12 h and 3 days, respectively, two experiments
were conducted over 7 (undisturbed—12 h) and 5 (undisturbed—3 days) hours to examine
the influence of DBL build-up over time on pH variations due to metabolic activity changes.
The experimental data were acquired every 6 min for 1.5 s with periods of light and dark.
The experimental chamber was not isolated in a dark box and the PMT is highly sensitive
to any present stray light; thus, data acquisition during the light period was carried out
with surrounding lights switched off for a brief 1.5 s, and then the lights were switched on
again. A pH sensor coated with a bare sol-gel matrix without luminophores was used to
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offset background noise. Calibration data were acquired immediately before and at the end
of the experiment using 4 Tris buffers (approximately evenly spaced, pHT 8.1 to 9.7). These
data were used to apply a time-correlated linear regression [48] to account for sensor drift.
The pHT changes in the DBL interface were calculated using Equation (3), and calibration
uncertainty based on the equation was presented as 95% CI.

3. Results
3.1. Photostability and Indicator Leaching Investigation of the Dual-Layer pH Sensor

After being illuminated with the LED for 4 h, the optical intensity reduction due to pho-
tobleaching of iminocoumarin (4.86× 10−4 min−1) and Ru(dpp)3-PAN (5.14 × 10−4 min−1)
was approximately 10%. In comparison, the dual-layer pH sensor exhibited a greater pho-
tostability with an overall intensity reduction (1.16 × 10−4 min−1) of approximately 2%. In
addition, the dual-layer pH sensor also had a higher overall intensity due to having heavier
film thickness and higher dye concentration (Figure 4a). After immersing the sensor in
ASW (pHT approximately 8, T = 20 ◦C, S = 35) for 22 h, the intensity reduction due to
indicator leaching was 0.14% (7.5 × 10−5 h−1) (Figure 4b).
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3.2. Investigation of the Usable Lifetime of the pH Sensor

The normalized optical spectra of the pH sensor response to pH changes (Figure S13)
showed three peak regions: the LED (460 to 480 nm), iminocoumarin (535 to 545 nm), and
Ru(dpp)3 (600 to 620 nm). The wavelengths 535 to 545 nm, where iminocoumarin was
most sensitive to pH change, were plotted against time. The determined photobleaching
drift value (1.16 × 10−4 min−1) of the dual-indicator pH sensor from Section 3.1 was used
to offset the optical intensity drift due to photobleaching. If the intensity drift due to
photobleaching was not compensated for, it would lead to a −0.005 pH unit bias in the
calculated pH value per minute. Thus, fluorescence intensity measurement is unreliable due
to the degradation of the fluorophore. Figure 5 shows the pH sensor lifetime experiment
over the 150 min experimental period with the pH sensor continuously exposed to the
LED light.
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3.3. Sensor Response Time

The pH sensor response to the pH change from pH 8.0 to 9.2 was more defined and
faster than the change from pH 8.8 to 8.0 (Figure S14a). The first-order LTI model curve
fitting [83] results showed the pH sensor had a response time (t90) of 22 s moving from pH
8.4 to 8.8 (Figure S14b), and 100 s moving from pH 8.8 to 8.4 (Figure S14c). In comparison,
the pH electrode had a response time (t90) of 31 s (pH 8.4→ 8.8) and 28 s (pH 8.8→ 8.4)
(Table 2).

Table 2. The pH sensor response time (t90, t95, t99) was determined using the first-order LTI model
curve fitting and drift was determined from the steady-state regions.

pHT
Changes Types t90

t95
(Sec) t99

Drift
(Intensity/Min)

The
Goodness
of Fit (R2)

8.4→8.8 pH electrode 31 36 48 2.0 × 10−5 1.0000
pH sensor 29 34 44 1.5 × 10−4 0.9964

8.8→8.4 pH electrode 28 36 56 2.9 × 10−3 0.9969
pH sensor 100 129 196 3.3 × 10−4 0.9987

3.4. Apparent pKa and LOD of the Dual-Layer pH Sensor

Applying the background subtraction approach, the excitation area (Dex) of the pH
sensor increased as the pH increased from pHT 6 to 10 (Figure 6a), the pH-insensitive decay
signal (Dem) remained relatively constant (Figure 6b), and the calculated R had a sigmoidal
pH response (Figure 6c). In the given example, at 15 ◦C (S = 35), the pKa’ of the pH sensor
was determined as 8.86 (Figure 6d) by applying Equation (3).

Data processing using the t-DLR background subtraction approach is recommended
if the experimental environment has substantial stray light interference. Further studies
showed that if the experiment is conducted in a light-tight environment, the background
noise correction could be omitted (Figure S15).

Evaluation of eight optical fiber pH sensors from three different batches found the
pKa’ of the fluorescence pH sensor was determined as 8.65 (8.55, 8.75) (±0.10, N = 8, 95%
CI) in ASW (T = 20 ◦C, S = 35), and the LODLower and LODUpper of the pH sensors were
7.41 ± 0.20 and 9.42 ± 0.23 (N = 8, 95% CI), respectively.
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3.5. Sensitivity to Temperature and Salinity

The pKa’ of the optical fiber sensors decreased from 9.0 to 8.5 as the temperature
increased from 10 to 25 ◦C (Figure 7a). The pKa’ of the optical fiber sensors increased from
8.64 to 8.68 as the salinity increased from 25 to 35 (Figure 7b).
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3.6. Sensor Precision and Accuracy

The sensor precision, based on the pooled standard deviation of measurements in
seven Tris buffers (pHT 8.28 to 9.45, T = 10 ◦C), was 0.021 pHT units. The pH sensor
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accuracy was 0.023 pHT units, which was the difference between the mean pH reading of
the dual-layer pH sensors and the pH electrode. The precision of the pH electrode used in
the same experiment was 0.004 pHT units (Table 3).

Table 3. Reproducibility results of the pH sensor. Results are presented as mean pH (pHmin, pHmax)
and standard deviation (s).

pH Sensor pH Electrode

(
−

pH) (pHmin pHmax) s N (
−

pH) (pHmin pHmax) s N

8.27 8.25 8.29 0.017 8 8.28 8.28 8.28 0.001 8
8.42 8.41 8.44 0.016 9 8.42 8.41 8.43 0.008 9
8.73 8.71 8.76 0.025 9 8.89 8.89 8.90 0.003 9
9.00 8.97 9.03 0.028 9 8.97 8.97 8.98 0.006 9
9.16 9.14 9.18 0.024 9 9.15 9.15 9.15 0.003 9
9.29 9.28 9.30 0.011 9 9.28 9.28 9.29 0.003 9
9.45 9.42 9.47 0.023 8 9.46 9.45 9.46 0.004 8

Precision (spooled) 0.021 7 0.005 7
Accuracy 0.023 7 Reference

3.7. Real-Time pH Measurement of the Ulva sp. DBL Interface

Two experiments were performed with Ulva sp. that remained undisturbed for 12 h
and 3 days to allow the build-up of metabolic gases and ions within the DBL. An optical
fiber pH sensor was placed in the DBL adjacent to the Ulva sp. surface, whilst the pH
electrode was placed at the opposite end of the chamber, mimicking bulk seawater.

Following the 12 h undisturbed period, the pH at the DBL interface (~pH 8.5) was
higher than the bulk seawater (~pH 8.0). The pH variation (8.4 to 8.7, ±0.3, 95% CI)
reflected the expected pH increases during the light-on period due to photosynthesis and
pH decreases during the light-off period due to respiration (Figure 8a). Following the
3-day undisturbed period, the pH at the DBL interface (~pHT 8.7) was higher than the bulk
environment (~pHT 8.2), and larger differences in pHT (8.3 to 8.9, ±0.2, 95% CI) (Figure 8b)
were observed as compared to the 12 h undisturbed DBL. In both experiments, the pH
reading of the pH electrode that represents the bulk environment remained relatively
constant during light-on and light-off periods.
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4. Discussion

The overall goal of this study was to measure the metabolic activities induced by pH
changes in the DBL microenvironment, using the developed dual-layer fluorescent optical
fiber pH sensors and the low-cost t-DLR interrogation system.

Photobleaching is one of the factors that cannot be compensated for using the t-DLR
method. To counter the photobleaching effect, the pH-sensitive and pH-insensitive lu-
minophore pairs used in the sensor fabrication should possess similarly high photostability.
The dual-layer pH sensor had a greater photostability compared to sensors fabricated
with a monolayer sol-gel matrix containing either iminocoumarin or Ru(dpp)3-PAN. This
was due to the dual-layer sensor having a heavier film thickness (Figure S8) than that
of the individual luminophore sol-gel coating, which led to a greater caging effect and
further reduced the photodegradation of the luminophores. Results showed the intensity
reduction due to photobleaching was similar for both of the monolayer sensors, implying
that the preferential photobleaching of one of the luminophores is unlikely to occur. This
finding confirms that the laboratory-synthesized iminocoumarin and Ru(dpp)3-PAN are
well-suited for the t-DLR methodology.

The indicator leaching study of the dual-layer pH sensor showed a minor intensity
drift (0.14% h−1) over the 22 h experimental period. This negligible indicator leaching
should not impact the pH measurement using this t-DLR method. In addition, the opti-
mized sol-gel matrix used in this work was tested previously in a DBL seawater condition
continuously for 7 days, demonstrating its proven structural integrity in alkali corrosive
seawater conditions [48]. Achieving a sensor with minimal leaching is possible through
the covalent binding of the fluorophores to the sol-gel matrix. However, the introduction
of an additional functional group to the indicator by covalent bonding could lead to the
possibility of a pKa shift outside the required pH range. Thus, caution must be taken in
optical fiber pH sensor development, not only in the selection of suitable pH indicators
but also in their immobilization methods, contemplating the appropriateness of the final
sensor working range for the intended application.

Over the continuous 150 min exposure to the LED experimental period, the pH sensor
was capable of determining pH changes. Once the photobleaching correction was applied,
the stepwise pH changes remained clear and reproducible. These results indicated that the
pH sensor has a minimum usable lifetime of 13 h using t-DLR interrogation at a frequency
of 20 kHz (20% duty cycle) in a dark environment. Based on the findings, the pH sensor
was shown to have the potential to monitor metabolic-induced pH changes in a marine
microenvironment, such as diel (12 h on–off cycle) pH variations in seaweed DBL using the
t-DLR pH measurement. However, if an intense background light source is present, e.g.,
daylight or cool white fluorescent bulbs, the usable lifetime of the pH sensor is expected to
be shortened due to the increased risk of photobleaching.

The t-DLR interrogation system generated a lower pH reference signal compared
to that of the pH-sensitive signal. This discrepancy arose from the LED’s 2 µs activa-
tion and 1 µs deactivation cycle, which restricted the usable time for the Ru(dpp)3-PAN
(τ = 11 µs) signal to under 8 µs. To enhance the signal-to-noise ratio (SNR), it would be
advantageous to explore alternative long-lifetime phosphorescent dyes, such as Pd(II)
complexes, which can have a phosphorescence lifetime of up to 272 µs [92]. Utilizing such
a long-lived luminophore could significantly augment the t-DLR’s integrated emission
signal and improve SNR. However, when choosing a longer-lived luminophore, careful
consideration is necessary to ensure that the regions in the excitation spectra for both the
pH-sensitive fluorophore and pH-insensitive phosphorescence overlap for rationalizing
the instrumentation setup.

The dynamic linear range of the fluorescent optical fiber pH sensor was 7.41± 0.20 and
9.42 ± 0.23. By taking the conservative values (i.e., 7.41+0.20 and 9.42–0.23), the working
pH range was derived as approximately 7.6 to 9.2. These ranges are within the pH range
of interest for pH measurements in marine environments (pH 7.5 to 9.5 [93]), indicating
the pH sensor is suitable for the intended use. In addition, the response time (t90) of the
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dual-layer pH sensor (29 to 100 s) in this work was comparable with other fluorescent pH
sensors developed for marine environment pH measurement applications (Table S4).

Temperature and salinity are key environmental influences that can affect the sensor
performance and therefore must be compensated for. The influence of temperature on
the pH sensor performance found that, if the change in pKa’ was not accounted for, it
would lead to a 0.03 pHT unit bias in the calculated pHT value per degree (◦C) increase
in temperature. The pH sensor has negligible sensitivity in the salinity range of 25 to 35.
The −0.004 pHT unit bias in the calculated pHT value increase per unit in salinity is within
the standard deviation of the calculated pKa’. Thus, for field applications, compensation in
temperature >1 ◦C is recommended, but salinity compensation is generally not needed.

The precision of the measurement was 0.02 pHT (s), which is comparable to recog-
nized fluorescent pH measurement techniques (Table S5). The sensor precision could be
further improved through more consistent deposition of Ru(dpp)3-PAN onto the optical
fibers during fabrication. However, the broad distribution size of Ru(dpp)3-PAN and the
agglomeration nature has made it challenging to entrap a homogeneous Ru(dpp)3-PAN
sol-gel coating onto the 400 µm fiber core. The precision of 0.02 pHT does meet the “weather”
quality guideline of GOA-ON which is intended to reflect sufficient precision for short-term
biological and environmental studies.

The applicability of this sensor was demonstrated through real-time pH measurements
of Ulva sp. in the discrete environment of the organism’s DBL. By monitoring pH fluctua-
tions in the DBL, the optical fiber pH sensor detected metabolic activity directly attributed
to photosynthesis and respiration. Inference from these experiments demonstrates the
likely increase in DBL thickness due to metabolic activity buildup over time, shown by the
increased pH fluctuation in the 3-day dormant DBL region (0.6 pHT units), compared to
that of the 12 h dormant DBL region (0.3 pHT units). As expected, in both experiments,
the initial pH measurement exhibited a higher pH in the DBL region than in the bulk
environment, with a difference of approximately 0.6 to 0.7 pHT units. The magnitude of
this difference then increased or decreased, depending on metabolic activity.

The sol-gel matrix and pH-sensing layers employed in this study demonstrate re-
markable versatility. These sensors have the potential for broader applications, including
accommodating various indicators or even evolving into multi-analyte sensors. For exam-
ple, integrating an O2-sensitive indicator into the sol-gel matrix could offer insights into
metabolic processes within the DBL. Furthermore, the optical fiber sensor with CO2 and
temperature-monitoring capabilities holds promise for applications in ventilation systems
and horticulture. Expanding the pH sensor capabilities to include NO2 detection is appli-
cable for agricultural and river outflow regions. In summary, this research successfully
introduces an optical fiber fluorescent pH sensor for in situ measurements of the DBL,
employing a DLR interrogation system. This work opens up a wide range of possibilities
for environmental and industrial applications.

5. Conclusions

The optical fiber fluorescent pH sensor and the DLR interrogation system successfully
measured changes in pH in the DBL of Ulva sp due to metabolic processes. This pH sensor
has a pKa’ of 8.65 and a response time (t90) of 29 to 100 s (T = 20 ◦C, S = 35). This pH
sensor and the supporting t-DLR instrumentation are suitable for marine environment pH
measurements and could potentially contribute towards future studies on the impact of
ocean acidification on marine calcifying species. The t-DLR instrumentation configuration
produced pH data that conform to international quality guidelines with precision and
accuracy of approximately 0.02 pH unit (s), which is comparable with previously reported
fluorescence pH-sensing results. The pH sensor was insensitive to salinity, which is an
appealing feature for pH sensors used for pH measurement in marine environments,
where the salinity range often fluctuates in coastal and estuarine systems. This research
highlights the practicability of optical fiber pH sensors by demonstrating real-time pH
measurements of metabolically induced pH changes. The pH sensor and the lower-cost
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DLR instrumentation offer the potential to develop a field-deployable platform to monitor
pH remotely and continuously in marine environments. This research highlights the
versatility of the optical fiber pH sensors and the potential for a wider range of applications
with the use of sol-gel-derived materials as the immobilizing agent.
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PAN; Figure S5: DLS analysis of Ru(dpp)3-PAN; Figure S6: Iminocoumarin response to pH changes;
Figure S7: Dual-luminophores response to pH changes; Figure S8: Microscopic views of sol-gel
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Figure S11: 2-stage PMT amplifier circuit diagram; Figure S12: Signal processing; Figure S13: Sensor
usable lifetime; Figure S14: Sensor response time; Figure S15: Signal processing without background
subtraction; Table S1: Sensor cost; Table S2: Comparison of iminocoumarin with other fluorescent
dyes; Table S3: Sol-gel recipes of Ru(dpp)3-PAN and iminocoumarin; Table S4: Response time
of fluorescence-based pH sensors; Table S5: Comparison of precisions of optical pH sensors. See
Refs. [39,40,53,55,66,80,81,83,94–99].
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