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Abstract: Aiming at the problem of the remaining useful life prediction accuracy being too low
due to the complex operating conditions of the aviation turbofan engine data set and the original
noise of the sensor, a residual useful life prediction method based on spatial–temporal similarity
calculation is proposed. The first stage is adaptive sequence matching, which uses the constructed
spatial–temporal trajectory sequence to match the sequence to find the optimal matching sample
and calculate the similarity between the two spatial–temporal trajectory sequences. In the second
stage, the weights of each part are assigned by the two weight allocation algorithms of the weight
training module, and then the final similarity is calculated by the similarity calculation formula of
the life prediction module, and the final predicted remaining useful life is determined according
to the size of the similarity and the corresponding remaining life. Compared with a single model,
the proposed method emphasizes the consistency of the test set and the training set, increases the
similarity between samples by sequence matching with other spatial–temporal trajectories, and
further calculates the final similarity and predicts the remaining use through the weight allocation
module and the life prediction module. The experimental results show that compared with other
methods, the root mean square error (RMSE) index and the remaining useful life health score (Score)
index are reduced by 12.6% and 14.8%, respectively, on the FD004 dataset, and the RMSE index
is similar to that in other datasets; the Score index is reduced by about 10%, which improves the
prediction accuracy of the remaining useful life and can provide favorable support for the operation
and maintenance decision of turbofan engines.

Keywords: turbofan engine; sequence matching; similarity calculation; remaining useful life

1. Introduction

With the continuous improvement of industrialization, the structure of industrial
equipment has become increasingly complex. For the aviation industry, the aircraft engine,
as the most important core component of an aircraft, directly determines whether the
aircraft can operate stably and reliably. Due to the harsh environment of high temperature
and high pressure that the engine is subjected to for long periods, it is prone to engine
performance degradation. At the same time, as a highly sophisticated thermomechanical
device, repairing a failed engine is extremely difficult, leading to irreparable losses. The
turbofan engine, as a typical type of aircraft engine, is used in various types of aircraft.
However, due to its complex operating conditions and large amount of data, predicting the
remaining life of a turbofan engine is quite challenging. Therefore, how to extract effective
features from the data and accurately predict the remaining useful life of an engine has
become a hot topic and a difficult problem in the field of industrial life prediction.

There are three types of existing remaining useful life (RUL) prediction models: model-
based methods, data-driven methods, and hybrid methods [1,2]. Model-based methods
include physical model-based methods and statistical model-based methods. The physical
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model-based methods for RUL prediction are mainly derived from reliability theory re-
search. They analyze a large amount of experimental data obtained throughout the lifecycle
of mechanical equipment, and then utilize mathematical statistics and probability theory
to analyze and process the data, thereby obtaining statistical predictions of RUL based on
reliability criteria. Kim et al. [3] proposed a physics-based Markov chain model to identify
degradation pathways of lithium-ion batteries. By analyzing the direct correlations between
phenomena and states, they used capacity measurements to identify degradation pathways
and predict the remaining useful life. Statistical model-based methods, also known as
empirical model-based methods, estimate the RUL of machinery by establishing statistical
models based on empirical knowledge. Usually, the RUL prediction results are presented
as conditional probability density functions based on observation results. Zhang et al. [4]
proposed a statistical feature fusion method based on statistical quantities for equipment
health condition assessment. This method has advantages in terms of decoupling indi-
cators and fusing multi-source information. The aforementioned model-based methods
not only require measured parameters from actual engineering systems but also rely on
extensive prior knowledge [5] during the model construction process. They depend on
certain levels of expert experience, which may hinder their applicability in transfer learning
and domain development.

With the continuous development of artificial intelligence, machine learning [6] and
deep learning [7] are gradually being applied to life prediction. At the same time, due
to the widespread use of sensors, data-driven [8] methods are receiving more and more
attention as it is easier to obtain monitoring data for devices. Ren et al. [9] proposed
an adaptive sensor weighting (TGE-ASW) method based on a time-varying Gaussian
encoder to address the issue of difficulty in building representative features for multiple
sensor raw signals with noise. They used an adaptive sensor weighting strategy and built
a convolutional neural network (CNN) to predict RUL by obtaining advanced feature
representations. Chen et al. [10] addressed the problem of little research using graph neural
networks (GNN) to capture spatial correlations between sensors, by introducing sensor
embedding and proposing a new RUL prediction model based on ConvGAT. Hu et al. [11]
proposed a deep bidirectional recursive neural network (DBRNNs) integration method.
In this method, several DBRNNs with different neuron structures were constructed to
extract hidden features from sensory data for predicting the remaining useful life of aircraft
engines. Li et al. [12] addressed the problem of increasing complexity of degradation
characteristics of aircraft engine components during flight with multi-operating work
points (MOP) and proposed a deep learning fusion algorithm based on a self-attention
mechanism (SAM). This algorithm uses a one-dimensional CNN to extract spatial features
and a long short-term memory(LSTM) network [13,14] to fuse the measurement data of
one component, and extracts time features from actual measured data.

Combining model-based and data-driven methods [15] into hybrid approaches can
overcome the limitations of both methods. However, due to the complexity and high
cost of the models, the development of hybrid methods has not been very successful,
and there is limited research in this area. Hybrid algorithms aim to address the short-
comings of the model-based approaches by combining them with data-driven methods.
Khumprom et al. [16] used an evolutionary selection method to choose features from the C-
MAPSS aircraft gas turbine engine dataset, and then applied the selected features to train a
hybrid convolutional long short-term memory (CNN-LSTM) deep neural network for RUL
prediction. XueBin et al. [17] proposed a diagnostic method for predicting remaining useful
life based on degradation trajectory similarity. They first accurately constructed degradation
trajectories using convolutional neural network autoencoders and attention mechanisms.
Then, they used a new similarity matching rule to evaluate the similarity of degradation
trajectories. The results showed that this method has good predictive performance and low
sensitivity to sample size, and can be easily incorporated into similarity-based frameworks.

Although neural networks have shown promising performance in predictive tasks,
there are several challenges in current research:
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(1) The impact of spatial characteristics on mechanical life prediction may vary in different
working environments. In such cases, it is a challenging problem to integrate time
features and spatial features to improve trajectory similarity.

(2) Due to the presence of noise and other interferences in the raw signals from sensors,
there may be issues with improper allocation of feature weights during similarity
calculation, thereby affecting the final prediction results.

To address the aforementioned issues, this study proposes a life prediction model
based on spatial–temporal similarity calculation, aiming to enhance the accuracy of RUL
predictions. Firstly, certain features exhibit minimal variation throughout the entire time
span and carry little information. Including all features directly in the model would result
in longer training time. Therefore, this study adopts an adaptive feature selection method
to eliminate features that remain unchanged during the lifecycle, thus resolving the issue
of data redundancy. Secondly, within the selected features, spatial characteristics are
identified, and a modified longest common subsequence (LCSS) algorithm is utilized to
calculate the similarity of spatial–temporal trajectories, thereby improving the accuracy
of similarity calculation. Finally, the weight training module of the life prediction model
is used to assign the feature weights of the remaining parts, and then the final prediction
RUL is generated by the life prediction module of the life prediction model.

2. Definition of Terms

The dataset used in this study is the NASA dataset, where each set of degradation
trajectory data consists of the engine ID, rounds, three configuration parameters, and
measurement data from 21 sensors. Prior to adaptive matching, certain preprocessing
steps need to be applied to the dataset [18]. Due to the uniqueness of the dataset and the
subsequent algorithm descriptions, it is necessary to define relevant terms required for
the algorithms.

Definition 1. Spatial–Temporal Trajectory Sequence.

The environmental type of an engine can be represented by a triad of attributes, namely,
flight altitude, Mach number, and flight speed, defined as envor = {param_1, param_2,
param_3}, where param_1 represents configuration parameter 1, param_2 represents con-
figuration parameter 2, and param_3 represents configuration parameter 3. The set of
environmental types is defined as E = {envor_1, envor_2, . . . , envor_n}, where n is the total
number of environmental types. A spatial–temporal event at time t is represented as a tuple
event = (t, e), where t is the occurrence time of the event and e is an environmental type from
the set of environmental types E. A spatial–temporal trajectory sequence is represented as
L = {event_1, event_2, . . . , event_n}, where n is the total number of space-time events in the
trajectory sequence.

Definition 2. Remaining Useful Life (RUL) Metric.

Since the dataset does not provide a specific indicator for lifespan, after analyzing the
dataset, the number of rounds from the engine’s healthy state to failure state is considered
as the lifespan indicator. The formula for calculating the RUL is defined as follows:

RUL = max(Ti)− 1 + t (1)

where i represents the current engine ID, T represents the operating sequence of the current
engine ID, max(Ti) represents the maximum number of flight cycles for engine with ID,
and t represents the flight cycles at the current time.

Definition 3. Matching Result Set.



Sensors 2023, 23, 9748 4 of 16

During the matching process of the matching algorithm, in order to better explain
the matching process, the spatial–temporal trajectory sequence of the test set engines is
defined as the original string (initial), and the spatial–temporal trajectory sequence of
the training set sample engines is defined as the mother string (haystack). After each
matching operation, there can be either a successful match or a failed match. When
a successful match occurs, a substring (needle) is obtained. The matching cycles are
defined as fitCycle = {c_1, c_2, . . . , c_n}, where n is the length of the substring, and c_1,
c_2, c_n correspond to each cycle of the substring. The matching sequence is defined
as fitSeries = {number, fitCycle_1, fitCycle_2, . . . , fitCycle_n}, where number represents the
engine ID of a successful match, and the subsequent n matching cycles are the matching
cycles of n successful matches. The matching results are defined as fitResult = {fitSeries_1,
fitSeries_2, . . . , fitSeries_n}, where n is the number of successful matches. The matching
result set is defined as fitresultSet = {fitResult_1, fitResult_2, . . . , fitResult_n}, where n is the
number of engines in the test set. The matching result set contains the matching results of
all engines in the test set and will be used for subsequent similarity calculation algorithms.

Definition 4. Spatial–Temporal Similarity.

To calculate the similarity of sequence matching, the following formula is defined:

SimLCSS =
LCSS(needle, haystack)× 2

lenneedle + lenhaystack
× lenneedle

leninitial
(2)

where SimLCSS is the space–time similarity; neddle is the substring when a successful
match occurs; haystack is the mother string when a successful match occurs; initial is the
initial substring; LCSS(needle, haystack) is the length of the longest common subsequence
between needle and haystack; lenneedle, lenhaystack, leninitial are the lengths of needle, haystack,
initial, respectively.

Definition 5. Sensor Parameter Error.

In order to ensure that the parameters of each sensor are not affected by dimensionality,
data normalization is performed. The following formula is used to restrict the data to the
range [0, 1.0]:

xscale =
x− u

S
(3)

where x is the value to be normalized, xscale is the normalized value. u represents the mean
of the sample, and S represents the standard deviation of the sample.

To calculate the sensor parameter error for a successful match, using the matching se-
quence obtained from the engine ID and matching cycles to calculate the Euclidean distance
between the matching sequence and the matching sequence in the training set samples.
The Euclidean distance for each parameter of these two sequences is then calculated based
on the weights obtained from PCA weighting. This calculation yields the sensor parameter
error for a successful match.

δ =
∑n

i=1

√
∑8

j=1 Wj(nparmj − hparmj)2

n
(4)

where i represents one of the n engine numbers, Wj represents the weight coefficient for
sensor parameter j, and nparmj and hparmj, respectively, represent the sensor parameters
of the substring needle and the mother string haystack with index j.

Definition 6. Similarity Calculation Formula.
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After performing the above operations and obtaining the spatial–temporal similarity
and sensor parameter error, firstly the sensor parameter error is converted into sensor
parameter similarity. To combine the similarities of different parts [19,20], a weighted
training model is used to allocate weights to these two similarities. In order to compare the
similarity of each matching cycle, a similarity formula is defined.

Sim =
WsSimLCSS + Wδe−δ

max(SimLCSS, e−δ)
(5)

where SimLCSS is the spatial–temporal similarity; e−δ is the sensor parameter similarity; Ws,
Wδ are weights assigned to SimLCSS and e−δ, respectively; max(SimLCSS, e−δ) represents
the maximum value between SimLCSS and e−δ.

3. Methods of This Study
3.1. Overall Flowchart

The flowchart of the life prediction model based on similarity calculation is shown in
Figure 1. The specific steps are as follows:

Start

Data preprocessing

Standardization

Generating 
spatial-temporal 

sequence

Sequence matching

Calculate 
spatial-temporal 

similarity

Training weight

Finish training

Forecast remaining 
useful life

Calculate 
evaluation index

Select test set

End

Figure 1. Overall flowchart of the model.

Step 1. To preprocess the training set and test set data, feature selection is performed
using clustering methods and PCA dimensionality reduction. This process also
retains the PCA weights of the selected sensor parameters.
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Step 2. After feature selection, the data are standardized to ensure consistent scales.
Meanwhile, spatial–temporal sequences are generated from the preprocessed data
for use in subsequent matching algorithms.

Step 3. The matching result set for all training set engines is obtained using the improved
LCSS algorithm.

Step 4. The matching result set obtained in Step 3 is utilized to calculate the spatial–
temporal similarity and sensor parameter similarity for each successful match.

Step 5. The training module of CRITIC weights is iterated using the spatial–temporal
similarity and sensor parameter similarity obtained in Step 4. After completing
the training, the weights for each component are determined.

Step 6. The final similarity is calculated and the corresponding RUL using the life predic-
tion module is obtained.

Step 7. The test set for testing is selected and the evaluation metrics are calculated.

3.2. Similarity Calculation Algorithm

After applying the LCSS matching algorithm, we can obtain a set of successful match-
ing sequences from the result set. Within each successful matching sequence, the first
element represents the engine ID in the training dataset when the match is successful. The
subsequent elements in the matching sequence correspond to all the rounds in the training
dataset that match with the target sequence. By analyzing this set, we can extract important
information such as the length of the sequence and the rounds in which the sequence occurs
in the training dataset. Once we have obtained this information, we can use the similarity
calculation Algorithm 1 defined in this study to calculate spatial–temporal similarity and
sensor parameter errors. The algorithm inputs include the matching result (fitResult),
individual engine data from the test set units (testEngineData), and the all training set units
(trainSet). The fitResult records critical matching information, while testEngineData can
obtain the initial length of the sequence and calculate sensor parameter errors based on the
matching result and the sensor parameters of the trainSet. The calculated spatial–temporal
similarity and sensor parameter errors are then used as inputs for the weight training
model. The weight training model uses these inputs to train the weights. After got the
training weights, we can obtain the final similarity descending table and corresponding
predicted RUL by applying the weights to calculate the similarity.

Algorithm 1 Similarity Calculation Algorithm

Require: Training set trainSet, Test engine data testEngineData, Matching result fitResult
Ensure: Sorted similarity and corresponding predicted RUL {Sim, RUL}

m← f itResult.length
for int i=1 to m do

f itSeries← f itResult[i]
turbine_number ← f itSeries[0]
n← f itSeries.length
for j=1 to n do

f itCycle← f itSeries[j]
lenneedle← f itCycle.length
lenhystack← f itCyle[last]− f itCycle[ f irst] + 1
leninitial ← testEngineData.length
SimLCSS = LCSS(needle,haystack)×2

lenneedle+lenhaystack
× lenneedle

leninitial

δ =
∑n

i=1

√
∑8

j=1 Wj(nparmj−hparmj)2

n

Sim = WsSimLCSS+Wδe−δ

max(SimLCSS ,e−δ)

end for
end for
return

{
Sim, RUL

}
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The calculation process is as follows:

(a) Retrieve the length of the match result set, fitResult.
(b) Iterate through the match result set to extract the matching sequences. Obtain the

engine ID in the training dataset when a match is successful, as well as the length of
the matching sequence.

(c) Calculate the lengths of the substring (needle) and the main string (haystack) by
taking the difference between the length of the match rounds and the starting point.
Obtain the initial substring length, initial, from the test engine data in the input. Use
the formula to calculate the spatial–temporal similarity and sensor parameter errors
between the sequences.

(d) Train the weights for each component using the calculated spatial–temporal similarity
and sensor parameter errors. Use these weights in the lifespan prediction module to
obtain the final sequence similarity.

(e) Return the sequence similarity descending table.

4. Experiment and Result Analysis
4.1. Introduction to Experimental Platforms and Datasets

The experimental environment for this study is shown in Table 1.

Table 1. Experimental environment.

Item Parameter

Operating system Windows10
CPU CoreTMi7—6820 HK

Frequency 2.70 Ghz
Storage 240 G + 240 G
Memory 16 G

Algorithm simulation Python3.9.0, Anaconda4.2.0

In order to verify the predictive performance of the proposed model, using NASA’s
prognastics centre of excellence (PCoE) turbofan condition monitoring data commercial
modular aeropropulsion system simulation software (C-MAPSS) [21], we simulated the
whole process from operation to failure of turbofan engines under different environmental
conditions to obtain experimental data sets. The structural model of the turbofan engine is
shown in Figure 2. The dataset includes simulated data of the full life cycle of the turbofan
engine and the remaining life value collected at a certain moment. The dataset consists
of four sets of data: FD001, FD002, FD003, and FD004, each of which is collected under
different operating conditions and fault modes, as shown in Table 2.

Each set of degradation trajectory data consists of an engine ID, rounds, three types
of setting parameters, and measurements from 21 sensors, as described in Table 3. In
the experiment, the cycle number is used to reconstruct the RUL of the turbofan engine.
The impact of the 3 setting parameters and 21 sensor measurements on the RUL can
exhibit positive correlation, negative correlation, no correlation, or uncertain relationship.
Therefore, it is necessary to perform feature selection on the data [22] to eliminate irrelevant
variables, identify important features, and reduce computational burden [23]. Based on the
above definition, the degradation trajectory data of the first engine in the FD004 dataset
was analyzed, and it was determined that the three setting parameters are correlated with
the RUL. Combined with a correlation analysis of the sensor parameters in Figure 3, the
final selection included sensors 7, 8, 9, 12, 13, 14, 20, and 21 as the usable features.
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Figure 2. Turbofan engine structure model.

Table 2. C-MAPSS datase.

DataSets Train Set Units Test Set Units Conditions Fault Modes

FD001 100 100 1 1
FD002 260 259 6 1
FD003 100 100 1 2
FD004 248 249 6 2

Table 3. Description of turbofan engine sensor parameters.

Index Description Symbol

1 Total temperature at fan inlet °C
2 Total temperature at LPC outlet °C
3 Total temperature at HPC outlet °C
4 Total temperature at LPT outlet °C
5 Pressure at fan inlet psia
6 Total pressure in bypass-duct psia
7 Total pressure at HPC outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm

10 Engine pressure ratio (P50/P2) –
11 Static pressure at HPC outlet psia
12 Ratio of fuel flow to Ps30 pps/psi
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio –
16 Burner fuel–air ratio –
17 Bleed enthalpy –
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 HPT coolant bleed lbm/s
21 LPT coolant bleed lbm/s
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Figure 3. Sensor parameter heat map.

4.2. Analysis of Experimental Process and Results

After performing data preprocessing such as feature selection and standardization on
the dataset, spatial–temporal sequences are generated and training samples are constructed.
The engine data in the test set are then matched with the training samples based on sequence
matching; the matching process is shown in Figure 4.

Environmental type 
sequence

Generate 
spatial-temporal 

squences

LCSS Sequence 
matching

Result Set

Cut off the excess

Cut out current 
round

Whether out of 
length

Whether the match 
is successful

Start

End

Stage1: Determine 
environmental  type  and 
generate spatial-temporal 
sequences

Stage2: Perform sequence 
matching and obtain 
result sets

Figure 4. Sequence matching algorithm flowchart.
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Matching process:

(a) Obtain the spatial–temporal trajectory sequences of the test engine and all the spatial–
temporal trajectory sequences of the training samples.

(b) Check if the spatial–temporal trajectory sequence of the test engine exceeds the max-
imum length of the spatial–temporal trajectory sequences in the training samples.
If it does not exceed the maximum length, the spatial–temporal sequence can be
directly generated. If it exceeds the maximum length, it needs to be truncated before
generating the spatial–temporal sequence.

(c) Perform sequence matching between the current spatial–temporal trajectory sequence
and the spatial–temporal trajectory sequences in the training samples. If the match
is successful, the process ends. Otherwise, truncate the first round of the current
sequence and perform sequence matching again until a successful match is found.

(d) After a successful match, record the engine number and matching round for each
successful match. Package all the matching rounds to obtain the matching result set,
which will be used for subsequent similarity calculation and weight training models.

Before applying the sequence matching algorithm, it is necessary to generate the
spatial–temporal trajectory sequences. The specific parameters for the environmental types
in various spatial–temporal events are shown in Table 4:

Table 4. Environment type parameter table.

Number Height Mach Number Velocity

A 0± 0.01 0± 0.01 100
B 10± 0.01 0.25± 0.01 20
C 20± 0.01 0.70± 0.01 0
D 25± 0.01 0.62± 0.01 80
E 35± 0.01 0.84± 0.01 60
F 42± 0.01 0.84± 0.01 40

After generating the spatial–temporal sequences that meet the criteria, we can proceed
with the sequence matching against the spatial–temporal sequences in the training set. Let
us assume that the test sequence is ABBCD and the training sequence is AFBBDB. The
matching process is shown in Table 5 below. Eventually, we can obtain the longest common
subsequence of these two sequences as ABBD.

Table 5. The matching process for the sequence matching algorithm.

A F B B D B

A 1 1 1 1 1 1
B 1 1 2 2 2 2
B 1 1 2 3 3 3
C 1 1 2 3 3 3
D 1 1 2 3 4 4

After completing the sequence matching, the spatial–temporal similarity and sensor
parameter errors are calculated using a formula. These values are then used as inputs for
weight training module. Once the weight training is completed, the remaining useful life
prediction can be obtained using the life prediction module. The comparison between the
predicted and real values for the FD001, FD002, FD003, and FD004 datasets is shown in
Figures 5–8.
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Figure 5. Comparison of predicted value and real value of FD001 dataset.
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Figure 6. Comparison of predicted value and real value of FD002 dataset.
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Figure 7. Comparison of predicted value and real value of FD003 dataset.
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Figure 8. Comparison of predicted value and real value of FD004 dataset.

From the above comparison between predicted and real values, it can be seen that
the predicted RUL is quite close to the real RUL labels. This validates the effectiveness
and feasibility of the proposed method. To further evaluate the prediction performance
of the model, this paper adopts two evaluation metrics to assess the reasonability and
accuracy of the predicted results. For an engine degradation scenario an early prediction
is preferred over late predictions. RMSE reflects the degree of fit between the predicted
RUL and the real RUL, with a smaller score indicating better performance. And Score
reflects the reasonableness of the RUL predictions, also with a smaller score indicating
better performance. Different from RMSE, Score pays more attention to the true time of
failure, and uses different parameters in the function to control the magnitude of penalties
for late and early predictions. It can be observed that there is a more severe penalty for late
predictions. It is expressed as follows:

Score =


∑N

i=1

(
e−

Ei
10 − 1

)
, Ei < 0

∑N
i=1

(
e−

Ei
13 − 1

)
, Ei ≥ 0

(6)

RMSE =

√√√√ 1
N

N

∑
i=1

E2
i (7)

where Ei is the difference between the real RUL and the predicted RUL numbered i, and N
is the total number. From the above two formulas, as Ei becomes smaller, both the Score
and RMSE become smaller, indicating more accurate predictions and better forecasting
performance. Therefore, the primary objective of the prediction algorithm is to minimize
the prediction error Ei as much as possible, aiming for Ei to be equal to 0.

4.3. Comparative Experimental Analysis

In order to verify the prediction accuracy of the proposed method, the predicted
results of the four datasets were compared with other methods such as support vector
regression (SVR), convolutional neural networks (CNN), long short-term memory (LSTM),
and gradient boosting decision trees (GBDT) using two evaluation metrics, RMSE and
Score. The kernel function for SVR is selected as the radial basis kernel function. The CNN
uses a sliding window of length 15 and a stride of 1 to construct a two-dimensional matrix,
consisting of two convolutional layers, two pooling layers, and one standard feedforward
neural network layer. The LSTM consists of two LSTM layers with 32 nodes each, and
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two standard feedforward neural network layers with 8 nodes each. The number of leaf
nodes for the improved GBDT algorithm is set to 31. The comparison chart of evaluation
metrics is shown in Figures 9 and 10, and the specific results are shown in Tables 6 and 7.

SVR
CNN

LSTM
GBDT

Proposed
0

10

20

R
M

SE

FD001

SVR
CNN

LSTM
GBDT

Proposed
0

20

40

R
M

SE

FD002

SVR
CNN

LSTM
GBDT

Proposed
0

10

20

R
M

SE

FD003

SVR
CNN

LSTM
GBDT

Proposed
0

20

40
R

M
SE

FD004

Figure 9. RMSE comparison of different forecasting methods.
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Figure 10. Score comparison of different forecasting methods.
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Table 6. RMSE comparison of different forecasting methods.

Method FD001 FD002 FD003 FD004

SVR 20.96 42 21.05 45.35
CNN 18.45 30.29 19.82 29.16
LSTM 20.13 31.30 22.37 34.34
GBDT 20.88 21.40 21.37 23.75

Proposed 19.47 20.95 25.94 20.75

Table 7. Score comparison of different forecasting methods.

Method FD001 FD002 FD003 FD004

SVR 1.38× 103 1.90× 104 1.43× 103 1.71× 104

CNN 1.29× 103 1.36× 104 1.38× 103 7.89× 103

LSTM 1.33× 103 1.74× 104 1.53× 103 2.56× 103

GBDT 6.73× 102 6.95× 103 1.13× 103 5.73× 103

Proposed 5.99× 102 6.57× 103 1.01× 103 2.18× 103

Based on the comparison and analysis of the above two metrics, the proposed method
achieved good prediction performance on different datasets, showing a significant decrease
in the Score metric compared to other existing algorithms. In terms of RMSE, there was
a significant drop in the FD004 dataset, while the other datasets showed similar results.
Specifically, the RMSE and Score metrics decreased by 12.6% and 14.8%, respectively, on the
FD004 dataset, while on the other datasets, the RMSE metric remained largely consistent,
and the Score metric decreased by about 10%.

To test the universality of the proposed method, we applied it to the rolling bearing
dataset [24], which consists of publicly available accelerated performance degradation
experimental data for the full lifespan of four rolling bearings from the University of
Cincinnati [25]. To increase the sample size, we randomly selected 100 time points within
each bearing’s lifespan, resulting in a training set of 400 samples [26,27]. After making
slight modifications to some formulas in the method described in this paper [28,29], we
conducted experiments and the results are shown in Table 8, all predicted RUL is within the
margin of error of the real RUL [30–32]. The above experiments and results demonstrate
that the method proposed in this paper can be extended to other industrial processes.

Table 8. The experinment result of rolling bearing.

Number of Bearing Predicted RUL/h Real RUL/h Error/%

Data_3rd_1 29 25 16.0
Data_3rd_2 12 14 14.3
Data_3rd_3 29 28 3.6
Data_3rd_4 24 27 11.1

5. Conclusions

In order to comprehensively consider the high-dimensional and multitype state data
characteristics of complex equipment, such as aviation turbofan engines, this paper utilizes
the spatial–temporal features in the dataset. By employing an adaptive matching algo-
rithm, it aims to ensure the consistency of spatial–temporal trajectory sequence similarity.
Subsequently, the weights are determined through a weight training module based on the
matching sequences obtained from adaptive matching. The final similarity is calculated
using the lifespan prediction module, which also determines the RUL prediction value.
The proposed algorithm is tested on the NASA turbofan engine dataset and compared with
other prediction methods, demonstrating its effectiveness and feasibility.

In future work, it can be considered to incorporate anomaly detection techniques to
reduce the length of sequences, thereby saving matching time in the adaptive matching
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algorithm and significantly reducing time costs. Additionally, alternative methods or
models can be explored to determine the coefficients for spatial–temporal similarity and
error, which may lead to more accurate prediction results.
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