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Abstract: Muscle fatigue is defined as a reduced ability to maintain maximal strength during vol-
untary contraction. It is associated with musculoskeletal disorders that affect workers performing
repetitive activities, affecting their performance and well-being. Although electromyography remains
the gold standard for measuring muscle fatigue, its limitations in long-term work motivate the use
of wearable devices. This article proposes a computational model for estimating muscle fatigue
using wearable and non-invasive devices, such as Optical Fiber Sensors (OFSs) and Inertial Mea-
surement Units (IMUs) along the subjective Borg scale. Electromyography (EMG) sensors are used
to observe their importance in estimating muscle fatigue and comparing performance in different
sensor combinations. This study involves 30 subjects performing a repetitive lifting activity with
their dominant arm until reaching muscle fatigue. Muscle activity, elbow angles, and angular and
linear velocities, among others, are measured to extract multiple features. Different machine learning
algorithms obtain a model that estimates three fatigue states (low, moderate and high). Results
showed that between the machine learning classifiers, the LightGBM presented an accuracy of 96.2%
in the classification task using all of the sensors with 33 features and 95.4% using only OFS and IMU
sensors with 13 features. This demonstrates that elbow angles, wrist velocities, acceleration variations,
and compensatory neck movements are essential for estimating muscle fatigue. In conclusion, the
resulting model can be used to estimate fatigue during heavy lifting in work environments, having
the potential to monitor and prevent muscle fatigue during long working shifts.

Keywords: muscle fatigue; electromyography; inertial sensors; Optical Fiber Sensors; machine learning

1. Introduction

Muscle fatigue (MF) is defined as the inability to sustain a predictable maximal force
during voluntary contraction [1] and the reduction of the capacity to generate force or
power output [2]. MF can be associated with musculoskeletal disorders (MSDs) affecting
workers’ ability to perform repetitive activities over long periods [3]. MSDs are one of
the major health problems related to physical labour [4]. These can negatively affect
people’s quality of life by being unable to perform daily living activities, self-care and work.
Therefore, the ability to work is influenced by psychological, cognitive and social factors
and the physical pain caused by MSDs [3].

Estimating MF is relevant for applications in sports, medicine, and ergonomics [5].
In athletes, MF occurs due to high-intensity training, leading to musculoskeletal injuries
and reduced motor performance [6,7]. In medicine, the MF analysis in the diagnosis of
neuromuscular diseases is essential [8]. Also, ergonomics has procedures for reducing
local muscular workloads for employers, occupational health-related staff, and workers [9].

Sensors 2023, 23, 9291. https://doi.org/10.3390/s23229291 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229291
https://doi.org/10.3390/s23229291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6887-0019
https://orcid.org/0000-0003-0972-098X
https://orcid.org/0000-0001-6595-5383
https://orcid.org/0000-0001-9657-5076
https://orcid.org/0000-0002-6942-865X
https://doi.org/10.3390/s23229291
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229291?type=check_update&version=2


Sensors 2023, 23, 9291 2 of 23

Manual lifting is commonly used in work environments to transfer or carry objects [10].
The improper lifting and long-term activities can contribute to excessive MF leading to
occupational injuries, and affecting workers’ productivity, safety, and well-being [11]. The
biceps brachii is the primary muscle performing manual handling and repetitive lifting
tasks [12].

Different kinematic changes can occur during the fatigue state, such as decreased motor
performance, speed, and Range of Motion (ROM) [13]. Also, MF alters the coordination
of muscle activity, joint kinematics, and postural control, where it is observed that people
are continuously changing their movements to maintain the performance of a task [14,15].
These changes are used to estimate the fatigue state of the person using different techniques,
such as invasive and non-invasive techniques and subjective scales. Biologically, it can be
estimated by blood samples or muscle biopsies [16]. However, these invasive methods
estimate post-activity MF and do not generate real-time information.

On the one hand, non-invasive techniques exist to estimate and evaluate MF using
surface electromyography that can be analyzed using amplitude, spectral, time-frequency,
and nonlinear parameters [16]. For instance, Halim et al. studied muscle activity through
surface electromyography (sEMG) sensors during manual lifting activities at different
heights and loads. The results showed that the load mass and lifting weight significantly
influence the mean power frequency of the two muscles responsible for this activity [17].
EMG is also considered the gold standard method to estimate MF since it directly assesses
the bio-electrical muscle function [18]. However, EMG readings are inaccurate in long-term
working environments due to skin sweating and electrode contact [19].

On the other hand, there are low-cost wearable devices such as Inertial Measurement
Units (IMUs), goniometers and Optical Fiber Sensors (OFSs) for MF estimation. The IMUs
can be used to evaluate and estimate MF by studying posture characteristics [20], and
kinematic changes [21]. Mamam et al. collected data from four IMUs (located at the ankle,
hip, wrist, and torso) and a heart rate sensor to detect fatigue in different industrial tasks.
The results showed the identification of localized MF in the back with a single wearable
sensor using seven characteristics [22]. Also, when running, changes in knee flexion angle
have been evidenced using IMUs. Marotta et al. used six joint angles for feature extraction,
among other biomechanical parameters, where joint angles resulted in higher fatigue-
detection accuracy [23]. The goniometer has also been used as an indicator of localized
muscle fatigue in static or dynamic tasks, where the drop in the joint angle to a set threshold
indicates fatigue [24]. In addition, it can be used to find the angular displacements of the
shoulder joint in conjunction with accelerometers, which is a determinant of fatigue [25].
Finally, it has been used to assess muscle fatigue to establish the boundaries of fatigue states
in EMG signals, using indicators of elbow angle and oscillation, i.e., standard deviation [26].

Additionally, the OFSs present multiple advantages over a goniometer related to its im-
munity to electromagnetic interference, flexible structure, lightweight, and robustness [27].
The principle is based on intensity variation due to its simplicity and cost-effectiveness,
where displacements and disturbances change the light intensity to obtain variables such
as curvature, temperature, and pressure [28]. OFSs are currently used as angle sensors for
accurately estimating the joints’ angles [29,30]. Also, optical fiber angle sensors are suitable
due to their higher resistance to impact and vibrations [31]. Concerning fatigue, OFSs can
be used to assess joint angle alterations. Yang et al. confirmed that after performing a
repetitive pointing task, shoulder fatigue caused angular changes in the trunk, shoulder
and elbow [32]. However, no report in the literature links IMUs and Optical Fiber sensors
for muscle fatigue estimation, considering their advantages.

To correlate the sensor measurements, subjective scales are used and queried in real
time to associate the acquired data with an individual’s perceived exertion. For instance,
the Borg scale is a method of rating perceived exertion on a 0–10 scale and has previously
been related to objective measures such as EMG [33]. This questionnaire is commonly used
to monitor the feedback of physiological, psychological and situational factors to evaluate
how easy or difficult a task is and the level of tiredness [34]. It has been used to monitor
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fatigue in manual material handling tasks, treadmill running, squatting, and simulated
construction activity [35].

Due to the disadvantages of EMG sensors in estimating fatigue in work environments
for extensive periods, this article aims to explore an alternative for MF estimation using
wearable and non-invasive sensors such as OFS and IMU sensors and a subjective measure-
ment using the BORG scale. Considering that EMG sensors are commonly used for fatigue
estimation, it is expected to observe the importance of this sensor in estimating muscle
fatigue and its contribution to other sensors. EMG sensors can evaluate and validate the MF
of the biceps brachii, OFS can monitor the elbow joint angle, and IMU sensors can provide
additional information about the movement of the arm and compensatory strategies in the
trunk during induced fatigue. The validation will be performed using different machine
learning methods using the three sensors to train the models and then determine the most
suitable method for predicting MF of the biceps brachii. This will explore alternatives for
estimating and monitoring work fatigue in long working shifts of heavy lifting due to
EMG’s disadvantages with long-term use.

2. Materials and Methods

This study uses a system of three sensors that measure muscle fatigue through physi-
ological and kinematic parameters in a repetitive elbow activity during heavy lifting. To
perform this local fatigue analysis, an essential muscle in heavy lifting is used, which is the
biceps brachii [12]. The biceps curl activity is selected since it has also been used to analyze
and monitor biceps brachii muscle fatigue [36–38].

2.1. Materials
2.1.1. Optical Fiber Sensor

The OFS was threaded through an elbow brace support made of a high-elastic syn-
thetic fabric (Elastane), fastened with velcro. The polymer optical fiber (SH4001, Mitsubishi
Chemical Co., Charlotte, NC, USA) estimates the elbow’s angle. To detect voltage changes,
a Light-Emitting Diode (LED) IF-E97 and a phototransistor IF-D92 (Industrial Fiber Optics,
Tempe, Arizona, USA) are placed on opposing sides of the fiber. A sensitive zone enhances
the sensor response; this increases the optical power losses and generates greater voltage
changes in response to the elbows’ flexion and extension movements [39]. Lastly, a micro-
controller Teensy 3.6 (PJRC, Portland, OR, USA) with a 16-bit analogue-to-digital converter
(ADC) was used to acquire the data from the OFS. The components are shown in Figure 1.

LED
IF-E97

Jacket Sensitive
zone

Photodetector
IF-D92

USB
cable

Teensy 3.6

Velcro
strap

Elbow Brace
Support

Figure 1. Elbow brace support used to attach the OFS and the electronic components.

The characterization of the OFS is performed with all of the subjects performing two
known angles of flexion (0°) and extension (140°) before the fatigue test for proper inter-
subject characterization. These values were verified using a camera as a reference system
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to record the elbow movements and subsequently use the software Kinovea 0.9.4 to track
the angles.

2.1.2. Electromyographic Sensor

Subjects were instrumented with surface electrodes after sterilizing the skin surface
using alcohol pads [40] and with an EMG acquisition module (Shimmer3 EMG Unit,
Shimmer, Dublin, Ireland). The sensor was located in the biceps brachii of the subject’s
right arm to register the muscle activity. For signal acquisition, a sampling frequency of
1024 Hz was used [41]. The instrumentation procedure and electrode placement followed
the SENIAM guidelines [42]. Subsequently, the subject performs the maximum voluntary
contraction (MVC) to normalize the intersubject measurements of the signals. They must
execute a muscular contraction of the biceps brachii and maintain it for 5 s, followed by 10 s
of relaxation. Finally, the MVC is averaged from 3 consecutive measurements. This muscle
is evaluated for its relevance in manual handling and repetitive lifting tasks, essential for
analyzing MF [12].

2.1.3. Inertial Sensors

Two Shimmer3 IMUs (Shimmer3 IMU Unit, Shimmer, Ireland) were located on the
subject’s anterior carpal region (wrist) of the right arm and in the neck at the level of the C7
vertebra of the spine. Before the start of the session, data were acquired with the person
in an anatomical position for 1 min to calibrate all the sensors. The data were acquired
at a sampling frequency of 128 Hz [43]. The IMU at the wrist is essential to measure
upper limb-related activities [44]. The IMU in the column can observe how fatigue due to
repetitive upper limb tasks can affect neck compensation movements [45].

2.1.4. Borg Scale CR10

To identify the different levels of fatigue subjectively, the Borg scale was used to
evaluate the rate of perceived exertion (RPE) [46]. The Borg scale is commonly used to
assess the local MF in the biceps brachii and the effect of MF on wrist joint position [47,48].
This is shown in Figure 2, where the three fatigue states are established as Low Fatigue
(LF), Moderate Fatigue (MOF), and High Fatigue (HF). In the initial state, all participants
were in state 0 according to the multidimensional fatigue inventory, i.e., in a fatigue-free
condition [49] (see Appendix A). In addition, when the participant reached a scale of 10,
the test was concluded since they could no longer generate another repetition. Participants
were introduced to the scale before the trials with verbal and visual explanations. This
scale was asked every 20 s to all participants during the fatigue test.

Borg CR10 Value Definition
0 No fatigue level
1 Really low fatigue level
2 Very low fatigue level
3 Low fatigue level
4 Quite moderate fatigue level
5 Somewhat moderate fatigue level
6 Moderate fatigue level
7 High fatigue level
8 Very high fatigue level
9 Extreme high fatigue level

10 Maximum fatigue level

Low

Moderate

High

Initial state

Unable to make
a repetition

Figure 2. Borg CR10 Scale.

2.2. Subjects

This study involved the voluntary participation of 30 subjects, 14 female and 16 male,
who performed a repetitive weight-lifting activity. Inclusion criteria included being healthy
subjects between 18 and 30 years and also being in a non-fatigue state according to the
Multidimensional Fatigue Inventory. The age range of healthy young people is chosen
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since the reliability of strength tests in older populations may be lower due to decreased
muscle strength and joint stability [50]. To establish the user’s non-fatigued condition, this
questionnaire assessed five types of fatigue, such as general fatigue, physical fatigue, mental
fatigue, reduced motivation, and reduced activity. The exclusion criteria excluded subjects
who have suffered an arm fracture, with musculoskeletal or systemic disorder and any
known impairment of postural control or motor function. The experimental protocol and
the purpose of the study were explained to all subjects, and informed consent was obtained
before the study. The mean and standard deviation (mean ± std) of the demographic data
of all subjects are shown in Table 1.

Table 1. Mean and standard deviation (mean ± std) of subjects’ demographic data.

Gender Age (Years) Weight (kg) Height (cm)

Female 24.7 ± 3.4 61.1 ± 15.4 163.4 ± 7.9
Male 24.2 ± 2.3 73.3 ± 8.8 177.0 ± 7.1

2.3. Experimental Protocol

This is a prospective observational study. Subjects are initially instrumented with EMG
sensors in the biceps brachii and perform the MVC of the muscle. Subsequently, they are
instrumented with the 2 IMUs sensors and the elbow brace support with the OFS, and a
calibration test is performed where they remain 1 min in anatomical position. This allows a
baseline measurement for each sensor and subtracts the offset for subsequent measurements.

Afterwards, a warm-up phase should be performed with a lower weight than the
fatigue phase to prepare the participants’ muscles. The participants perform the biceps curl
activity for ten repetitions using a load of 1 kg for women and 2 kg for men [51]. Figure 3
illustrates the placement of the IMUs, EMG, OFS, and weight.

Neck IMU
Accelerometer (x, y, z)

Gyroscope (x, y, z)

Wrist IMU
Accelerometer (x, y, z)

Gyroscope (x, y, z)

Weight

Biceps Brachii
EMG

Sensitive Zone

Optical fiber

Elbow brace 
support

Figure 3. Experimental setup. Participants were instrumented with an EMG sensor and two inertial
sensors as illustrated on the left and then instrumented with the optical fiber sensor on top as shown
on the right.

Finally, subjects perform the biceps curl activity with a higher load (2.5 kg for women,
4.5 kg for men) [52] until reaching MF, i.e., reaching ten on the Borg scale or failing to
perform the full ROM. Results have been previously demonstrated in the biceps muscle that
increasing the load generates greater MF in repetitive lifting activities in this muscle [53].
Then, the sensors were removed from the person, and they were instructed to perform
three minutes of arm muscle stretching to avoid future local pain.
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2.4. Procedure of Proposed Fatigue Classifier

Figure 4 represents the MF detection algorithm process, divided into five stages:
(1) processing data extracted from the sensors and feature extraction. Also, all of the
features were normalized regarding the initial value corresponding to the average of
the first window values each window represents a biceps curl repetition cycle) of each
characteristic except for the frequency-related features; the next stage is (2) training and
validation, where the data is separated into 70% for training where cross-validation is
performed with a k = 21, and 30% for the subsequent test. The training and testing labels
correspond to the Borg scale values. The machine learning models are applied, and a
(3) grid search is performed to evaluate the best hyperparameters of each model and thus
choose the model with the best performance; following this, a (4) feature extraction analysis
is performed according to the best performances and the number of sensors used; finally,
(5) the data is tested with the model and the evaluation metrics of the machine learning
model are obtained.

EMG, IMU and OF 
sensors

Data cleaning

Feature extraction

Normalization

Preprocessing

Training/Validation

Training
(70%)

Training labels
(Borg scale)

Cross Validation

Train set
Test set

21-fold

Machine learning models

Grid Search/
Evaluation

Performance measures

Model with greater 
performance

Feature reduction Features importance

High performance Reduced sensors

Testing

Trained 
model

Testing Data 
(30%)

Testing labels
(Borg scale)

Prediction 
Results

Prediction 
Accuracy

Best hyperparameters

Figure 4. Flowchart showing an overview of the proposed procedure.
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2.4.1. Data Processing

The processing begins by interpolating the values of the Borg scale and assigning
each value to the corresponding time to consider the duration of the fatigue states. This
interpolation is performed to obtain a greater number of values and to divide the data
from all the sensors. All sensor signals are divided according to the three fatigue states in
Figure 2.

For the OFS data, a low-pass filter with a cut-off frequency of 0.5 Hz was applied to
eliminate and reduce noise. This value was found by using the Fourier transform of the
signal. After this, the signal is divided into the three fatigue states, and the repetition cycles
of the elbow are detected, being a cycle as the peak-to-peak distance, as shown in Figure 5.
Therefore, the window length is defined as the biceps repetition cycle with a fixed size and
without overlapping. From these windows, inter-subject features were extracted.

20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

Time (s)

El
bo

w
 a

ng
le

  (
°)

One 
repetition

Low Moderate High

Weight
shift

Figure 5. Optical fiber sensor signal. The complete repetition of the biceps curl (window) represents
a peak-to-peak distance. The red lines indicate the separation of the fatigue states.

From each cycle of the OFS signal, eight characteristics are extracted: The normalized
duration of each cycle, mean, standard deviation, Root Mean Square (RMS) value, ROM,
mean frequency (MNF), median frequency (MDF), and instantaneous frequency (IMNF) of
the signal. The cycle times extracted from this sensor were taken as a reference to extract
the characteristics of the other sensors.

Concerning the EMG signal, a band-pass filter (4th-order Butterworth filter with
cut-off frequencies of 15 Hz and 450 Hz) is applied to remove the noise and eliminate
the baseline drift caused by motion and DC offset [54–56]. The signal is then normalized
according to the MVC, rectified, and a 200 ms moving window filter is applied to obtain
the signal envelope. Afterwards, the signal is divided into the fatigue states and repetition
cycles for extracting seven features per cycle, including mean, standard deviation, RMS
value, amplitude, MNF, MDF and IMNF.

Lastly, a moving average filter of 30 ms is applied to the IMU sensors (Gyroscope and
Accelerometer in x, y, z) to reduce the noise. They are separated according to the fatigue
states, and 4 characteristics per cycle are extracted, including mean, standard deviation,
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RMS value and signal amplitude. Time-amplitude-related parameters are sensitive to intrin-
sic and extrinsic factors and require normalization of the data to be able to compare inter-
subject data. This estimation is not required for frequency-related characteristics [57,58].
Equation (1) was used for feature normalization. This was calculated regarding the initial
value of each characteristic [59]. This is possible since, in the multidimensional fatigue
questionnaire, the subjects began with a 0 or relaxed state.

fn =
fi
f0

, (1)

where fn is the normalized feature given by fi, which corresponds to each feature ex-
tracted from the time window divided by f0, which is the first feature extracted from the
time window.

Based on the importance of measuring joint kinematics such as angle when performing
fatigue exercises, the eight representative features of the joint position signal are calculated.
During repetitive movements, an increase in movement variability is generated as fatigue
develops [60]. Therefore, the mean value, the variability of movement (standard deviation),
range of motion (ROM), movement duration (t_norm) and the frequency-related variables
such as MDF, MNF and IMNF are calculated. In addition, IMU sensors are used because
they are wearable and non-invasive sensors and are used to detect MF to measure linear
and angular velocities [61,62]. For this reason, components related to the signals, such as
their mean, std, RMS value and amplitude, are extracted. Finally, a widely used method
for fatigue detection is EMG, where it has been studied that alterations and increases in
muscle activity are generated during maximal contractions. It has been confirmed that for
acceleration and EMG data, the average and RMS values are among the best parameters for
feature selection [63]. For this reason, the signal is studied in amplitude (mean, std, RMS,
and amplitude) and frequency (MDF, MNF, and IMNF) [64]. The IMNF value has been
used to assess fatigue in elbow motion derived from the continuous wavelet transform
(CWT), where the value decreased significantly between the non-fatigued and fatigued
conditions [65].

Table 2 shows the 63 features used in the model, including the three sensors used in
the study.

Table 2. Extracted features of the IMUs from neck and wrist, OFS and EMG sensor.

N° Device Feature Description Reference

Mean, standard deviation,
RMS value and amplitude

calculated per elbow repetition
cycle from the IMU located

at the neck. The amplitude is
calculated as the maximum

minus the minimum value from
the IMU located at the neck.

[61,62]

1–4

IMU 1

GyroX
5–8 GyroY
9–12 GyroZ

13–16 AccX
17–20 AccY
21–24 AccZ

Mean, standard deviation,
RMS value and amplitude

calculated per elbow repetition
cycle from the IMU located

at the neck. The amplitude is
calculated as the maximum

minus the minimum value from
the IMU located at the wrist.

[61,62]

25–28

IMU 2

GyroX
29–32 GyroY
33–36 GyroZ
37–40 AccX
41–44 AccY
45–48 AccZ
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Table 2. Cont.

N° Device Feature Description Reference

49–52

FIB_mean
FIB_std

FIB_RMS
FIB_ROM

Mean, standard deviation,
RMS value and Range of

Motion. The ROM is calculated
as the maximum minus the
minimum value from the

elbow joint position signal

[66,67]

OFS

53–56

FIB_tnorm
FIB_MNF
FIB_MDF
FIB_IMNF

Normalized repetition duration,
mean frequency, median

frequency and instantaneous
mean frequency of the

elbow joint position signal

[68]

57–60

EMG_mean
EMG_std

EMG_RMS
EMG_Amp

Mean, standard deviation,
RMS value and amplitude.
The amplitude is calculated
as the maximum minus the
minimum value from the
biceps brachii EMG signal

[11,69]

EMG
Sensor

61–63
EMG_MNF
EMG_MDF
EMG_IMNF

Mean frequency, median
frequency and instantaneous

mean frequency from the biceps
brachii EMG signal

[64,65,70]

2.4.2. Training and Validation

To reduce or eliminate bias in training data in Machine Learning Models, dataset
splitting is commonly used [71]. The dataset can be divided into different sets, and in this
study, the ratio 70:30 train/test split was used. The model is developed using the training
dataset, and its prediction ability is evaluated using the testing dataset [72]. The training
set is then divided into multiple sets and it is trained using cross-validation [71]. This data
resampling method is used to prevent overfitting and evaluate predictive models’ ability.
It applies a learning function to multiple data subsets and then evaluates the resulting
models on different subsets, i.e., test sets or validation that are not used during training.
An estimation of the final model’s performance is the average of the model’s performance
on each subset [73]. Leave-one-out cross-validation (LOOCV) was used, where the number
of folds equals the number of instances or subjects in the training set. In this case, 70% is
equivalent to 21 subjects in the training data [74,75].

2.4.3. Evaluation

There are statistical models, single classifiers, and ensemble models to predict fatigue.
However, by the study’s approach, which is data-driven and application-dependent, no
specific method will be the most effective for the particular application [22].

During the initial analysis, several machine-learning methods were evaluated, includ-
ing Light Gradient Boosting (LGBM), Extra Trees (ET), Random Forest (RF), Bagging (BC),
Decision Tree (DT), K-Neighbors (kNN), Support Vector Machine (SVM), and Logistic
Regression (LR). However, the latter three algorithms were dismissed due to their weak
performance. These algorithms presented accuracy performances below 88% and F1-scores
below 86%. The Python package “Lazy Predict” was used to generate multiple models to
determine the dataset’s most optimal machine learning model.

Subsequently, an optimization of the hyperparameters of each model is performed
using the grid search method where, starting from a subset of hyperparameters, a com-
plete search is performed to obtain the optimal hyperparameters that generate a greater



Sensors 2023, 23, 9291 10 of 23

performance in the algorithm [76]. This was performed on the first five best-performing
classification algorithms, i.e., LGBM, ET, RF, BC and DT.

2.4.4. Feature Reduction

Once the model with greater performance is selected from the training stage, feature
reduction is performed to reduce the number of redundant variables, and the computational
cost [77]. Feature selection chooses a specific amount in a subset of features to minimize
redundancy and maximize the relevance of the class labels in the classification, such as
information gain, relief, and fisher score [78]. This method has been previously used in
muscle fatigue classification studies to optimize the features [79,80]. For this reason, in the
present study analysis, where it is desired to observe the main features that can detect MF
in upper-limb activities, feature selection is used considering the best-performing features
and depending on the number of sensors in practicality and user comfort for future studies.

2.4.5. Model Evaluation (Testing)

The accuracy, precision, recall, and F1 score metrics are evaluated to observe the
test algorithm performance. The Accuracy (Equation (2)) measures the ratio of correct
predictions (TP) in all fatigue states over the total number of instances evaluated (N).

Accuracy =
TP
N

(2)

Precision (Equation (3)) is used to measure the positive patterns that are correctly
predicted (TP) over the total predicted patterns in the positive class, which is divided by
the False Positives (FP), which are the instances that were labelled as one fatigue class by
the model but belonged to another, i.e., how much variability repeated predictions show
compared the true values [81].

Precision =
TP

TP + FP
(3)

Recall (Equation (4)) is used to measure the fraction of positive patterns that are
correctly classified as fatigue states, dividing the TP into False Negatives (FN), which are
the instances classified as other fatigue groups and finally F1score (Equation (5)) represents
the harmonic mean between the recall and precision values [82,83].

Recall =
TP

TP + FN
(4)

F1microscore =
Precision ∗ Recall
Precision + Recall

∗ 2 (5)

3. Results

In total, there are 1240 records from which 70%, i.e., 868 went through the validation
and training stage of the model where the information corresponds to 21 subjects, and
LOOCV is used where the validation k corresponds to the number of subjects, i.e., k = 21.
The other 30% of the records are evaluated as part of the model test corresponding to
372 records. Table 3 shows the number of samples of the three fatigue states in the testing
stage. Low fatigue has the highest number of samples with 37%, followed by high fatigue
with 36% of samples and moderate fatigue with 28% of samples.

Figure 6a shows the increasing behaviour of the amplitude of the biceps brachii muscle
activity in the fatigue test, and Figure 6b shows the decreasing behaviour of the IMNF
during the test. In the section with no muscle activity and a green spectrum, the participants
changed from a lower to a higher weight.
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Table 3. Number of samples of each fatigue state in the dataset.

Fatigue State Number of Samples

Low Fatigue 136 (36.6%)
Moderate Fatigue 104 (28.0%)

High Fatigue 132 (35.5%)

Table 4 presents the performance and evaluation metrics of the best five algorithms.
Since the dataset is unbalanced, it is important to evaluate and compare models using
precision, recall and F1-score [84]. To tune the hyperparameters, the grid search method
was used to optimize the performance of the LGBM, RF, BC ET, and DT classifiers. This
was performed using cross-validation, and the hyperparameters that resulted in the best-
performing result were chosen for further analysis. This process was performed using
Python libraries.

Table 4. Performance of the best five machine learning algorithms with the chosen hyperparameters.
Light Gradient Boosting (LGBM), Random Forest (RF), Bagging (BC), Extra Trees (ET), and Decision
Tree (DT).

Model Hyperparameters Accuracy Precision Recall F-Score

LGBM

bagging_freq = 4
n_estimators = 100

min_child_samples = 8
num_leaves = 181

96.8 96.8 96.8 96.8

RF
n_estimators =1400

max_depth = 40
bootstrap = False

96.2 96.3 96.2 96.2

BC
max_features = 0.7

base_estimator_max_depth = 20
n_estimators = 10

96.2 96.3 96.2 96.2

ET

criterion = log_loss
max_features = auto

min_samples_leaf = 1
min_samples_split = 2

94.6 94.7 94.6 94.6

DT
criterion = gini

min_samples_leaf =1
min_samples_split =8

93.0 93.0 93.0 92.9

The confusion matrix of the best models with parameter optimization is shown in
Figure 7, where the values on the diagonal refer to the correctly estimated values of each
fatigue state model (low, moderate, and high). The x-axis refers to the predicted class and
the y-axis to the true class.

LGBM algorithm was tunned with the maximum number of leaves in each boosting
round’s decision tree ‘num_leaves’ set to 181, determining the balancing model com-
plexity and generalization. Additionally, the fraction of data used in each boosting it-
eration ‘bagging_fraction’ was set to 0.56, contributing to variance reduction. Finally,
‘min_child_samples’ were set to 8, ensuring a minimum number of samples required to
form a new leaf node.

The Random Forest (RF) classifier was tuned with ‘n_estimators set in 1400 decision
trees to collectively make predictions. The minimum number of samples required to split
an internal node ‘min_samples_split’ was set to 2, and the necessary minimum number
to be at a leaf node ‘min_samples_leaf’ was set to 1. To control the depth of each decision
tree, ‘max_depth’ was set to 40 and also managed model complexity. Lastly, bootstrapping
‘bootstrap’, i.e., random sampling with replacement, is not used during tree building ‘False’.
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Figure 6. EMG of the biceps brachii in time and frequency of a test subject. (a) Amplitude muscle
activity and (b) Instantaneous frequency throughout the test.
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Figure 7. Confusion matrix of the best-performing machine learning models estimating muscle
fatigue. Being (a) LGBM, (b) RF, (c) BC, (d) ET, and (e) DT classifiers.

The Bagging Classifier (BC) was optimized with the maximum depth of the individual
base estimator (decision trees) ‘base_estimator_max_depth’ within the ensemble set at 20.
Each base estimator considers only 70% (0.7) of the available features ‘max_features’ when
making split decisions. Lastly, the ‘n_estimators’ parameter is set at 10, implying that the
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classifier employs ten base estimators in the ensemble. The Extra Trees Classifier (EC) was
tuned with the criterion for splitting nodes set to ‘log_loss’, indicating that the classifier
employs logarithmic loss to make splitting decisions. The ‘n_estimators’ parameter was set
to 200, meaning the classifier uses 200 decision trees in its ensemble.

Finally, the Decision Tree (DT) classifier was tuned to enhance performance. The
‘criterion’ was set to ‘gini’, indicating that the Gini impurity is used as the criterion for
making split decisions in the tree and ‘min_samples_leaf’ was set to 1, implying that each
leaf node must contain at least one sample. Also, the efficiency model of each classifier was
extracted from the LazyClassifier, with times of 3.86 s for the LGBM, 0.96 s for the RF, 0.66 s
for the BC, 0.45 for the Extra Trees and 0.08 s for the DT classifier.

An analysis was performed on the feature importance of the best-performing model,
i.e., the LGBM. The feature importance ranking is based on the split importance, which
computes the number of times the feature is used in the LGBM classifier to represent
the importance of that feature. This allows us to observe each feature’s contribution to
improving the model’s predictive ability [85]. Figure 8 shows the feature importance
ranking of the first 33 features out of 63 in total ordered from highest to lowest. It is
observed that among the four most relevant characteristics for the model is the standard
deviation of the acceleration in X of the IMU located in the wrist (14), the IMNF of EMG
(63) and OFS (56) sensors, mean acceleration in Y of the IMU located in the wrist (17) and
amplitude parameters such as the mean of the EMG signal (57).

Figure 8. Feature importance ranking of the first 33 features with the LGBM classifier.

According to the LGBM classifier, performance is explored with different features
and varying the number of sensors to estimate MF. Considering the various combinations
of sensors and each sensor separately, the results are presented in Table 5. It is observed
that the best performance using the three sensors with the least number of features is
obtained with 7 features with an accuracy and F1-score of 93.5%. When evaluating the
sensors separately, EMG has the lowest performance with an accuracy of 78.8%, whereas
the combination of IMUs obtained a more remarkable with ten features (92.2%) over each
IMU separately, with 86.6% for the wrist IMU and 87.9% for the neck IMU. Finally, the
combination of the two IMUs and, the OFS, obtained a higher performance of 95.4% in
all metrics.
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Table 5. Performance of the LGBM classifier for fatigue estimation according to features importance
and number of sensors.

Sensors Features Accuracy Precision Recall F1-Score

EMG,
IMUs,
OFS

5 91.7 91.6 91.7 91.6
7 93.5 93.5 93.5 93.5
11 91.7 91.7 91.7 91.7
16 95.9 95.9 95.9 95.9
33 96.2 96.3 96.2 96.2

EMG 7 78.8 78.3 78.8 78.5

OFS 8 86.6 86.9 86.6 86.7

IMU1 5 86.6 86.2 86.6 86.2

IMU2 4 87.9 87.7 87.9 87.6

IMUs 10 92.2 92.1 92.2 92.1

IMUs,
OFS

13 95.4 95.4 95.4 95.4

4. Discussion

This paper aims to explore an alternative for MF estimation using wearable sensors.
Therefore, different combinations of EMG sensors, OFS and IMUs are discussed, including
their advantages and limitations. The dataset tends to be unbalanced because, in fatigue
studies, the amount of data acquired in low fatigue states tends to be greater than in fatigue
states [35]. However, the highest difference in dataset size occurs between the low and
moderate states with a difference of 8%, corresponding to a slightly unbalanced dataset.
This implies that this percentage difference barely impacts the learner’s performance [86].
This was observed during the tests where the subjects remained in a low fatigue state over
time, and the fatigue perception caused them to increase the scale to a high fatigue state
rapidly. However, upon reaching this state, the muscles begin to condition due to the
physical effort exerted, and most subjects remained in state nine before reaching MF. This is
defined as long periods before failure where a burst of activity of the biceps muscle activity
begins to appear due to more threshold motor units being recruited [87].

Obtaining physiological signals is an indicator to detect MF. EMG sensors provide
information about muscle and physical fatigue by recording the electrical signal from the
muscles. In the time domain, the fatigue is related to an increment of the EMG amplitude
and in the frequency domain tends to decrease [88]. For this reason, MDF and MNF are ex-
tracted since data spectral analysis gives more information about the muscles’ function [89].
Due to a reduction in muscle fiber conduction velocity, the EMG power spectrum is shifted
to lower frequencies during fatigue [90].

Figure 6a shows how the muscle activity increases, at the beginning, with a lower
weight with values lower than 3% and increasing linearly with increasing weight, reaching
higher values, reaching up to 8%. This result is also found in the study of the effects
of MF in the biceps brachii, where the RMS increased as each contraction passed. Also,
Figure 6b shows the frequency spectrum, where the IMNF gradually decreases as the
subject experiences MF. This pattern is also observed in a study of elbow MF detection
by continuous wavelet transform analysis where the IMNF decreases linearly between
non-fatigue and MF [65].

Considering that multiple algorithms were evaluated, the five best-performing algo-
rithms were LGBM, RF, BC, ET and DT. It can be observed in Figure 7 that the low fatigue
state is correctly calculated in all algorithms and starts to mispredict moderate and high
fatigue in the BC, ET and DT. These algorithms tend to predict moderate fatigue as high
fatigue. This occurs due to the robustness of both algorithms. LGBM combines multiple
sub-learners to create a strong learner to complete the learning task [91], and random forest
uses random selection of a subset of features at each node, reducing the correlation between
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trees [92]. The Gradient Boosting Decision Tree (GBDT) is a commonly used machine
learning algorithm for its efficiency, accuracy and interpretability. It has advantages in
multi-class classification problems. Two techniques are integrated into the GBDT algorithm:
gradient-based One-Side Sampling (GOSS) uses the gradients of instances and retains the
larger gradients during downsampling to improve information gain estimation, and the
second method, Exclusive Feature Bundling (EFB), which groups together regular impor-
tant features, making the GBDT algorithm faster. These two methods create the LightGBM
algorithm with improved performance on larger datasets as demonstrated in the current
study [93].

In studies related to estimating MF in manual material handling using wearable
sensors such as EMG, classifiers such as DT, SVM, kNN and RF were used to classify the
risk, indicating DT as the algorithm that best identifies the risk using the NIOSH equation
with a 99%. However, this study is limited since it was performed by only one subject,
which is reflected in the high performances [94]. Similarly, in a study of upper limb MF
detection, RF, SVM and LR were used, where the best performing algorithm was RF with
an accuracy of 87.5% using EMG sensors [95]. As mentioned above, multiple studies focus
on detecting MF using EMG sensors due to their high reliability. Therefore, IMNF, RMS,
and mean EMG are among the most relevant characteristics in this study.

IMUs are widely used to estimate lower extremity fatigue in gait [20]. They have been
used to distinguish gait patterns between fatigue and non-fatigue conditions using machine
learning algorithms obtaining 96% with an SVM classifier [21]. In addition, they have been
used to compare baseline and fatigue dynamic balance control which can capture motor
disturbances [96]. Likewise, there are methods to detect fatigue in the upper-limb where a
relationship has been found between the electrical activity and the angles of rotation of the
forearm and upper arm, also presenting an increase in motion amplitude deviation of the
upper arm [61]. In addition, it has been used to evaluate biceps fatigue using an IMU at
the wrist, observing that fatigue reduces the angular velocity of the biceps, thus increasing
the time to complete a set. By applying machine learning algorithms, an accuracy of 88%
cross-subjects is observed using a feedforward neural network with 16 features [62]. Table 5
shows that only with seven features an accuracy of 93.5% is obtained and using only IMUs
with ten features an accuracy of 92.2% is obtained.

Among the most relevant characteristics in IMU1 (wrist) are the standard deviation of
the amplitude in x and the mean of the accelerometer signal in y, and in IMU2 (neck), the
angular velocity in x and acceleration in x. It is relevant to emphasize that although IMU1
obtained more relevant characteristics because it is the IMU responsible for evaluating the
flexion-extension movement, it is essential to complement it with the IMU2 as the person
begins to perform compensatory movements that are reflected in the accelerations and
angular velocities. Table 5 shows that with five features, IMU1 presents an accuracy of 86.6%
and IMU2, with four features, presents a performance of 87.9%. However, by joining these
inertial sensors, the performance increases to 92.2% with ten features. Fatigue-inducing
repetitive movements alter both local features and reorganization of all movements. During
a fatigued reaching activity, subjects elevated the shoulder, indicating a compensatory
strategy to decrease the load on the shoulder muscle [97]. The videos showed that the
subjects started performing lateral neck flexion and neck forward flexion as the movement
and velocity decreased due to MF.

On the other hand, OFS have been used to measure elbow flexion, ensuring high
sensitivity and repeatability. This type of sensor is used to monitor human joint angles in
rehabilitation environments [98]. In addition, it has been shown to have similar results
with potentiometer behaviour, presenting advantages over goniometers, IMUs and other
types of OFS [99]. However, to the authors’ knowledge, it has not been used for fatigue
detection by continuous assessment of elbow angle in a repetitive task. Considering that
this sensor presents multiple advantages, highlighting its flexibility, lightweightness and
immunity to electromagnetic interference, it can be used in work environments, monitoring
the workers’ joint angles. Figure 8 shows that the most relevant features of the OFS are the
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IMNF, the standard deviation and the time to perform a repetition. As the subjects began
to experience MF, they took longer to achieve the repetition until they could not perform
the complete repetition. Therefore, they presented a reduced range of motion, increasing
the standard deviation and decreasing the motion frequency.

The combination of these three sensors (EMG, IMU, OFS) according to Table 5 with the
best classifier indicates a high performance with 33 features of 96.2% and with 7 features
decreasing to 93.5%. Although EMG is a gold standard method to identify MF, these mea-
surements tend to be misleading in prolonged working environments due to skin sweating
and electrode contact. During hot and humid conditions in paper manufacturing and
outdoor worksites, workers’ sweating increases, limiting the adhesion of the electrodes [19].
In contrast, wearable sensors such as IMUs and OFS offer robust solutions, providing
accurate data in environments with high temperatures and humidity. The integration
of these sensors obtained a 95.4% accuracy with 13 features being a highly reliable MF
estimation. This leads to continuous monitoring throughout working days.

4.1. Practical Applications

The estimation of muscle fatigue employing wearable sensors holds significant poten-
tial in preventing MSD. By providing real-time biofeedback to users, these sensors can alert
subjects when they start experiencing muscle fatigue. This information can be reported
through an intuitive interface through visual or haptic feedback to adjust their posture or
take preventive measures. Currently, this type of feedback is performed for general fatigue
with drivers and operators, therefore, further research is needed for implementation with
muscle fatigue [100].

Additionally, there are occupational exoskeletons designed to support workers in han-
dling heavy loads during repetitive tasks [101]. These exoskeletons have control strategies
that can generate appropriate reference signals to control the speed, torque, or impedance
of the actuated limbs [102]. The algorithm can be implemented to improve the control
strategies of the exoskeletons and generate greater human-robot interaction so that the
device assists only when needed by the user.

4.2. Limitations and Future Works

Among the limitations of this study, since it is a preliminary analysis of the perfor-
mance of wearable sensors and EMG sensors, there is the absence of the use of motion
analysis cameras. It is a technique used in MF analysis and detection [19,103]. However,
the present article focuses on the analysis of fatigue detection with wearable sensors to be
used in future studies to monitor kinematic and kinetic variables in work environments.
Nevertheless, in future works, when assessing workers dynamically, this system is expected
to be included to evaluate compensatory movements in the labour environment.

Furthermore, the model’s efficiency is a limitation of the best-performing algorithms,
with the LGBM having the longest execution time compared to the other algorithms.
However, this is a factor that should be studied in real-time studies to see how it affects
the worker’s biofeedback, and whether in this type of environment, an algorithm with
shorter time and lower performance or with longer execution time and better performance
is required.

Fatigue studies are commonly used for fatigue-inducing tasks. However, studies in
real-life settings must be performed because although they simulate lifting a weight, it
does not reflect the dynamic and complex working environment [104]. In addition, it has
been proven that the subjects’ effort and perception are reduced in simulated tasks [35,105];
therefore, in this work, motivational words were used as encouragement for subjects
to reach a true state of muscular fatigue where they could no longer perform an elbow
flexion-extension repetition. For this reason, future work is expected to evaluate a work
environment where the fatigue detection algorithm can be applied as a preventive measure
in the work task that the users are performing.
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5. Conclusions

MF is a physiological response due to prolonged physical exertion and can lead to
musculoskeletal diseases. Therefore, detecting and monitoring fatigue is relevant, given
the implications for workers’ well-being and safety. In this work, an algorithm for detecting
biceps brachii MF was performed using wearable sensors such as IMUs, OFS and EMG
sensors, obtaining an accuracy of 93.5% with seven features.

Using EMG analysis, the relationship of muscle activity with the progression of fatigue
is confirmed in characteristics related to the IMNF and in amplitude to the mean and RMS
values, observing its contribution in each state of fatigue. It is found that the behavior of
the EMG signals tends to increase in the time domain and to shift to lower frequencies in
the spectrum. This was reflected by obtaining the mean and the IMNF of the EMG among
the best characteristics. However, the performance of exclusively this algorithm shows an
accuracy of less than 80%.

When adding IMUs and OFS, the algorithm leads to higher performance when classi-
fying the fatigue states, obtaining an accuracy of 95.4% with 13 features. This demonstrates
the importance of evaluating elbow angle variations and their accelerations and angular
velocities. This is demonstrated by the most relevant characteristics of the IMU1 (wrist)
being the amplitude and standard deviation of the acceleration in vertical motion. How-
ever, the performance of this IMU1 is 86.6% and when combined with the IMU2 of the
neck, an accuracy of 92.2% is obtained. This indicates the importance of monitoring the
compensatory movements experienced by the subject during induced fatigue in these
repetitive lifting activities. Similarly, with OFS, as they approached a fatigued state, the
repetition time was longer, presenting a reduced ROM and decreasing the frequency of the
flexion-extension movement.

Wearable sensors (IMUs and OFSs) perform better in real-world settings, where EMG
sensors may be limited due to factors such as skin perspiration and electrode contact.
This was observed with a performance of 95.4% with 13 features using IMUs and OFS
compared to using the three sensors with more features (33) and a slight difference in
performance with 96.2% accuracy. Future work is expected to focus on static and dynamic
testing in a work environment using wearable sensors over a longer period during the
workday to include feedback methods and alert users when experiencing muscle fatigue as
a preventative measure.

Author Contributions: Conceptualization, S.O., M.M., C.A.R.D. and C.A.C.; methodology, S.O. and
C.A.R.D.; software, S.O.; validation, S.O.; formal analysis, S.O.; investigation, S.O., M.M., C.A.R.D.
and C.A.C.; resources, M.E.V.S., M.E.M., C.A.R.D. and C.A.C.; data curation, S.O.; writing—original
draft preparation, S.O.; writing—review and editing, S.O., M.M., C.A.R.D. and C.A.C.; visualiza-
tion, M.M., C.A.R.D. and C.A.C.; supervision, M.M., C.A.R.D. and C.A.C.; funding acquisition,
M.E.V.S., M.E.M., C.A.R.D. and C.A.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is partially supported by FAPES (209/2018-Edital Especial CPID). Camilo
A. R. Diaz acknowledges the financial support of FAPES (459/2021), CNPq (310668/2021-2), and
MCTI/FNDCT/FINEP (2784/20).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of the Federal University of Espirito
Santo (protocol code 4.635.835).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://figshare.com/projects/Biceps_Muscle_Fatigue_Dataset_three_states_/181144
(accessed on 13 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

 https://figshare.com/projects/Biceps_Muscle_Fatigue_Dataset_three_states_/181144


Sensors 2023, 23, 9291 18 of 23

Abbreviations
The following abbreviations are used in this manuscript:

BC Bagging Classifier
CWT Continuous Wavelet Transform
DT Decision Tree
EFB Exclusive Feature Bundling
ET Extra Trees
FN False Negative
FP False Positive
GOSS Gradient-based One-side Sampling
GBDT Gradient Boosting Decision Tree
HF High Fatigue
IMU Inertial Measurement Units
IMNF Instantaneous Mean Frequency
k-NN k-Nearest Neighbor
ML Machine Learning
LOOCV Leave-one-out Cross-validation
LGB Light Gradient Boosting
LED Light-emitting Diode
LDA Linear Discriminant Analysis
LR Logistic Regression
LF Low Fatigue
MVC Maximum Voluntary Contraction
MNF Mean Frequency
MDF Median Frequency
MOF Moderate Fatigue
MF Muscle Fatigue
MSD Musculoskeletal Disorders
OFS Optical Fiber Sensors
PCA Principal Component Analysis
RF Random Forest
ROM Range of Motion
RPE Rate of Perceived Exertion
RMS Root Mean Square
SVM Support Vector Machine
sEMG Surface Electromyography
TP True Positives

Appendix A

The multidimensional fatigue questionnaire [49] contains 20 questions to assess 5 di-
mensions of fatigue: General, physical, reduced motivation, reduced activity, and mental.
This is shown in Table A1.

Table A1. Multidimensional Fatigue Inventory (MFI) used in the experimental protocol.

Items Fatigue Type

I feel fit General
Physically, I feel only able to do a little. Physical

I feel very active. Reduced Activity
I feel like doing all sorts of nice things. Reduced Motivation

I feel tired. Reduced Activity
I think I do a lot in a day. Mental

When I am doing something. I can
keep my thoughts on it

Physical

Physically, I can take on a lot. Reduced Motivation
I dread having to do things. Reduced Activity

I think I do very little in a day. Mental
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Table A1. Cont.

Items Fatigue Type

I can concentrate well. General
I am rested. Mental

It takes a lot of effort to concentrate
on things.

Physical

Physically I feel I am in a bad condition. Reduced Motivation
I have a lot of plans. General

I tire easily. Reduced Activity
I get little done. Reduced Motivation

I don’t like doing anything. Mental
My thoughts easily wander. Physical

Physically, I feel I am in an excellent
condition

General
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