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Abstract: The aim of this study was to evaluate the ability of a droplet collar accessory attached to
a portable near‑infrared (NIR) instrument to characterize the artificial contamination of methanol in
commercial whisky samples. Unadulterated samples (n = 12) were purchased from local bottle shops
where adulterated sampleswere created by addingmethanol (99%puremethanol) at six levels (0.5%,
1%, 2%, 3%, 4% and 5% v/v) to the commercial whisky samples (controls). Samples were analyzed
using a drop collar accessory attached to a MicroNIR Onsite instrument (900–1650 nm). Partial least
squares (PLS) cross‑validation statistics obtained for the prediction of all levels of methanol (from 0
to 5%) addition were considered adequate when the whole adulteration range was used, coefficient
of determination in cross‑validation (R2cv: 0.95) and standard error in cross of validation (SECV:
0.35% v/v). The cross‑validation statistics were R2cv: 0.97, SECV: 0.28% v/v after the 0.5% and 1% v/v
methanol addition was removed. These results showed the ability of using a new sample presenta‑
tion attachment to a portable NIR instrument to analyze the adulteration of whisky with methanol.
However, the low levels of methanol adulteration (0.5 and 1%) were not well predicted using the
NIR method evaluated.

Keywords: alcohol; adulteration; methanol; whisky; infrared

1. Introduction
One of the principal risks for the consumer of alcoholic beverages (e.g., gin, vodka,

whisky) is the potential ingestion of drinks adulterated with not‑known raw ingredients,
natural metabolites and products of the fermentation, or by the intentional contamina‑
tion with foreign and harmful substances (e.g., methanol) [1–3]. Methanol is a natural
ingredient or product from the fermentation present in small amounts in most alcoholic
beverages [1–3]. However, to make a greater profit, some illegal suppliers can add adul‑
terants such as methanol into alcoholic beverages as this alcohol is cheap and easily ac‑
cessible [1–3]. Methanol itself is not harmful to humans, but it can be converted into
highly toxic formaldehyde and formic acid when metabolized by the organism after in‑
gestion [1–3]. Consequently, alcoholic beverages adulterated with methanol might cause
serious health issues to humans, including death [3]. The symptomatology of the intox‑
ication of methanol depends on the ingested amount and varies from headache, nausea,
vomiting, to blindness and ultimately death [2,3]. For example, human intake of methanol
(approx. 10 mL) can cause blindness, where higher concentrations (>30 mL) might lead to
death [2]. In recent years, lower‑quality commercial whiskeys sold as top‑shelf products
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could not only damage a producer’s reputation and bottom line of profit but also affect
human health [1–4].

The food supply and value chains are vulnerable to issues related to the safety and
security of foods. They include a wide range of incidents that are directly connected with
food authenticity, adulteration, or fraud [5–8]. In the literature, different terminology or
words have been utilized to define the widespread number of incidents that are affecting
the integrity of the food supply and value chains [5–8]. Some of the terminology used such
as food fraud, food adulteration, food crime, and food terrorism are considered under the
food safety and security umbrella [5–8]. Themotivation or objectives involving these types
of incidents along the food supply and value chain might be different, and they can range
from personal revenge, economic gain to ideological objectives [5–9].

Recent disruptions in the food supply and value chains (e.g., regional wars, pan‑
demics, floods, droughts) have shown an increased awareness from consumers about is‑
sues associatedwith food safety and security (e.g., authenticity, adulteration, fraud, prove‑
nance) [9,10]. In recent years, issues associated with food authenticity have been consid‑
ered an integral part of both the food safety and security standards [9,10]. Consequently,
food authenticity has been considered an essential element that needs to be incorporated
in any process that must fulfill key legislation or regulations aiming to protect the food
industry and consumers’ health [9,10].

Historically, food has been susceptible to different degrees of intentional and unin‑
tentional adulteration [11,12]. Natural fungal contamination can occur during transport
and storage [13,14], where mixing the spoilt food with fresh food can occur. Other ways of
adulteration that can be critical to consumer health are those associated with the substitu‑
tion of expensive ingredients or products with inferior quality ingredients by addition of
additives, the mixing with low‑quality products, or the addition of any other type of adul‑
terants [11,12]. Both food adulteration and fraud are words that are frequently applied
in the field. Overall, these terminologies have been defined as “a collective term used to
encompass the deliberate and intentional substitution, addition, tampering, or misrepre‑
sentation of food, food ingredients, or food packaging; or false or misleading statements
made about a product, for economic gain” [5–7,9,15]. Even though a common definition
of food fraud is difficult to establish, there is a universal consensus that food fraud can be
considered or defined as any intentional action carried out for financial gain [5–7,9,15]. The
US Pharmacopeial Convention established that food fraudmust be considered as any food
ingredient that has a fraudulent addition of non‑authentic substances, removal or replace‑
ment of authentic substances without the knowledge of the consumer for the exclusive
economic gain of the seller [15]. In this context, food adulteration and fraud are closely as‑
sociatedwith economicallymotivated adulteration, intentional adulteration, and any other
issues related to food counterfeiting or food fraud [15]. Consequently, assuring the authen‑
ticity of food ingredients and products is critical to prevent not only economic fraud in the
supply and value chains but also to reduce the negative impact of these issues on both the
consumers (e.g., health issues or even death) and the food manufacturing industry (e.g.,
stakeholders trust, image of the company).

Several reports can be found in both the scientific literature and in the media that re‑
vealed that the marketing and selling of fraudulent commercial whiskies are increasing in
the market, causing a greater concern about the potential risk to health of consumers [1–4].
Therefore, different analytical methods and techniques have been developed and commer‑
cially available in routine laboratories to target these issues [1–4,15–19]. Techniques such as
high‑performance liquid chromatography (HPLC), gas chromatography (GC), liquid chro‑
matography (LC), and nuclear magnetic resonance (NMR) spectroscopy have been used
comprehensively to measure and monitor the occurrence and concentration of methanol
in a wide range of alcoholic beverages (e.g., wine, whisky, vodka) [4,15–19]. Nevertheless,
these methods are considered expensive, time‑consuming, and laborious to be used along
the supply and value chain or as rapid quality control methods by the foodmanufacturing
industry [15–19].
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Methods based on vibrational spectroscopy [mid‑infrared (MIR), near‑infrared (NIR),
and Raman spectroscopy)] provide an attractive alternative to identify and monitor both
adulteration and fraud in different foods due to their simplicity, low cost, and speed of
analysis [15–19]. Different researchers have reported the ability of vibrational spectroscopy
(e.g., MIR, NIR and Raman spectroscopy) combined with different chemometric and data
mining methods (e.g., principal component analysis, cluster and discriminant analysis,
neural networks) to detect and quantify the occurrence of methanol in a wide range of
alcoholic beverages including spirits, fruit distillates and wine [20–28].

The aim of this studywas to evaluate the ability of a portable near‑infrared instrument
coupled with a droplet collar accessory to identify the artificial contamination of methanol
to unadulterated commercial whisky samples.

2. Materials and Methods
2.1. Sampling and Sample Preparation

Unadulterated commercial whiskey samples (n = 12) were purchased from local bottle
shops across Melbourne (Victoria, Australia). Consequently, unadulterated whisky sam‑
ples were obtained from a diverse source of producers (e.g., Canada, Ireland, Scotland,
USA) having different alcohol content (35–40% ABV), malt source, aging conditions (e.g.
American oak, new oak), hue and color (see Table 1). Immediately after opening the bottle,
the adulterated sample set was created by addingmethanol (methyl alcohol, UN 1230, 99%
pure methanol, Univar, Australia) at six levels (0.5%, 1%, 2%, 3%, 4% and 5% v/v) to each
of the unadulterated commercial whisky samples (control).

Table 1. Description of the unadulterated commercial whisky samples analyzed by near infrared
spectroscopy and used to develop the classification models.

Brand ABV% Colour Hue Ageing Country

Finnlaigh 40 Golden Dark n/a Ireland
Canadian Club 37 Brown Light n/a Canada
Jim Beam Black 40 Brown Dark American white oak USA
Crown Royal 40 Brown Light New oak Canada

Johnny Walker Black Label 40 Brown Dark n/a Scotland
Wild Turkey 43 Brown Dark n/a USA
Jim Beam 37 Brown Dark American white oak USA

Chivas Regal 40 Brown Dark n/a Scotland
Jameson 40 Golden Dark Oak Irish

Johnny Walker Red Label 40 Brown Dark n/a Scotland
Kilbeggan 40 Golden Dark n/a Ireland

Southern Comfort 35 Brown Light n/a USA

2.2. Near Infrared Spectra Collection
The NIR spectra of the unadulterated commercial whisky samples and adulterated

mixtures were randomly collected using a portable NIR instrument (Micro‑NIR Onsite,
Viavi, Milpitas, CA, USA) operating in the wavelength range between 900 and 1600 nm
(10 nm wavelength resolution). The sample presentation method used was the droplet
collar accessory shown in Figure 1, provided by the instrument manufacturer. In this sam‑
ple accessory, 50 µL of the sample (unadulterated and adulterated samples) was pipetted
onto the sample window and scanned in triplicate to evaluate the repeatability of the NIR
scans. After spectra collection, the MicroNIR droplet collar was cleaned with ethanol then
with MilliQ water and dried with a Kimtech®wipes between samples. The spectra col‑
lection and instrument setup were controlled using the proprietary software provided by
the instrument manufacturer (MicroNIR Prov 3.1, Viavi, Milpitas, CA, USA). The spec‑
tral data acquisition parameters were set at 50 ms integration time and averaging 50 scans
(MicroNIR Prov 3.1, Viavi, Milpitas, CA, USA) as recommended by the instrument manu‑
facturer. Every 10 samples, a reference spectrum was collected using the Spectralon®tile
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supplied by the instrument manufacturer. In total, 216 samples were collected (12 com‑
mercial labels × 3 replicates × 6 adulteration levels).

Sensors 2023, 23, x 4 of 10 
 

 

manufacturer. Every 10 samples, a reference spectrum was collected using the Spectra-

lon®  tile supplied by the instrument manufacturer. In total, 216 samples were collected 

(12 commercial labels × 3 replicates × 6 adulteration levels). 

 

Figure 1. Droplet collar accessory attached to the MicroNIR portable instrument used to analyze the 

unadulterated and adulterated commercial whisky samples with methanol. 

2.3. Data Analysis 

The NIR data were exported in Excel format (*.xls) into The Unscrambler software 

(version X, CAMO, Oslo, Norway) for data analysis and spectra pre-processing. The NIR 

spectra were pre-processed using the Savitzky–Golay second derivative (21 smoothing 

points and second polynomial order) prior to spectra interpretation and chemometric 

analysis [29]. Principal component analysis (PCA) was used to analyze the data and visu-

alize the effect of the addition of methanol into the unadulterated whisky samples. Leave-

one-out cross-validation was applied during the PCA analysis. Partial least squares (PLS) 

regression models were developed using the levels of methanol adulteration defined in 

the section above with the NIR region (950 to 1600 nm). In this study, the dataset was 

divided into two subsets namely calibration and validation, using the Kennard–Stone al-

gorithm [30]. Uniformly distributed 150 samples were selected and used to develop the 

calibration models, where 66 samples were used for validation. By performing the data 

partitioning using the Kennard–Stone algorithm, knowledge of the training dataset did 

not affect the test dataset, and the predictive power of the created model subsequently 

increased [30]. The coefficient of determination in cross-validation (R2CV), the standard er-

ror in cross-validation (SECV), the standard error in prediction (SEP), bias, slope and re-

sidual predictive deviation (RPD = standard deviation / SEP) were used to evaluate the 

PLS cross-validation models obtained for the prediction of the level of methanol adulter-

ation in the commercial whisky samples analyzed [31–33]. 

3. Results and Discussion 

3.1. Spectra Interpretation  

The second derivative of the NIR spectra of both unadulterated commercial whisky 

and adulterated mixture samples analyzed using the droplet collar accessory is shown in 

Figure 2. The second derivative spectra of the samples showed four distinctive absorption 

bands around 1180 nm associated with O-H stretch second overtone (water and alcohol), 

around 1347 nm with CH3 corresponding with the occurrence of aromatic groups, around 

1447 nm with O-H stretch first overtone (water and alcohol) and around 1583 nm associ-

ated with the O-H stretch bands of water, alcohol as well as phenolic compounds present 

in the whisky samples [34–44]. The absorbance band around 1447 nm is also called the 

dehydration band as reported by other authors [36–38]. Specifically, it has been reported 

that the absorbance value at this specific wavelength can be used to measure low 

Figure 1. Droplet collar accessory attached to the MicroNIR portable instrument used to analyze the
unadulterated and adulterated commercial whisky samples with methanol.

2.3. Data Analysis
The NIR data were exported in Excel format (*.xls) into The Unscrambler software

(version X, CAMO, Oslo, Norway) for data analysis and spectra pre‑processing. The NIR
spectra were pre‑processed using the Savitzky–Golay second derivative (21 smoothing
points and second polynomial order) prior to spectra interpretation and chemometric anal‑
ysis [29]. Principal component analysis (PCA) was used to analyze the data and visual‑
ize the effect of the addition of methanol into the unadulterated whisky samples. Leave‑
one‑out cross‑validation was applied during the PCA analysis. Partial least squares (PLS)
regression models were developed using the levels of methanol adulteration defined in
the section above with the NIR region (950 to 1600 nm). In this study, the dataset was
divided into two subsets namely calibration and validation, using the Kennard–Stone al‑
gorithm [30]. Uniformly distributed 150 samples were selected and used to develop the
calibration models, where 66 samples were used for validation. By performing the data
partitioning using the Kennard–Stone algorithm, knowledge of the training dataset did
not affect the test dataset, and the predictive power of the created model subsequently in‑
creased [30]. The coefficient of determination in cross‑validation (R2CV), the standard error
in cross‑validation (SECV), the standard error in prediction (SEP), bias, slope and residual
predictive deviation (RPD = standard deviation / SEP) were used to evaluate the PLS cross‑
validation models obtained for the prediction of the level of methanol adulteration in the
commercial whisky samples analyzed [31–33].

3. Results and Discussion
3.1. Spectra Interpretation

The second derivative of the NIR spectra of both unadulterated commercial whisky
and adulterated mixture samples analyzed using the droplet collar accessory is shown in
Figure 2. The second derivative spectra of the samples showed four distinctive absorption
bands around 1180 nm associated with O‑H stretch second overtone (water and alcohol),
around 1347 nmwith CH3 corresponding with the occurrence of aromatic groups, around
1447 nm with O‑H stretch first overtone (water and alcohol) and around 1583 nm associ‑
ated with the O‑H stretch bands of water, alcohol as well as phenolic compounds present
in the whisky samples [34–44]. The absorbance band around 1447 nm is also called the
dehydration band as reported by other authors [36–38]. Specifically, it has been reported
that the absorbance value at this specific wavelength can be used to measure low concen‑
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trations of methanol in water‑methanol mixtures [36–38]. However, in this study, slight
changes in the absorbance values at 1447 nm were observed as the increase in the con‑
centration of methanol from 0.5% to 5% in the unadulterated and adulterated whiskey
samples analyzed.
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Figure 2. Second derivative near infrared spectra of unadulterated and adulterated commercial
whisky samples with methanol analyzed using the droplet collar accessory attached to a portable
near infrared instrument.

3.2. Principal Component Analysis
Figure 3 shows the principal component score plot of the unadulterated and adulter‑

ated commercial whisky samples with different levels of methanol (0.5% to 5% v/v) and
analyzed using the droplet‑collar accessory. The first two principal components (PC) ex‑
plained 95% of the variability in the spectra (PC1: 75% and PC2: 20%). The high concentra‑
tions of methanol added to the unadulterated whisky samples were separated along PC1
(control and adulterated high level), while the separation of samples from the low and
high concentrations of adulteration was observed along PC2. Overall, the PCA score plot
showed that the unadulterated whisky samples (control) were separated from the adul‑
terated mixture samples. The highest loadings derived from the PCA analyzed showed
that the main wavelengths contributing to explain the separation along the PC1 were ob‑
served around 991 nm associated with O‑H bonds derived from alcohol and phenolic com‑
pounds [36,42–44], at 1162 nm this wavelength can be associated with the O‑H stretch
second overtones and the occurrence of aromatic groups responsible for the aroma and
color of whisky [44], at 1217 nm related with the CH2 groups, around 1471 nm associated
with the O‑H bands related to alcohol while around 1539 nm with the O‑H stretch bands
of water and alcohol [34–38].

The highest loadings in PC2 were observed at wavelengths around 1186 nm associ‑
ated with the C‑H bands consistent with aromatic groups present in the whisky samples,
around 1409 nm (O‑H) and 1477 nm (O‑H methanol and O‑H hydrogen bonding) while
around 1552 nmwith O‑H or C‑H bonds associated with alcohol and phenolic compounds
in the whisky samples analyzed [34–38] (Figure 4). It has been also reported that the wave‑
length region around 1500 nm can be associated with the combination of the O‑H and C‑H
stretch bands originating from alcohols and contributing to the broad O‑H overtone band
observed in the raw NIR spectra [36,41]. It is important to highlight that absorbance val‑
ues around 1400 nm might be also associated with the O‑H overtones originating from
phenolic compounds that are present in both the unadulterated and adulterated whisky
samples [36,42–44].
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Figure 4. Principal component loadings used by the principal component analysis to evaluate the ad‑
dition of methanol in the unadulterated commercial whisky samples and analyzed using the droplet
collar attached to a portable near infrared instrument.

3.3. Cross Validation Statistics
The PLS cross‑validation statistics obtained for the prediction of the level of methanol

added to the unadulterated whisky samples in the calibration set using the NIR region
(900 to 1600 nm) are shown in Table 2. The PLS cross‑validation statistics obtained for
the prediction of all levels of methanol addition (from 0% to 5% v/v) were considered ad‑
equate (R2cv: 0.95, SECV: 0.35% v/v). However, this model was not able to discriminate
between the 0.5% and 1% levels of methanol adulteration. Therefore, it was decided to
remove the 0.5% and 1% methanol addition, subsequently, the cross‑validation statistics
were improved (R2cv: 0.97, SECV: 0.28% v/v). During calibration development, the optimal
number of latent variables was selected to obtain the lower error in cross‑validation tomin‑
imize the risk of overfitting (noise or systematic error) and underfitting (missing important
information) as reported by other authors [39]. The number of LVs was selected based on
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the minimization of the SECV, which corresponds to the error acquired during the cross‑
validation step [39]. Both models were developed using 10 latent variables. These results
indicated that NIR spectroscopy might not be able to discriminate or predict satisfactorily
the low levels of methanol adulteration in the whisky samples (between 0.5 and 1% v/v).
Similar results were reported by other authors where levels of both ethanol and methanol
adulteration were identified in grape derived Pisco distillate samples using different vi‑
brational spectroscopy techniques (e.g., MIR and Raman spectroscopy) [39]. The rapid
detection of methanol in a wide range of spirits through the container using a handheld
Raman instrument was also reported by other authors in the UK [40].

Table 2. Cross‑validation and prediction statistics for the determination of methanol adulteration in
commercial whisky samples analyzed using near infrared spectroscopy (900 to 1600 nm).

N R2CV SECV Slope Bias SEP RPD LV

CAL (all samples) 150 0.95 0.35 0.96 0.009 10
CAL (removed 0.5 and 1%) 78 0.97 0.28 0.98 0.005 10
VAL (CAL all samples) 66 0.94 0.94 0.07 0.36 4.4

VAL (CAL selected samples) 66 0.93 0.94 0.07 0.42 4.16

CAL: calibration; LV: latent variables; N: number of samples; R2cv: coefficient of determination in cross valida‑
tion; RPD: residual predictive value (SD/SEP); SECV: standard error in cross validation; SEP: standard error of
prediction; VAL: validation.

The optimal PLS loadings (10 latent variables) for the cross‑validation models were
interpreted and reported in Figure 5. Most of the wavelengths used by the PLS models
were similar between both models (all samples and samples without including the low
concentrations of methanol). The highest PLS loadings in both models were observed
around 966 nm, 1186 nm, 1366 nm, 1422 nm, 1484 nm and 1539 nm associated with the
samewavelengths and compounds assigned and described in the previous section [33–37].
Additionally, shifts were observed in the loadings at wavelengths around 1422 nm, 1484
nm and 1539 nmdue to the addition ofmethanol (O‑H bonds) to the unadulteratedwhisky
samples [33–37].
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cross validation; RPD: residual predictive value (SD/SEP); SECV: standard error in cross validation; 

SEP: standard error of prediction; VAL: validation. 

The optimal PLS loadings (10 latent variables) for the cross-validation models were 

interpreted and reported in Figure 5. Most of the wavelengths used by the PLS models 

were similar between both models (all samples and samples without including the low 

concentrations of methanol). The highest PLS loadings in both models were observed 

around 966 nm, 1186 nm, 1366 nm, 1422 nm, 1484 nm and 1539 nm associated with the 

same wavelengths and compounds assigned and described in the previous section [33–

37]. Additionally, shifts were observed in the loadings at wavelengths around 1422 nm, 

1484 nm and 1539 nm due to the addition of methanol (O-H bonds) to the unadulterated 

whisky samples [33–37]. 

 
Figure 5. Partial least squares loadings for the optimal models (10 latent variables) used to predict
the level of methanol used to adulterate the whisky samples and analyzed using the droplet collar
attached to a portable near infrared instrument (range 900 to 1600 nm).

The prediction statistics using the validation set showed that the SEP obtained were
0.36% v/v and 0.42% v/v (see Table 2). The residual prediction deviation (RPD) is a param‑
eter that is used to evaluate the precision of the prediction values in comparison with the
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average composition of all the samples analyzed [31,33]. It has been stated in the literature
that models with an RPD less than 1.5 indicated that the calibration cannot be used, RPD
values between 1.5 and 2.0 can be used to differentiate or analyze the variability of the
data, RPD values higher than 2.0 indicated good predictive performance of the calibration
or validation models where RPD values higher than 3.0 are considered excellent [31,33].
However, the interpretation of the RPD depends on the context and the purpose for which
themeasurements andpredictionswill be used [31,33]. TheRPDvalues (SD/SEP) indicated
that the calibration models were robust as well as able to predict the range of adulteration
with methanol in the set of samples selected as validation (RPD > 4). However, the low
levels of methanol adulteration were not well predicted using the NIR method evaluated.

During the last 10 years, an increased number of reports have highlighted the ability of
portable infrared instruments to evaluate and predict composition in a wide range of agri‑
food ingredients and products [45–47]. Portable instruments provide valuable advantages
compared to laboratory bench instruments that have been extensively evaluated and used
in different fields, including foods [45–47]. These instruments are portable, lightweight,
and easy to use, allowing for the direct and non‑destructive measurement of any type of
solid sample [45–47]. Portable instruments are considered ideal to be utilized along the
value chain as they are efficient during the testing process, providing with the knowledge
to make informed decisions along the supply and value chain (e.g., from the distillery to
the consumer) [45–47]. In addition, the direct use of these devices in the supply and value
chain will avoid the unnecessary transport of samples to the laboratory, saving time and
cost required to evaluate and monitor the adulteration or integrity of the samples [45–47].
As stated above, portable instruments have been used to predict the composition and in‑
tegrity of foods, however, the results of this study showed for the first time the ability of
using a new sample presentation attachment (droplet collar) to a portable NIR instrument
to analyze the level of adulteration of liquid samples such as whisky.

4. Conclusions
The adulteration of alcoholic beverages is a global problem having economic and

health consequences. This study demonstrated that it was possible to predict the adul‑
teration of methanol in commercial whisky samples using a portable NIR instrument. The
implementation ofNIR spectroscopy also depends on a better understanding of the spectra
of the unadulterated and adulterated samples where the results obtained after the applica‑
tion of chemometrics methods will be used for a rapid analysis, and detection of adulter‑
ation in whisky samples. However, low levels of methanol adulteration (0.5 and 1% v/v)
were not well predicted using the method evaluated in this study. Further studies will
be carried out to compare the NIR results with those obtained by other methods (e.g., gas
chromatography). Finally, it should be noted that the routine application of a calibration
model requires continuous validation as it is the critical step to ensure the robustness of
the method to predict the levels of adulteration.
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