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Abstract: Reliable quality control of laser welding on power batteries is an important issue due
to random interference in the production process. In this paper, a quality inspection framework
based on a two-branch network and conventional image processing is proposed to predict welding
quality while outputting corresponding parameter information. The two-branch network consists
of a segmentation network and a classification network, which alleviates the problem of large
training sample size requirements for deep learning by sharing feature representations among two
related tasks. Moreover, coordinate attention is introduced into feature learning modules of the
network to effectively capture the subtle features of defective welds. Finally, a post-processing
method based on the Hough transform is used to extract the information of the segmented weld
region. Extensive experiments demonstrate that the proposed model can achieve a significant
classification performance on the dataset collected on an actual production line. This study
provides a valuable reference for an intelligent quality inspection system in the power battery
manufacturing industry.

Keywords: power battery; laser welding; two-branch network; coordinate attention; Hough transform;
quality inspection

1. Introduction

A power battery is one of the key components of new energy vehicles, and its quality
determines the reliability and safety of the vehicle to a large extent. Laser welding is
widely used in power battery manufacturing due to its advantages of high energy density,
high precision, and precise control over the heat input [1,2]. However, on large-scale
automatic production lines, on-site uncertainties such as material inhomogeneity, residual
impurities, and parameter fluctuations increase the welding instability and easily lead
to welding defects, which will seriously affect the quality and performance of power
batteries [3,4]. At present, most of the post-welding quality evaluation of power bat-
teries is mainly carried out by manual visual inspection, which is bound to cause low
detection efficiency and high labor costs, making it difficult to meet the requirements of
modern welding production for high efficiency and high quality. Therefore, an effective
method is urgently needed to achieve automatic inspection of laser welding quality on
power batteries.

In the past decades, traditional image processing methods have been broadly used
in welding quality inspection [5–7]. Traditional visual inspection tends to manually ex-
tract geometric and textural features and build a learning-based classifier to predict the
welding quality according to these features. For example, contour-based and OTSU thresh-
old segmentation methods were used to extract keyhole features and weld width, and
a back propagation neural network (BPNN) was trained to evaluate welding defects [8].
Cai et al. [9] extracted seven morphology features of keyholes and molten pools and com-
pared the accuracy of several machine learning models (e.g., BPNN, radial basis function
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neural network, support vector regression) on welding quality prediction. However, such
methods usually require strong expert knowledge and complex threshold settings, which
are susceptible to environmental interference and have poor generalization performance
and robustness.

Due to the powerful representation learning capability of convolutional neural
networks (CNNs), deep learning-based visual inspection has shown excellent perfor-
mance advantages in both accuracy and speed [10–12]. Visual quality inspection is
generally divided into three stages: defect classification, defect localization, and defect
segmentation. Defect classification models integrate feature learning and discriminative
classifiers in one network to directly predict the welding quality category of the input
image. Most of these models are established based on the improvement of existing
classical networks, such as VGG [13], ResNet [14], MobileNet [15], etc. For instance, the
pre-trained optimized VGG-16 model was established to accurately predict the welding
defects on the safety vent of power batteries [16]. Furthermore, a lightweight model,
SqueezeNet, was proposed to realize efficient and accurate detection [17], which is more
suitable for scenarios with limited computational power. Transfer learning-based ResNet
model was used to predict six spot welding defects in the automobile production site [18].
Defect localization models can obtain both accurate location and category information
of welding defects, which can generally be divided into two-stage models represented
by Faster R-CNN [19] and one-stage models represented by YOLO [20,21]. One-stage
models pursue speed, while two-stage models emphasize accuracy. A Faster R-CNN
model combining feature pyramid network was proposed, which can effectively detect
small welding defects with weak contrast under complex backgrounds [22]. A bidi-
rectional cross-scale fusion pyramid structure was introduced in YOLOv3 to facilitate
the flow of information and enhance the fusion of multi-scale features for location and
quality detection of small spot welding [23]. Compared to classification and localization,
defect segmentation models enable a fine pixel-level localization of the defect region to
obtain a more detailed description of the defect. Zhu et al. [24] presented a lightweight
semantic segmentation method that can accurately segment laser welding defects of
different shapes in real-time. A compressed U-shape network [25] was used for the qual-
ity inspection of laser welding in the battery production process, which has significant
advantages in both speed and detection accuracy. By learning and fusing multi-scale
semantic features of defects, the FPN-ResNet-34 network was proposed to predict the
complete information, including defect category, boundary, and location, to achieve
weld quality evaluation [26].

The success of deep learning stems from the construction of large annotated datasets.
However, the amount of training data is difficult to meet for power battery production
lines with strict qualification rate control. Therefore, to alleviate the problem of poor gener-
alization performance due to insufficient training data, a two-branch network architecture
is proposed for quality inspection. By learning two related tasks, weld segmentation and
classification, the model can make full use of the useful supervisory information in images,
thus reducing the data requirements for training the model. In addition, many defects and
normal welds have high similarity in appearance, and it is difficult to find discriminative
features in the images by using ordinary CNNs directly. The feature learning modules in
the network should pay more attention to spatially distinguishable subtle features. Inspired
by the visual attention mechanism, channel attention module [27], convolutional block
attention module (CBAM) [28], and coordinate attention module (CAM) [29] have been
proposed successively, which can learn critical information by assigning different weights
to different regions in the images. In this paper, CAMs are introduced into the two-branch
network architecture, which enables the model to effectively focus on the subtle features
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in the defective images that can represent its category. The accuracy and effectiveness
of the proposed model are verified by the image dataset collected from the actual power
battery production lines. Finally, edge detection and circular Hough transform are used to
post-process the segmented weld image to obtain the weld information. In summary, the
main contributions of the paper are outlined as follows:

(1) A two-branch network architecture is proposed, and weld region segmentation
as a secondary task can effectively improve the classification accuracy of the model and
reduce the demand for training data;

(2) The coordinate attention mechanism is introduced in the network to learn the more
discriminative features between normal and defect;

(3) A framework combining deep network and conventional image processing is
established to achieve efficient and accurate detection of laser welding quality.

The rest of the paper is organized as follows: The welding images dataset collected
on the power battery production line is presented in Section 2. The proposed quality
inspection framework is described elaborately in Section 3. In Section 4, the experimental
results and discussions of the proposed model are comprehensively validated. Finally, the
conclusion will be given in Section 5.

2. Overview of Welding Image Dataset

Power batteries are generally connected in series or parallel to form packs to obtain
high capacity. When batteries are packaged, the connection between the battery poles and
the adapter block needs to be implemented by laser welding. However, due to the high
reflectivity of aluminum to the laser and the high tendency of parts to retain impurities such
as stamping oil and cleaning agents, it is easy to lead to defects during the laser welding
process. To carry out the model evaluation experiments, raw images of laser welding on
battery packs are collected from an actual production line. To obtain high-quality images, an
optical inspection system is embedded in the laser welder on the production line, consisting
of an industrial camera and an LED-stabilized light source. Batteries are clamped on the
assembly line by a bracket, and the light source is placed vertically above the assembly
line. As the battery is welded and comes to rest in the camera’s field of view, its image
is captured.

To acquire enough defective data for training, the expensive time cost is spent to
construct the dataset. The dataset contains a total of 1268 images, of which 1040 are
qualified welds, and 208 are defective welds. The resolution of raw images is 823 × 1129.
To match the downsampling requirements of the network, zero padding is used for the
border of images, and the image size is adjusted to 832 × 1152. In addition, the image
resolution should be moderate; too large will affect the model inference speed, while too
small will easily lead to reduced or even lost weld defect information. Finally, the image
resolution is resized to 416 × 576 to obtain a trade-off between accuracy and speed. The
proposed model follows a supervised paradigm that requires labeled data for training.
In this paper, the open-source tool LabelMe is used to provide pixel-level annotations
of the weld region and the presence or absence of weld defects for each image. Some
examples of welding images with annotation masks are illustrated in Figure 1. It can be
noticed that the contrast between welds and the background is not obvious, and the defects
and qualified welds are relatively similar in appearance, which poses some challenges for
quality prediction.
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Figure 1. Some images with annotation masks in the dataset. (a) Qualified welds; (b)defective welds.

3. Proposed Framework

In actual production, besides the weld appearance quality, the weld width is also an
important indicator. To this end, a quality inspection framework combining deep learning
and conventional image processing is developed to identify weld defects while outputting
weld information such as inner radius, outer radius, and width, as shown in Figure 2. In
the framework, an end-to-end two-branch network is designed to alleviate the problem of
large training sample size requirements for deep learning. The two-branch network is a
multi-task learning method [30–32], which enhances model generalization performance
by sharing feature expressions among related tasks. The proposed network includes a
segmentation network for pixel-level localization of welded regions and a classification
network for quality prediction. The segmentation network contains an encoder and a
decoder, where the encoder extracts multi-scale features from the original image, and the
decoder aggregates the feature maps and predicts the weld segmentation results. The
classification network uses the feature maps obtained by the weld region-aware encoder
to achieve accurate quality prediction. In this way, the two-branch network can make
full use of the supervised information in each sample, increasing the effective number of
training samples and reducing the risk of overfitting. Moreover, each network branch uses
CAMs for feature learning to extract more discriminative features for subtle differences
in weld defects. Finally, the segmented weld region is post-processed to extract the weld
information by using edge detection and circular Hough transform [33,34].

3.1. Coordinate Attention Module

The proposed network uses CAMs instead of convolution modules in traditional
CNNs, which allows better learning of weld detailed features and thus improves the
detection accuracy of the model in welding defects. Unlike channel attention [27] and
CBAM [28], CAM uses two average pooling operations to aggregate the input feature maps
into two direction-aware features along the horizontal and vertical directions (Figure 3),
thus alleviating the loss of location information caused by the direct use of two-dimensional
global pooling. In this way, CAM can capture long-term dependencies along one spatial
direction while maintaining accurate location information along the other direction. The
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two attention maps are then multiplied with the input feature map to enhance the represen-
tation of the object of interest; this allows for more accurate localization of the weld defect,
which helps the model to better identify quality categories. The diagram of the CAM is
illustrated in Figure 3.
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Specifically, given the feature maps after two-dimensional convolution, represented as
X = [x1, x2, . . . , xc]. The average pooling of kernel size (H, 1) and (1, W) are then used to
encode each channel along the horizontal and vertical directions, respectively. Thus, for the
cth channel, the output at height h and width w can be expressed as:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (2)

The generated feature maps zh
c and zw

c are concatenated, combining the encoded
information from the horizontal and vertical directions. Then, the concatenated feature
maps are fed into a 1 × 1 convolution transform function, which applies a set of filters
to extract relevant information from the input. Additionally, the incorporation of a Batch
Normalization (BN) [29] layer following the convolution operation can effectively stabilize
the input distribution of each layer within the network. This results in an improvement in
training speed and a reduction in the overfitting issue.

f = δ
(

Conv2d
([

zh, zw
]))

(3)

where δ is the nonlinear activation function, and the h-swish function is chosen here.
f ∈ RC/r×(H+W) is the intermediate feature map, and r is the reduction ratio. Then,
f is split into two independent tensors along the spatial dimension, f h ∈ RC/r×H and
f w ∈ RC/r×W . By using two 1 × 1 two-dimensional convolution transformations, f h and
f w are converted into tensors with the same channel of the input X, respectively. The
activation function σ used here is the sigmoid function.

gh = σ
(

Conv2d
(

f h
))

(4)

gw = σ(Conv2d( f w)) (5)

The outputs gh and gw are extended and used as attention weights, respectively.
Finally, the output of the CAM is denoted as Y = [y1, y2, . . . , yc], where each element yc(i, j)
is reweighted by multiplying the original input feature xc(i, j) with the corresponding
attention weights, resulting in the following:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

3.2. Two-Branch Network Architecture

The detailed architecture of the two-branch network is presented in Figure 4, which
consists of two parallel branch networks, a segmentation network, and a classification net-
work. The segmentation network adopts a U-Net [35] similar structure, which consists of an
encoder and a decoder, to effectively extract the multi-scale features and restore the image
resolution. This branch segments the input image into weld and background regions and
outputs the probability that each pixel belongs to the weld region. Specifically, the encoder
contains convolutional layers, CAMs, and max-pooling layers. Each convolutional layer is
followed by a batch normalization (BN) [36] layer and ReLU nonlinear function, where the
combination of BN and ReLU enables more robust learning. After each 2 × 2 maxpooling
operation, the image resolution becomes half of the original one. More importantly, several
CAMs are used after the convolutional layer to enhance the model’s ability to perceive weld
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details. The main parameters in CAMs are the number of convolutional kernels and the
reduction ratio r. Detailed parameters and the number of modules are shown in Figure 4.
The encoder extracts feature maps with different resolutions and information levels from
the image, while the decoder continuously increases the resolution of the feature maps by
upsampling. The long connection from the encoder to the decoder allows the multi-scale
feature maps in the encoder to be merged into the decoder, resulting in the more accurate
performance of weld region segmentation. Finally, the original resolution and channel are
restored by 1 × 1 convolution, where the sigmoid activation determines the probability
that each pixel belongs to the weld region.
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The classification branch and segmentation branch share the weight parameters of
the encoder. Feature maps obtained from the encoder contain abundant weld region
information, which effectively avoids the subsequent quality prediction being influenced
by background. The weld quality features are further enriched by concatenating the
output of the encoder with the single-channel mask feature maps. These feature maps are
then fed into a series of combinatorial modules, each of which contains a convolutional
layer with a 5 × 5 kernel size, a CAM, and a maximum pooling layer. The convolutional
layers are followed by BN and ReLU, similarly, and the number of the convolutional
kernel in each combinatorial module is 4, 8, and 16 in turn. As can be seen from Figure 4,
the image resolution is further reduced, and the image is abstracted into a higher-level
feature representation in the layer-by-layer operation of the classification network. The
global average pooling (GAP) [37] layer reduces the redundancy and dimensionality of
the features by calculating the average of all pixels within each channel of feature maps,
thus reducing the overfitting possibility of the deep neural network. Finally, the GAP
acts on both the high-level feature maps and single-channel mask, and their outputs are
concatenated to 17 neurons, which are combined with a fully connected (FC) layer to obtain
the final classification results.

The loss function of the two-branch network is a pivotal aspect of training the model
effectively. In the proposed approach, the loss function consists of two distinct components,
each serving a specific purpose, as presented in Equation (7). The first component employs
the mean squared error (MSE) loss, which is utilized to measure the discrepancy between
the predicted output of the weld region segmentation and the ground truth segmentation,
as presented in Equation (8). The MSE loss ensures that the network accurately delineates
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the boundaries of the weld regions within the input data, minimizing the difference
between the predicted and actual segmentations. The second component of the loss
function incorporates the cross-entropy (CE) loss, as shown in Equation (9). Unlike the MSE
loss, which assesses the similarity between continuous values, the CE loss is specifically
designed for classification tasks. In our case, it addresses the quality classification aspect
of the network’s output. By employing the CE loss, the network is trained to accurately
classify the quality of the weld regions, assigning them to different classes based on
predefined criteria (e.g., good quality, bad quality). The CE loss optimizes the network’s
ability to correctly classify the quality of weld regions by penalizing incorrect predictions
and encouraging accurate classification across different quality levels. By combining the
MSE and CE losses within the overall loss function, the network’s performance can be
simultaneously optimized in both weld region segmentation and quality classification.
This multi-component loss function helps the network learn and adapt to the complex
and interrelated tasks of accurately segmenting weld regions and classifying their quality,
ultimately leading to improved performance and overall system effectiveness.

Ltotal = Lmse + λLce (7)

Lmse =
1
N

N

∑
i=1

(yi − xi)
2 (8)

Lce = −
1
N

N

∑
i=1

(yilogxi + (1− yi)log(1− xi)) (9)

where xi and yi are the ground truth and prediction results, respectively. λ is the trade-off
between two losses.

3.3. Post-Processing

The post-processing method utilizes edge detection and Hough transforms for circle
detection in the input-segmented images. Edge detection is applied to extract the weld
region contour using techniques like Canny [38] and Sobel [39]. Hough transform [33,34]
maps the contour pixels from the image space to the circle parameter space, employing
vote accumulation to identify the peak response in the parameter space; this allows for
the determination of the circle parameters, which can be further employed to calculate the
weld width and complete the evaluation of weld quality.

The flowchart of the Hough transform for circle detection is summarized in the
algorithm (Algorithm 1). The algorithm initializes an accumulator array, A[a, b, r], with
zeros to store the center points (a, b) and radius (r) of circles. The Canny operator is
then used to detect the edge points in the segmented image, which indicates regions with
significant changes in pixel intensity. Next, a nested loop is executed: the outer loop iterates
from r = 0 to the diagonal length of the image in order to detect circles with different
radii. For each edge pixel (x, y) in the image, the algorithm enters an inner loop that
iterates over angles θ from 0 to 360 degrees, covering all possible angles around the edge
pixel. Inside the inner loop, the algorithm calculates the potential coordinates for the circle
center, a and b, using the current edge pixel (x, y) and radius r. These calculations involve
subtracting the product of the radius and the sine or cosine of the angle θ from the edge
pixel coordinates. Subsequently, the algorithm increments the accumulator array A[a, b, r]
by 1 for each potential circle center and radius combination. This accumulation process
counts the number of times a specific circle parameter combination passes through edge
pixels in the image. After completing all iterations, the algorithm identifies the largest and
second-largest values in the accumulator array, A[a, b, r]. These values correspond to the
inner and outer circles of the weld. The parameters associated with these largest values
represent the center coordinates (a, b) and the radius (r) of the detected circles.
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Algorithm 1: Circle detection using Hough transform

Input: the segmented images, image coordinates (x, y).
Output: circle center coordinates (a, b), circle radius (r).

1. Initialize: A[a, b, r] = 0.
2. Detect all edge points in the segmented image using the Canny operator.
3. for r = 0 to the diagonal length of the image
4. for each edge pixel (x, y) in the image
5. for θ = 0 to 360
6. a = x− r× cosθ

7. b = y− r× sinθ

8. A[a, b, r] = A[a, b, r] + 1
9. Find the largest and second largest values of A[a, b, r], whose parameters correspond to the

inner and outer circles of the weld.

4. Experiments and Discussion

This section provides a thorough exploration of various study aspects, including im-
plementation details, evaluation metrics, experiment results analysis, and post-processing
results. The section begins by discussing implementation specifics, offering readers a
comprehensive insight into employed methodologies and techniques. It then focuses on
evaluation metrics utilized to measure model performance. Subsequently, analysis of
experimental results, including ablation experiments and sensitivity analysis of training
samples, will be presented to demonstrate the performance advantages of the model in
detecting weld quality. Lastly, the section concludes by analyzing post-processing results.
This section presents a concise analysis and discussion, offering valuable insights into
research methodology and outcomes.

4.1. Implementation Details

Experiments are conducted on a computer with i7-9700k CPU and NVIDIA GeForce
GTX 1070ti GPU, and models are implemented based on the open-source Tensorflow
deep learning framework. The input images and annotated masks are normalized before
training, and the pre-processed dataset is divided into training and testing sets according
to 4:1, where the category ratio is kept consistent. Moreover, to improve the generalization
performance of the model, data augmentation is performed on the training samples using
simple geometric transformations, including random rotation and flip. There is no scientific
conclusion on the hyperparameter setting of the deep network. In this paper, the best
hyperparameters are selected by using five-fold cross-validation, in which the training set
is equally divided into five subsets, and each subset is used as the validation set in turn,
and the remaining samples are used for training. The model performance is the average of
the results of five training sessions and is used as the basis for hyperparameter selection.
In this paper, the hyperparameter selection includes the number of CAM, parameters of
the convolution layer, and so on. The weight λ of the two components in the loss function
is set to 2 because the correct identification of defects is more important compared to
weld segmentation in industrial scenarios. Adam [40] is used as the optimizer for model
training with an initial learning rate of 0.001 and β1 and β2 of 0.9. A cosine scheduler with
a warm-up is adopted to adjust the learning rate [41]. In the warm-up phase, the learning
rate is gradually increased to a preset initial value to avoid the instability of the model
parameters due to the large initial learning rate, after which the learning rate is decayed
by the cosine annealing function, and the final learning rate is stabilized at 1 × 10−5. The
training epoch and batch size are 200 and 8, respectively. The model parameters with the
best performance on the validation set during the training are saved.
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4.2. Evaluation Metrics

The classification branch mainly classifies images into two categories: defective and
non-defective. Based on the confusion matrix in Table 1, metrics that are of concern
to the production line are selected to quantify the classification performance, such as
accuracy (Acc), miss alarm rate (MAR), and false alarm rate (FAR). Acc measures the
overall performance of the model for defect and normal weld identification. MAR refers
to the percentage of true defective welds that are missed by the model, which tends to
lead to the outflow of defective welds. FAR indicates the percentage of welds predicted as
defective that are misjudged by the model, which often results in wasted labor costs. The
ideal situation is that the established quality evaluation method has high Acc, low MAR,
and low FAR.

Acc =
TP + TN

TP + FP + FN + TN
(10)

MAR =
FN

FN + TP
(11)

FAR =
FP

FP + TP
(12)

Table 1. Confusion Matrix.

Confusion Matrix
Prediction

Normal Defect

True
Normal True Negative (TN) False Positive (FP)
defect False Negative (FN) True Positive (TP)

For the segmentation branch, mean intersection over union (mIoU) is used as an evalu-
ation metric, which quantifies the percentage of overlapping regions between predicted
and actual annotation masks.

mIoU =
|A
⋂

B|
|A|+ |B| − |A

⋂
B| (13)

where |A| and |B| denote the number of pixels in predicted and ground truth images while
|A
⋂

B| denotes the number of common pixels in both images.

4.3. Experiment Results

The experimental results analysis consisted of an ablation experiment and sensitivity
analysis of training samples. Ablation experiments are conducted, systematically removing
study components to observe their impact on overall results. Additionally, the section
investigates the model’s sensitivity to varying training sample sizes and examines how
such variations affect performance.

4.3.1. Ablation Experiment

In this section, ablation experiments are conducted for each component of the proposed
network, and the effectiveness of each component is analyzed by comparing its performance
on the test set. The detailed results are presented in Table 2. The advantages of the two-
branch structure are first investigated. From the comparison results in Table 2, it can
be found that the performance indicators of the two-branch structure are significantly
improved compared to the single-branch. For example, compared to the single-branch
model with CAMs, the proposed model improves by 1.3%, 5.2%, and 2.9% in Acc, MAR,
and FAR, respectively; this indicates that the model can learn a more accurate feature
representation of weld through the joint training of two related tasks. In addition, the effect
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of coordinate attention on classification performance is also studied. After introducing
CAMs into the feature learning module of the proposed network, the Acc increased by
0.4% compared to the two-branch CNN, while MAR and FAR decreased by 1.6% and
1.0%, respectively. Similarly, compared with the original CNN, the model with CAMs has
improved in all metrics. These results indicate that CAMs have a stronger ability to capture
subtle features of defects compared to ordinary CNN.

Table 2. The comparison results from different combinations of CAM and two-branch (TB).

CAM TB Acc MAR FAR mIoU

— — 0.964 0.069 0.154 —√
— 0.966 0.063 0.144 —

—
√

0.975 0.027 0.125 0.926√ √
0.979 0.011 0.115 0.957

Note: “—” means that the component does not exist in the network, while “
√

” means that the component
is introduced.

More importantly, in terms of the magnitude of the performance improvement, the
two-branch structure is better than coordinated attention. For example, the performance
improvement is 0.2%, 0.6%, and 1.0% after introducing CAMs into CNN, while the im-
provement can reach 1.1%, 4.2%, and 2.9% when applying the two-branch structure to
CNN. By establishing two related tasks, segmentation and classification, the two-branch
network can highlight the weld semantic information in the training process under the full
use of supervised information in the images. This structure provides better results than the
direct use of coordinated attention, and the combination of both enhances the classification
performance of the weld quality.

4.3.2. Sensitivity to the Number of Training Samples

As mentioned above, it is very expensive to collect a large amount of defect data
on an actual production line. Therefore, the impact of a smaller training sample size on
model performance is also investigated. The training set is randomly sampled for the
experimental study by 95%, 90%, 80%, 70%, 60%, and 50%, respectively. The same category
ratio is maintained as the original dataset in the sampling process. The rest of the settings
follow the same training and testing procedure as the previous experiments. The detailed
results are presented in Figure 5. It can be found that compared with the single-branch
network, the two-branch structure model is not sensitive to the number of training samples.
The performance of the proposed network model still remains 95.76% Acc, 5.20% MAR,
and 21.15% FAR when the number of training samples is 70% of the original. When using
a smaller dataset (50%), the Acc decreases by 6.55% compared to the original one, while
MAR and FAR increase by 22.02% and 19.75% in the test set. On the contrary, the impact of
decreasing the training sample size on the single-branch model is significant, with a rapid
decrease in all performance metrics. The performance is poor when the number of training
samples is small. For example, Acc, MAR, and FAR of CNN are 87.35%, 35.63%, and 46.16%,
respectively. Compared to the original model, its Acc decreased by 9.05%, while MAR and
FAR increased by 28.73% and 30.76%, respectively. Such a comparison demonstrates that
the two-branch network has a significant effect on alleviating the training sample demand.
Overall, the experimental results show that the method can still maintain a good, stable
performance with a small number of training samples.
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4.4. Post-Processing Results

Figure 6 shows the weld segmentation results obtained by the proposed two-branch
network and the corresponding annotation masks. It can be intuitively illustrated that the
model can achieve the pixel-level localization of the weld relatively well. The mIoU results
in Table 2 also quantitatively show that the model can segment the weld region accurately
from the raw welding images.
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After obtaining the binary segmentation images, the post-processing method combines
the Canny and circular Hough transform to achieve the extraction of the internal and
external circular parameters. The weld width information can be easily calculated from
the inner and outer circle parameters, which are measured in pixel lengths. Some results
of post-processing methods are shown in Figure 7. It can be seen that the framework
proposed in this paper can effectively extract the weld region parameters from the welding
images on power batteries. In addition, the accuracy of the welding parameter extraction
relies heavily on the results of the segmentation model in the previous section. When the
segmentation model does not perform well, it will seriously deteriorate the effect of the
post-processing algorithm.
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5. Conclusions

The automatic detection of laser welding quality in power batteries is crucial for
ensuring the safety performance of new energy vehicles. This paper proposes a framework
that combines deep network and conventional image processing techniques to achieve
efficient and accurate detection of laser welding quality.

(1) The framework consists of a two-branch network, comprising a segmentation
network trained with pixel-level labels and a decision network built on top of it to predict
the presence of weld defects. The joint learning of these two tasks effectively enhances the
accuracy of the features and the generalization ability of the model;

(2) To effectively learn the distinguishing features between normal welds and defective
welds, the detection network incorporates a coordinate attention module. Additionally, a
post-processing method based on the Hough transform is employed to extract geometric
information about the segmented weld region, including the position of the weld’s center
and its width;

(3) An extensive evaluation of the model is conducted on a dataset collected from a real
production line. The evaluation encompasses ablation experiments and investigates the
impact of the training sample size. The experimental results demonstrate that both the co-
ordinate attention module and the two-branch structure significantly improve the model’s
performance for weld detection, as indicated by metrics such as Acc, FDR, and MAR.

This study contributes a new approach to quality prediction with promising implica-
tions for battery pack welding. Although the present work is focused on a specific quality
inspection application, it can be believed that the underlying principles and methodologies
can be adapted and applied to similar scenarios. For instance, in body spot weld quality
inspection, where the defect rate is low on the production line, the accuracy of the model
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in recognizing defective welds can be improved by utilizing the defective area of spot
welds as an auxiliary task. In future work, the feasibility and effectiveness of extending
the proposed framework will be explored for other manufacturing quality inspection tasks
that have similar dataset constraints.
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