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Abstract: This paper proposes a new methodology for the automatic detection of magnetic dis-
turbances from magnetic inertial measurement unit (MIMU) sensors based on deep learning. The
proposed approach considers magnetometer data as input to a long short-term memory (LSTM)
neural network and obtains a labeled time series output with the posterior probabilities of magnetic
disturbance. We trained our algorithm on a data set that reproduces a wide range of magnetic
perturbations and MIMU motions in a repeatable and reproducible way. The model was trained and
tested using 15 folds, which considered independence in sensor, disturbance direction, and signal
type. On average, the network can adequately detect the disturbances in 98% of the cases, which
represents a significant improvement over current threshold-based detection algorithms.

Keywords: inertial measurement; magnetic disturbance; magnetometer; deep neural

1. Introduction

In the past three decades, human motion analysis has witnessed great scientific ad-
vances related to microelectromechanical system (MEMS) technologies. In this respect, the
inertial measurement unit (IMU) stands out, mainly because of its high accuracy and low
cost. Walking speed assessment [1], gait evaluation [2], pedestrian dead reckoning [3], and
activity classification [4] are some of the primary applications.

An IMU fuses physical data obtained from sensors of different natures and then reports
information such as dynamic acceleration, angular rate, or, in most cases, orientation.
A basic configuration considers six degrees of freedom (DOF) using accelerometer and
gyroscope sensors. Although those sensors may be sufficient to estimate orientation, some
errors arise depending on the physical phenomena from each sensor technology, e.g., offset
error, drift, misalignment, noise, or environmental sensitivity.

Most estimating methods solve these problems by adopting three DOF or more
through magnetometers, known as magnetic IMU (MIMU). The magnetometer and ac-
celerometer compensate the drift that occurs during the integration of the gyroscope data,
thereby giving precise 3D orientation [5–7]. The orientation estimation process exploits the
properties of both the Earth’s gravitation and magnetic fields, which are widely known
physical phenomena. The attitude and tilt angles can be estimated by computing the angle
with respect to the vertical direction, assuming that the gravity is much greater than the
external acceleration. However, considering gravity alone is insufficient to determine the
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angle around the vertical axis, i.e., the heading angle. To address this issue, the physical
properties of the Earth’s magnetic field are utilized, particularly its horizontal component.

Even though the Earth’s magnetic field is a valuable aid to having an absolute orienta-
tion reference, the presence of ferromagnetic materials distorts the reference and, therefore,
the orientation.

Many researchers have focused on characterizing the magnetic disturbances, mostly
in indoor applications. The relationship between the distance and the magnetic source
was shown to have the first impact on inertial magnetic orientation sensors [8]. In another
approach [9], the magnetic disturbance’s spatial spread was mapped, thus finding that the
homogeneous magnetic field has a critical dependency with the floor distance. In [5,10],
the authors classified the distortion effects in hard and soft iron. The former is related
to permanently magnetized objects, and the latter is related to objects magnetized by an
external field. Both distortions can be corrected by a sensor calibration process only when
the magnetic environment does not change. However, magnetic fields with variations in
space or time remain challenging to work with.

The literature considers several solutions to this challenge. The simplest solution es-
tablishes a decision criterion when the magnetometer signal is reliable, defining a threshold
in its magnitude [11,12]. Limiting the magnetometer contribution to the heading vari-
able is another common method [13]. A widely used method even isolates up to two
components [6]. In addition, a novel solution suggests a model-based estimation of the
disturbance. For example, ref. [14] considers that the magnetic field direction is estimated
simultaneously with the sensor orientation. Another approach [6] assumes that the mag-
netic field is constant for a given period when using a magnetometer reading taken at the
start of a period as a point of reference. The authors updated the error state calculated
in their Kalman filter using the error pertaining to this reference at each time step. The
accuracy of these methods relies on detecting the disturbance by thresholding or modeling.

In summary, one of the biggest challenges regarding dealing with magnetic distur-
bance in the orientation estimation process is detecting the magnetic disturbances accurately.
We have noticed that the main detection methods consider thresholding or magnetic field
modeling. However, these methods proved to be insufficiently robust. Therefore, we
propose a new methodology for the automatic detection of magnetic disturbances based on
deep learning, specifically using recurrent neural networks (RNNs). The paper is organized
as follows: Section 2 provides a brief description of the background of wearable sensor
systems and the main approaches to deal with magnetic disturbances. Section 3 introduces
the main concepts regarding deep learning methods. Section 4 describes the experimental
methodology based on the reproducible generation of controlled magnetic fields and the
design, training, and testing of the proposed network. Section 5 reports the performance of
the proposed RNNs, and Section 6 discusses the obtained results and the limitations of this
work. Section 7 summarizes the conclusions.

2. Background

A wearable sensor system (WSS) is a device that enables the monitoring of human
activities through an array of sensors installed on a person’s body. Typically, these devices
are used to register such activities over long periods of time [15,16]. The most common
applications of WSSs are the monitoring of biomechanical [17–19] and movement [20–24]
parameters. In the context of physiological monitoring, WSSs have shown to be useful to
detect pathologies [25] and to better plan therapy treatments for patients with neurological,
cardiovascular, or pulmonary diseases [26].

A large body of the literature has been devoted to investigating human movement un-
der different perspectives, such as movement mechanisms [27–30], rehabilitation [31–33],
robotic aids [34–37], or exercising with the help of a virtual trainer [38–40]. The develop-
ment of MEMS technology, and in particular the MIMU sensors, led to small, light, and
affordable solutions to analyze human movement.
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In the following paragraphs, the principles of the MIMUs are described, considering
the principal electronic components and their main issues.

2.1. Basic Principles and Common Issues in MIMU Technology

MIMUs are often used to estimate the position and/or orientation of body parts.
To do so, the properties of each sensor are exploited through sensory fusion strategies.
Nonetheless, there are limitations to each technology that are important to understand. As
shown in Figure 1, the sensors that measure the magnetic field operate on the Lorentz force
principle to move mechanical parts. The magnetic field induces a current in the conductive
loops, which moves under the influence of the Lorentz force and proportionally to the
strength of the magnetic field.

Sensor Use Problem
A) Accelerometer

B) Gyroscope

C) Magnetometer

Separate gravity

Dri�

Magne�c disturbances

Moving up

Figure 1. Comparison of MIMU sensors. In the first column, the physical principles and their
mathematical representations are compared; in the next column, the main use of each sensor is
presented: the accelerometer allows us to estimate the gravity vector; the gyroscope is used to
estimate the rotation angles; and the magnetometer gives the reference of the Earth’s magnetic field.
In the last column, we show the common issues: (A) separate gravity in dynamic conditions; (B) drift
due to intrinsic gyroscope properties; and (C) magnetic disturbances.

The magnetometers, like the gyroscopes and accelerometers, suffer from their own
implementation challenges. A crucial factor influencing the long-term durability of magne-
tometers is their temperature sensitivity. Common approaches have computed corrections
and a temperature-stable environment to increase precision [41]. Typically, manufacturers
include an embedded temperature sensor, which greatly improves the performance of
temperature compensation algorithms.

Magnetometer sensors are also sensible to surrounding electronics and circuitry, which
can distort the measurements of the electromagnetic field (EMF). This problem can be
caused even by the internal circuitry of the MIMU or its battery. Some of these disturbances,
i.e., the stationary ones, can be mitigated with calibration protocols [42,43]. External
elements in the environment can also cause interference in the magnetic readings, such as
ferromagnetic materials (passive disturbance) or electronic devices (active disturbance).
Isolating the effects of such external factors is a challenging and unsolved problem.
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Sensory integration methods [5,6,44,45] integrate the angular velocity over time to
determine the orientation, thereby causing errors to grow rapidly due to the drift of the
gyroscope. For this reason, this approach is mostly suitable for short-term estimation.

Combining the information provided by the accelerometers and the magnetometers is
a means to mitigate the drifts of the gyroscope. In typical implementations, the accelerom-
eter measures the inclination of the body, and the magnetometer measures the magnetic
field, which serves as a compass that provides the orientation of the body. The assumption
that these two variables are always measurable only holds under static conditions—that is,
when the MIMU is not moving. If the MIMU is moving, on the contrary, the accelerometer
will measure both gravitational and dynamic accelerations.

2.2. Dealing with Magnetic Disturbances

Prior knowledge about the behavior of the Earth’s magnetic field, such as its strength
and the dip angle, makes it possible to reject disturbed magnetic measurements. A straight-
forward and computationally efficient solution is to define precise threshold values. How-
ever, threshold adjusting is typically problematic, and for magnetic features near the
threshold value, the algorithm’s behavior can become chaotic. Some examples are provided
in the following.

In [11], measurements from an accelerometer and a magnetic sensor are used to adjust
quaternion predictions made using a gyroscope. Before updating the correction, they
checked the magnetic output sensor. Both the magnetic field norm and dip angle were
compared to thresholds. When at least one of the differences exceeded the respective
threshold, they discarded the magnetic data. If the magnetic measurement was approved,
the noise covariance matrix was used to set the confidence of the readings.

In [12], the authors proposed using a linear Kalman filter (KF). Using the quaternion
from the quaternion estimator (QUEST) algorithm, they updated the quaternion predicted
by the gyroscope in the presence of magnetic disturbances, thus discarding the information
from the magnetometer. A similar case was considered in [11], where the authors compared
both magnetic and accelerometer sensors with thresholds. They proposed to estimate the
prediction values of the magnetic field and gravity. Then, they used them as an input in the
QUEST algorithm if the measurement was discarded instead of the sensed magnetic field.

Another approach to reject magnetic disturbances is model-based. It considers that
the magnetic reading is systematically disturbed by undesired elements, thereby adding
inaccurate and unexpected components in the Earth’s magnetic field. The objective is to
estimate and model magnetic disturbances at each filtering algorithm iteration step in order
to compensate for the unprocessed model. Compared to threshold-based methods, the
computation power increases because the state vectors augment with extra components.
Two main methods have been proposed in the literature.

The first method was presented in [14], which assumes first-order Gauss–Markov
(GM) dynamics. They used three additional state components of the indirect Kalman
filter (IKF) to estimate magnetic disturbance magnitude. The magnetic sensor output was
compensated prior to being employed in updating the anticipated state vector. However,
they compared a threshold method with the magnetic field predicted by the extended
Kalman filter (EKF) to assess the magnetic data reliability.

In [46], a variable-state dimension EKF was proposed. Then, they considered the
first-order GM dynamics under low or null magnetic disturbance conditions. In high-
disturbance conditions, a second-order GM model was built by adding three more states
to the state vector until a low magnetic disturbance condition was detected. The authors
detected disturbances from the difference between the expected and measured fields.

In [47], a linear KF was first used to isolate the Earth’s magnetic field and magnetic
disturbances. Then, both conditions were directly included within the state vector and
predicted through the gyroscope data and a first-order GM model, respectively. Finally,
the sum of the two magnetic vectors defined the magnetic sensor through the linear and
time-invariant measurement model, and the final orientation estimation was produced.
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This approach’s contribution lies in postponing the linear framework to a second step,
where a KF took place.

Both threshold- and model-based methods rely on the accurate detection of the time
instant when the magnetic disturbance occurs. This information is used to reject or com-
pensate the disturbance in the orientation estimation. However, both methods have shown
issues in this respect. In threshold-based methods, the accuracy decreases when the thresh-
old is close to the Earth’s magnetic field or when the threshold is estimated during dynamic
changes to the magnetic field. In model-based methods, the detection algorithm is trained to
learn specific conditions where it works correctly. Otherwise, the model fails in new spaces.

In order to solve these problems, we propose to use deep neural networks, which have
demonstrated excellent performance on complex classification tasks in many areas. The
following section provides a brief description of the main principles and approaches in
deep learning, which are useful for understanding our proposed methodology.

3. Deep Learning Methods

In recent years, deep learning has gained significant success and public interest due
to its ability to extract meaningful patterns from high-dimensional unstructured data,
such as speech recognition [48,49], acoustic modeling [50,51], trajectory prediction [52],
sentence embedding [53], and correlation analysis [54]. Recently, some works also focused
on detecting magnetic anomalies [55,56].

Deep learning techniques are based on neural networks, which are mathematical
representations of how the brain uses several levels of abstraction to interpret input data
and arrive at a conclusion. Neural networks learn complex computation, even though they
are related to traditional statistical models.

Standard feedforward neural networks are designed for independent data points only.
Recurrent neural networks (RNNs) are particularly useful for processing time series or
sequence-based data, where one data point depends on the preceding data point(s). In
order to produce the next output in the sequence, RNNs use the idea of memory to retain
the states or data of earlier inputs. However, some issues arise when modeling extended
temporal sequences with long-term dependencies.

Some approaches addressed these issues by integrating signals with varying time
constants [57] or by introducing leaky units [58]. Nonetheless, another way has stood
out over them, the long short-term memory (LSTM) units, which have proven to be more
effective in solving the training issues with RNNs.

Long Short-Term Memory (LSTM)

LSTM is a type of RNN that is capable of learning long-term dependencies [59]. In
contrast to standard neural networks, LSTM allows loops in its network, because these
loops are able to remember past events and then optimize the input data actions. This
method handles long-range dependencies, thus highlighting many sequential data tasks.
However, a standalone LSTM is suitable for a sequence-based task, where the input is a
sequence, but the output is not. For cases with sequential-type inputs and outputs, it is
possible to use a sequence-to-sequence method.

Sequence-to-sequence LSTM is a specific use case that involves two RNNs together: an
encoder and a decoder. The fundamental concept underlying this architecture is to transfer
an arbitrary-length input sequence to an output sequence that may differ in length from
the input sequence.

4. Materials and Methods

In this section, we describe the deep learning architecture that we proposed for the
automatic detection of magnetic disturbances. We also explain the experimental protocol
that we used to train and test this model. Furthermore, we present the details of the
experimental validation process and the performance analysis indicators.
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4.1. Sequence-to-Sequence LSTM Model

We proposed a model to predict the magnetic disturbance probabilities, which was
applied to magnetometer data recorded at 100 Hz. The model receives as input the three-
axis magnetometer signal, without windowing. Figure 2 shows the step-by-step procedure
of the architecture used to train the neural network.

Figure 2. Neural network architecture to estimate the magnetic disturbance posteriors from magne-
tometer signal.

Each sample is a feature sequence for the neural network’s input layer. Then, we chose
two bidirectional LSTM layers. These layers process feature sequences from the input while
simultaneously modeling information from the past (backward) and future (forward) states
of the sequence.

The output sequence of the second bidirectional LSTM layer passes through a hidden
dense layer of time division, thereby maintaining a one-to-one relationship between the
lengths of the input and the output sequences, i.e., we applied a fully connected dense
layer at each time step, producing an output sequence with exactly the same input length.

To produce the final sequence of probabilities, we connected the time-distributed
hidden layer to the time-distributed output layer using a softmax activation function. This
function is suitable for converting a vector of N real numbers into a probability distribution
with the same number N of possible outcomes.

We trained the networks using a cost function. A crossentropy cost function compares
the predicted probabilities with the true probabilities of the target, thus avoiding the
unbalance of the classes. See Equation (1):

ι =
C

∑
i=1

wi pilog( p̂i) (1)

The percentage of samples from the training set that belong to each class defines the
weight factors wi for each class i = 1 . . . C. We optimized the networks using the Adam
method. Finally, to improve the generalization of the proposed networks, we considered
dropout layers, which are able to correct overfitting, and batch normalization layers, thereby
keeping the mean output close to zero and the output standard deviation close to one.



Sensors 2023, 23, 9683 7 of 15

4.2. Experimental Protocol for Data Generation

We conducted a series of repeatable and reproducible experiments with four 9-DOF
MIMU sensors from Technaid company. We exposed the sensors to various magnetic per-
turbations in both static and dynamic scenarios to collect data for the classification model.
The experiment aims to detect the ability of the proposed sequence-to-sequence LSTM
method to detect the presence of magnetic disturbances. In order to produce the controlled
magnetic field, we used a custom electromagnet based on a solenoid coil. To generate
movement in the MIMU sensors, we used an angular movement generator (electrical motor)
attached to a bar, on which IMU sensors were placed. Figure 3 shows the complete setup.

Figure 3. Experimental setup. We used a 1-DOF device that can produce varying angular positions,
four MIMU sensors (SA and SB are fixed to the joint axes, SD is also connected to the Solenoid to label
the magnetic disturbances states, and SC is located away from the experiment to monitor possible
external anomalies), and one solenoid to produce a magnetic disturbance. The right box shows some
examples of the signals we used: hip, knee, and ankle in the sagittal plane.

Each solenoid was able to generate an artificial magnetic field with values between 40
and 200 microteslas (µT). Although each solenoid was only manipulated by turning the
power supply on and off, the magnetic field disturbance varied depending on the relative
distance and orientation between the MIMU sensor and the axis of the solenoid, which var-
ied according to the angular position of the bar on which the sensor was attached. Figure 4
shows the amplitude changes in the magnetic disturbance due to the change in distance
between the sensor and the solenoid.

Knowing that the electrical motors used to apply motion to the MIMU sensors generate
a magnetic field when a current is applied, we ensured a distance where the magnetic flux
did not affect the measurement of the inertial sensors. To check this, we used a total of four
sensors: two sensors were used to collect the artificial magnetic field Sensor A closest to
the axes joint and Sensor B farthest from the joint axes). Another sensor (Sensor C) was
placed far enough from the experiment, thereby ensuring that there were no other external
sources of magnetic disturbances. One additional sensor (Sensor D) was attached to the
active solenoid to check the ON–OFF condition of the induced magnetic field.
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Figure 4. Change in the amplitude of the magnetic disturbance. The blue plot shows the magnetic
field free of magnetic disturbance. The orange graph shows how the amplitude of the magnetic field
disturbance varies as a function of the distance to the solenoid.

Taking advantage of the mechanical design of the joint, the protocol considers typical
signals of human movement, particularly for the lower body: the sinusoidal signal; flexion–
extension for the hip, knee, and ankle; and a step-by-step signal changing every three
degrees between −80◦ to 110◦. The patterns were reproduced 20 times each, with a time
length between 10 and 200 s. Over these signals, we automatically turned on the solenoid,
thereby disturbing the signals in a controlled way and considering long and short time
disturbances. Finally, to affect the Earth’s magnetic field in different directions, the solenoid
was placed in three locations: in front, below, and to one side of the movement axis, and
these locations were measured by the inertial sensors.

4.3. Experimental Validation

We adopted a crossvalidation scheme as proposed by [60], thus assuming different
sets. We separated the sources of the data hiding one sensor, some types of signal, and the
direction of the magnetic disturbance. Thus, we defined fifteen folds where the training set
was completely independent of the test set. Figure 5 depicts in detail the distribution of
each fold proposed in this experiment. This strategy is known as stratified crossvalidation.

Stratification seeks to ensure that each fold is representative of all types of data.
Usually, this is done in a supervised way for classification and aims to ensure that each
class is (approximately) equally represented across each test fold (and these classes are, of
course, combined in a complementary way to form training folds). In our case, we ensured
that the testing set did not have the same nature as the training data.

Figure 5. Distribution of the database into a nested 15-fold crossvalidation.
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4.4. Performance Analysis

We present the results of our analysis, using the confusion matrix method, to calculate
various metrics that evaluated the performance of our model. Since the purpose of this
work is to detect magnetic disturbances, the positive class represents the state with magnetic
disturbances, while the negative class represents the absence of magnetic disturbances
(disturbance-free).

The true-positive rate (TPR), or sensitivity, is the ratio between the magnetic disturbed
samples (MDSs) that have been correctly classified (true positives: tp) and the total number
of MDSs (number of positives: Np). Notice that Np is equal to the sum of tp and false
negatives (fn). The true-negative rate (TNR), or specificity, is the ratio between homoge-
neous magnetic field (HMF) files that have been correctly classified (true negatives: tn)
and the total number of HMF files (number of negatives: Nn). Nn can be estimated by
adding tn and false positives (fp). Finally, the system’s accuracy is the ratio between all
the hits obtained by the system and the total number of samples. In summary we have
the following:

Sensitivity = TPR = tp
Np = tp

tp+ f n ,
Speci f icity = TNR = tn

Nn = tn
tn+ f p ,

Accuracy = tp+tn
Np+Nn .

(2)

In addition, we included the recall indicator, which measures the proportion of accu-
rately predicted positive cases over the total number of positive cases in the data that the
classifier was able to identify. The F1 score is a metric that combines recall and precision.
Generally speaking, it is defined as the two’s harmonic mean. Simply put, the harmonic
mean is an alternative method for calculating an average of numbers. It is generally ac-
cepted that this method works better for ratios (such as recall and precision) than the
standard arithmetic mean.

Finally, the classification performance was measured at different threshold settings
using the AUC–ROC curve. The AUC (area under the curve) is a metric or degree of
separability, whereas the ROC (receiver operating characteristic) is a probability curve.
It indicates the degree to which the model can discriminate between classes. The model
performs better at predicting 0 classes as 0 and 1 classes as 1, thus indicating a higher AUC.
By analogy, the model’s ability to discriminate between a magnetic field with disturbances
and one that is disturbance-free is shown by the higher AUC.

5. Results

In this section, we present the results of our method alone and in comparison with the
results obtained with a classical decision-making method based on a threshold. Finally, we
show the effect of the temperature as a possible source of errors in the magnetic disturbance
estimation.

5.1. Disturbance Detection Based on Deep Learning

In Table 1, we present the performance of the LSTM sequence-to-sequence architecture,
considering the classifier behavior in each of the folds. We present the results in terms
of accuracy (Acc), AUC, sensitivity (Sens), specificity (Spec), recall, and the F score. The
results of the crossvalidation show that most of the folds achieved high performance,
with accuracy and AUC values above 99% and 0.999, respectively. However, fold-1 and
fold-2 were outliers, with their accuracy values dropping to the ranges of 85% and 92%,
respectively, and their AUC values dropping to the ranges of 0.83 and 0.90, respectively.
The only metrics that remained consistent across all folds were sensitivity and recall, which
were close to 99%. The specificity and F score varied from 76% to 91% for fold-1 and fold-2,
respectively.

The confusion matrix from Figure 6 summarizes the results of the classification model
for the two classes: Class 1, which indicates magnetic disturbance samples, and Class 2,
which indicates magnetic disturbance samples. The columns show the predicted classes by
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the model, while the rows show the actual classes in the data. The diagonal elements (1,1)
and (2,2) represent the correct predictions for each class, while the off-diagonal elements
(1,2) and (2,1) represent the incorrect predictions for each class. For example, element (1,2)
means that the model predicted Class 1 (magnetic disturbance) when the actual class was
Class 2 (no magnetic disturbance).

Table 1. Results for automatic detection of magnetic disturbances. Each fold and average are shown.

Direction Signal Acc (%) AUC Sens (%) Spec (%) Recall (%) F Score (%)

Fold-1 Front Step By Step 85.97 0.834 98.66 76.89 98.66 85.49
Fold-2 Sinusoidal 92.53 0.906 99.86 87.38 99.86 91.70
Fold-3 Hip 99.83 0.998 99.98 99.72 99.98 99.80
Fold-4 Knee 99.93 0.996 99.98 99.90 99.98 99.92
Fold-5 Ankle 99.88 0.997 99.98 99.81 99.98 99.86

Fold-6 Below Step By Step 99.84 0.998 99.98 99.74 99.98 99.81
Fold-7 Sinusoidal 99.86 0.999 99.98 99.77 99.98 99.84
Fold-8 Hip 99.84 0.999 99.98 99.74 99.98 99.81
Fold-9 Knee 99.91 0.994 99.98 99.87 99.98 99.90
Fold-10 Ankle 99.84 0.993 99.98 99.73 99.98 99.81

Fold-11 Side Step By Step 99.83 0.998 99.98 99.71 99.98 99.80
Fold-12 Sinusoidal 99.91 0.997 99.98 99.86 99.98 99.89
Fold-13 Hip 99.87 0.996 99.98 99.78 99.98 99.85
Fold-14 Knee 99.92 0.997 99.98 99.88 99.98 99.91
Fold-15 Ankle 99.88 0.996 99.98 99.80 99.98 99.86

Average 98.46 0.986 99.88 97.44 99.88 98.35

1 2

Predicted Class

1

2

T
ru

e 
C

la
ss

722,207 21,697

742551,150 

Figure 6. Confusion matrix of number of samples. Class 1 represents magnetic disturbed signals, and
Class 2 represents no disturbed ones.

5.2. Comparison with Threshold-Based Methods

Table 2 shows the results of threshold-based decision making in terms of accuracy,
sensitivity, specificity, recall, and F score. For this experiment, we present the averages and
their standard deviations, which were obtained from the test of all folds.

The results consider the threshold applied to the total magnetic field. We have eval-
uated two threshold cases. The first is Case I: the threshold was estimated from a time
window where the magnetic field was not disturbed. The second is Case II: time window
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conditions were not controlled. There may be a combination of dynamic or static with
disturbed or undisturbed. This means that the threshold may have had different levels of
interference or stability, which can affect the performance of the decision.

Table 2. Threshold decision-making methods.

Acc (%) Sens (%) Spec (%) Recall (%) F-Score (%)

Case I 92.50 ± 10.37 98.99 ± 1.91 87.64 ± 16.80 98.99 ± 1.91 92.58 ± 10.50

Case II 86.99 ± 6.21 93.11 ± 12.55 81.25 ± 11.51 93.11 ± 12.55 86.28 ± 7.91

5.3. Magnetic Disturbances Due to Changes in Temperature

Temperature is a key factor, since it can generate a drift in the magnetometer mea-
surement. However, this phenomenon has been widely addressed in the literature. The
commercial device considered in this study already included a temperature compensa-
tion algorithm. Figure 7 shows the variation in the magnetic field, estimated with the
magnetometer, as a function of temperature variation.

Figure 7. Performance of the magnetometer temperature compensation algorithm. We considered
a temperature range between 16 and 45 degrees Celsius. The sensor remained in a temperature
chamber without movement and with constant temperature change.

6. Discussion

We proposed a new methodology for the automatic detection of magnetic disturbances
using MIMU sensors. We found an architecture capable of modeling our problem while
avoiding the use of thresholds. To our best knowledge, there are no reported works that
allowed for the detection of magnetic disturbances with high discriminant capacity based
on purely magnetic information.

On average, the sequence-to-sequence classification process reached high performance
values with an accuracy of 98.5% and with specificity and sensitivity values over 97%. In
the same way, the recall and F score values showed high performance. When we checked
fold by fold, we found that the sensitivity was very consistent, thus reflecting the increased
capacity of the classifier to correctly detect a sample as a magnetic disturbance. Instead,
the specificity showed greater variability, with the lowest value of 76% and a range of
variability of 24 percentage points. This high variation represents the fluctuation in the
correct detection of magnetic-free samples. Another performance indicator is the area
under the receiver operating characteristic curve (ROC curve). In this respect, the folds has
similar behavior with a deviation of less than 1%. The only value less than 90% was the
fold-1, which was expected given its performance in terms of specificity.

We adopted a deep learning model that applied LSTM networks on a sequence-
to-sequence classification problem. The main difference between our approach and the
existing models is the use of two bidirectional LSTM layers, instead of one. We observed
that this choice improved the classifier’s performance in terms of time and accuracy.
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Since the accelerometer and gyroscope are inertial sensors, they only react to move-
ments on these devices, not to changes in the magnetic field. Thus, we excluded them from
the classifier inputs and used only the three-axis magnetometer information. This has the
benefit of not relying on motions, and being applicable to both static and
dynamic situations.

Another important result of this work is the generation of a controlled and reproducible
dataset of magnetic disturbances, which allowed us to compare our algorithm with a
threshold-based method proposed in the literature. This data set can be used, or reproduced,
as a valuable reference for benchmarking.

The results, shown in Table 2, demonstrate the better performance and stability of
our method in both static and dynamic conditions, thus highlighting the limitations of
current methods. The performance of threshold-based methods is very sensitive to the
time and place where the magnetic field measurement is performed in order to calculate
the threshold. When this was calculated during undisturbed magnetic field conditions,
as in Case I, the performance was higher than in dynamic conditions (Case II), where the
threshold may have been defined in a disturbed magnetic field.

Limitations and Future Work

Although our methodology demonstrated high accuracy in the automatic detection of
magnetic disturbances, we must clarify that this type of architecture, based on bidirectional
LSTM networks, does not allow for real-time applications. This is an intrinsic limitation
of LSTM networks, which take advantage of the future of the signal to improve detection
accuracy. An interesting future direction is to develop architectures that allow for real-time
processing considering only past information in the time series.

This work has been motivated by the need to improve the performance of orientation
estimation algorithms, mainly in applications involving human biomechanical analysis. For
this reason, the angular motion generator considers human-like movements for reproducing
those found in the most relevant lower limb human joints, such as the hip, knee, and ankle.
However, this work does not rely on real human data, but considers only a 1-DOF circular
motion. We did not consider high-frequency movements such as vibrations, because human
movements, in general, do not have this characteristic.

This work is limited by measurements performed at constant temperature. However,
as a mitigation to this limitation, we could verify that the sensor presents a stable behavior
in the temperature range recommended by the manufacturer (16–45 degrees Celsius), with
no deviations in the magnetic field estimation. This allowed us to rule out false positives in
the detection caused by temperature changes.

Future work will consider the integration of this automatic magnetic disturbance de-
tection in the orientation estimation processes of the motion capture system as a whole. The
most important models of sensory fusion have specific modules for magnetic disturbance
compensation. This integration could lead to significant improvements in disturbance
compensation or rejection strategies.

7. Conclusions

This paper proposes a novel algorithmic approach for the estimation of magnetic dis-
turbances in MIMU-based applications. Our main contribution resides in the development
of a deep learning architecture that uses an LSTM sequence-to-sequence approach to model
the detection of perturbed magnetic fields. Our model achieved an average accuracy of 98%
under a wide variety of magnetic disturbances and motion dynamics. We used stratified
folds to split the data, thereby ensuring that the training and test sets were independent
and diverse. In this way, we reduced the network bias and obtained more trustworthy
validation results.

In addition, we designed an experimental protocol for the generation of both magnetic
field perturbations and MIMU motion patterns, which is in agreement with the benchmark-
ing principles of repeatability, reproducibility, and rigor. The experiment simulated various



Sensors 2023, 23, 9683 13 of 15

realistic scenarios, thus allowing us to train a reliable discrimination model that can be
deployed in real human motion analysis use cases.

These results confirm our ability to estimate orientation more precisely by considering
the probability of sensing the magnetic disturbances and achieving high success rates.
We believe that integrating our architecture in the state-of-the-art orientation estimation
methods will improve the performance of current state-of-the-art motion analysis systems.
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