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Abstract: As technologies like the Internet, artificial intelligence, and big data evolve at a rapid
pace, computer architecture is transitioning from compute-intensive to memory-intensive. However,
traditional von Neumann architectures encounter bottlenecks in addressing modern computational
challenges. The emulation of the behaviors of a synapse at the device level by ionic/electronic devices
has shown promising potential in future neural-inspired and compact artificial intelligence systems.
To address these issues, this review thoroughly investigates the recent progress in metal-oxide
heterostructures for neuromorphic applications. These heterostructures not only offer low power
consumption and high stability but also possess optimized electrical characteristics via interface
engineering. The paper first outlines various synthesis methods for metal oxides and then summarizes
the neuromorphic devices using these materials and their heterostructures. More importantly, we
review the emerging multifunctional applications, including neuromorphic vision, touch, and pain
systems. Finally, we summarize the future prospects of neuromorphic devices with metal-oxide
heterostructures and list the current challenges while offering potential solutions. This review
provides insights into the design and construction of metal-oxide devices and their applications for
neuromorphic systems.
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1. Introduction

Since the invention of the computer, technological progress has led to continuous
improvements in computer performance and device function. Especially in recent years,
the rapid technological developments for the Internet of Things and artificial intelligence
(AI) have significantly increased the requirements for computer data processing [1–3].
Traditional von Neumann architectures could successfully solve the structural problem [4],
but they encounter substantial challenges in contemporary computing, which are named
the von Neumann bottleneck. At present, there are growing developments of new algo-
rithms, such as artificial neural networks and deep learning [5,6]. Meanwhile, since the
complementary metal-oxide semiconductor (CMOS) transistor may have reached its limit
in terms of size, Moore’s law may begin to break down [7]. In contrast, the human brain,
with a high parallelism, has a low power of 20 W because the average synaptic power
consumption is only about 10 fJ [8–10]. Therefore, brain-inspired neuromorphic devices
have attracted increasing interest as a potential solution for breaking the von Neumann
bottleneck [11].

At the same time, metal-oxide materials may provide an ideal platform for the develop-
ment of multifunctional neuromorphic devices due to their low power consumption, high
stability, versatility, low cost, etc. [12–14]. Moreover, as basic building blocks, metal-oxide
heterojunctions have an intriguing performance due to their higher charge mobility, lower
leakage current, and faster response time ascribed to interfacial states and band bend-
ing [15–18]. Such heterojunctions allow the combination of different types of metal oxides
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to achieve more functionalities and better performances. Therefore, neuromorphic devices
based on metal-oxide heterojunctions may provide a great opportunity for next-generation
computing technologies.

In this review, we first describe the various process methods of metal oxides and
their heterojunctions. Then, we summarize the various devices and multifunctional neuro-
morphic applications based on metal-oxide materials and heterostructures, as shown in
Figure 1. Finally, the key challenges and future directions are discussed for these kinds of
neuromorphic devices. This review can provide a good understanding and guidance for
entering the field of neuromorphic devices based on metal-oxide heterojunctions.
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Figure 1. An overview of metal-oxide materials for neuromorphic applications. Reprinted with
permission from [19]. Copyright 2023, IOP Publishing on behalf of the Chinese Physical Society.
Reprinted with permission from [20]. Copyright 2021, Journal of Semiconductors. Reprinted with
permission from [21]. Copyright 2020, American Chemical Society. Reprinted with permission
from [22]. Copyright 1972, Royal Society of Chemistry. Reprinted with permission from [23]. Copy-
right 2021, Springer Nature. Reprinted with permission from [24]. Copyright 2019, John Wiley and
Sons. Reprinted with permission from [25]. Copyright 2019, John Wiley and Sons. Reprinted with
per-mission from [26]. Copyright 2021, John Wiley and Sons.

2. Metal-Oxide Heterojunction
2.1. Preparation of Metal-Oxide Materials

The synthesis and preparation of metal-oxide materials can be classified into two main
categories: bottom-up and top-down approaches.
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2.1.1. Bottom-Up Approaches

• Solution-Deposition Method: Solution-deposition methods include a variety of meth-
ods (Figure 2a). Solution techniques allow for the deposition of films at atmospheric
pressure with minimal equipment cost. Scalable deposition methods that allow for
uniform, large-area coverage are important for high-throughput industrial appli-
cations [22]. We highlight the sol–gel method and inkjet printing method in this
section. The latter method mainly involves transforming the desired precursor ma-
terial into an inkjet state and then distributing it for printing in the same way as
other solution-deposition methods. A new kind of fully inkjet-printed InP/ZnSe
QD/SnO2 heterostructure thin film transistor (TFT) was fabricated with a bottom-gate,
top-contact configuration by Liang et al. [27]. The fully printed device on a glass
substrate exhibited a high optical transparency in the visible spectrum. This chemical
method allows the formation of metal oxides using a colloidal solution (sol) approach.
This method can well control composition and structure at the nanoscale. However,
this process is always slow and often requires post-synthesis calcination [28].

• Chemical Vapor Deposition: Chemical vapor deposition is a process in which the
substrate is exposed to one or more volatile precursors, and then reaction and de-
composition are performed on the substrate surface to create the desired thin film. In
typical CVD (Figure 2b), precursor gases are fed into the reaction chamber at ambient
temperature. When they pass or come in contact with the heated substrate, they react
or decompose to form a solid phase and then are deposited on the substrate. As shown
in Figure 2c, the substrate temperature is very important and can affect the reactions
that will take place. Compared to sol–gel methods, it typically offers a high degree of
compositional and crystal structure control for precise material design. As a result,
CVD has attracted growing interest in the semiconductor industry due to its large-area
growth ability [29–31].

• Electrodeposition: Electrodeposition is a method for depositing ions from a solution
onto an electrode’s surface through an electrochemical reaction [32]. For example, Yin
et al. easily prepared Cu2O thin films using the electrodeposition method, thereby
creating P-type Cu-based metal-oxide materials with excellent photoelectrochemical
water splitting capability [32]. Unlike CVD, electrodeposition typically does not re-
quire high-temperature treatment or hazardous gases, making it environment-friendly.
Moreover, it is a cost-effective way as it does not necessitate high-vacuum equipment
or expensive precursors. These advantages make it an emerging favorite for the
electronic materials [32,33].
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Figure 2. Schematic diagram of metal-oxide material preparation method: (a) Schematic of various
solution-deposition processes: direct material growth without additional processing and liquid coat-
ing with additional processing to remove the solvent. Reprinted with permission from [22]. Copyright
1972, Royal Society of Chemistry. (b) Schematic cross-section of a thermal plasma chemical vapor
deposition (CVD) system used to deposit ZnO nanocrystal thin films. Reprinted with permission
from [34]. Copyright 2011, Springer Nature. (c) A scheme showing the setup used to grow carbon
nanotubes inside nanoporous anodic alumina templates by CVD [35]. (d) Schematic diagram of
conventional physical vapor deposition (PVD) process [36]. (e) Schematic illustration of the PVD
process. Reprinted with permission from [37]. Copyright 2023, Elsevier. (f) A section cut-through of
a ball mill. Reprinted with permission from [23]. Copyright 2021, Springer Nature.

2.1.2. Top-Down Approaches

• Mechanical Milling: Mechanical milling is a very traditional and simple method of
making metal-oxide powders. In this approach, metal-oxide powders are directly
generated by mechanically grinding the bulk materials using a ball mill, as shown in
Figure 2f. The electrical properties of metal oxides can easily be altered by adding other
materials such as metals in this traditional method, as reported by Mikio et al. [38].
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Using this method, Ag particles were added to NaxCo2O4 thermoelectric oxide. A
mechanical milling process was included for uniform dispersion of Ag particles in
the NaxCo2O4 matrix phase. Mechanical milling is also effective in reducing grain
size, which is expected to affect the electrical resistivity and thermal conductivity of
the product. However, it often lacks the capability of precise control over particle size
distribution [38].

• Physical Vapor Deposition: As one of the most common processes on the market
(Figure 2d), PVD offers distinct advantages compared to other methods for preparing
metal-oxide materials [36]. It excels in its precision at the micro- and nanoscale,
resulting in high-quality, uniformly dense films (Figure 2e). Moreover, PVD operates
at lower temperatures, reducing the risk of thermal stress [39]. PVD films are high-
purity, environment-friendly, and compatible with most materials and substrates.
These attributes render PVD highly sought after in electronic/optical coatings and
material enhancement [40,41]. PVD methods for preparing metal-oxide materials
encompass magnetron sputtering, laser deposition, ion beam deposition, molecular
beam epitaxy, thermal evaporation, etc. These techniques play an important role in
preparing metal-oxide films with desired structural properties [42–47].

2.2. The Advantages of Heterojunctions
2.2.1. Types of Heterojunctions

We classify heterojunctions into all-organic heterojunctions, mixed organic–inorganic
heterojunctions, and all-inorganic heterojunctions based on the type of material. All-organic
heterojunctions usually have better processability and bendability [48], and substrate se-
lection and growth techniques play a large role in achieving the desired material proper-
ties [49]. With high stability and high electron mobility, all-inorganic heterojunctions allow
for device performance and are less flexible. These materials usually require high tempera-
tures or complex preparation processes. Organic–inorganic hybrid heterojunctions combine
the processability of organic materials with the high stability and high electron mobility
of inorganic materials [50]. This structure allows for a better balance of electron and hole
transport, improving the performance of electronic devices. However, the combination of
such heterojunctions often requires a high degree of matching [51]. The choice of which
heterojunction to use depends largely on the needs of the particular application, such as
flexibility, stability, processing difficulty, and cost. Due to the presence of some micro/nano
interactions such as surface and interface engineering, quantum confinement effects, strain
engineering, chemical interactions, and doping [52–56], all kinds of heterojunctions have
something in common; that is, the formation of heterojunctions allows the material proper-
ties to be improved dramatically, which is the basis of why heterojunctions involving metal
oxides can be used in a wide range of applications, and this provides enlightenment for
metal-oxide heterojunctions in neuromorphic applications.

2.2.2. Applications of Heterojunctions

We have already introduced the superior properties of heterojunctions, and when
metal-oxide materials are involved in heterojunctions, they often have their own unique
advantages. In this section, we will introduce the properties and applications of heterojunc-
tions with the participation of metal oxides in some common areas.

• Electrode materials for supercapacitors (SCs)

In recent years, transition-metal oxides (TMOs) have often been considered as the
main cathode material for supercapacitors because of their versatile redox reactions, high
theoretical capacitance, and economic feasibility [57,58]. However, TMOs always possess
relatively low electrical conductivity, which leads to poor electrochemical performance,
such as low specific capacitance, rate performance, and cycling stability [59].

Zhang et al. proposed a unique ZNCS/ZNCO heterostructure (Figure 3a) obtained
by vulcanization of ZNCO for positive electrodes of SCs [60]. The resulting flower-like
ZNCS/ZNCO composite exhibits several noteworthy advantages, including excellent
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conductivity, robust structural stability, and enhanced redox reactions. Therefore, the
incorporation of oxide heterostructures has a positive impact on the performance of SCs.
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In another work, Ju et al. proposed a ternary hollow CuO/ NiO/Co3O4 heterostruc-
ture (Figure 3b) [61]. In this work, core–shell-structured Prussian blue analogs (PBAs)
(NiHCC@CuHCC) with Ni-based PBAs (NiHCC) as the core and Cu-based PBAs (CuHCC)
as the shell were prepared using the crystal seed method. The enhanced electrochemical
performance could benefit from the following characteristics: (1) The hollow structure
can provide more active sites, reduce the structural strain, and keep the electrode from
collapsing. (2) The electronic structure of CuO/NiO heterojunction can be well tuned and
finally facilitate the electron/ion migration [61].

In general, the synergetic effect between various metal oxides in a heterostructure
facilitates electron/ion migration. More importantly, heterostructures often combine the
advantages of all materials to achieve multiple advantages in various physical and chemical
properties [61,63,64].

• Excellent properties for electrocatalysis

The unique features of metal-oxide heterojunctions also confer substantial advan-
tages in electrocatalytic applications. This section will elucidate the merits of metal-oxide
heterojunctions in electrocatalysis.

Traditionally, catalysts with high CO2 reduction reaction (CO2RR) selectivity have relied
on weak metal–hydrogen bonds to suppress hydrogen evolution reaction activity [65–67]. In
recent years, materials derived from metal oxides or sulfides have been found to exhibit
better electrocatalytic activity than their corresponding pure metal counterparts [68,69].
Specifically, Bi-based materials such as Bi-MOF, Bi2O3, or Bi2O2CO3 are commonly used
as precursors for efficient electrocatalysts. However, these metal-oxide materials do not
enhance the performance or maintain high selectivity [62]. However, indium-based metal-
oxide heterojunctions can promote selectivity, especially when indium atoms are introduced
at the metal sites of a heterojunction (Figure 3c) [70–72].

As shown in Figure 3d, Ye et al. synthesized a material containing partial bimetallic
oxides (InxBi2-xO3) and heterojunctions (In2O3-Bi2O3) [62]. In this work, it was shown
that heterojunctions can improve performance while maintaining high formate selectivity.
This demonstrated that metal-oxide heterostructures have great potential for electrocatal-
ysis. Furthermore, the role of heterojunctions can be also considered as an enlightening
contribution in neuromorphic applications.

3. Neuromorphic Devices Based on Metal-Oxide Heterojunctions
3.1. Biological Synapses and Synaptic Plasticity

Neurons are interconnected by synapses. A synapse specifically connects the axonal
terminals of the presynaptic neuron and postsynaptic neuron, thus completing the informa-
tion transmission between nerve cells [8]. The structure of the human brain is complicated,
with ~1015 synapses and ~1011 neurons [8,73,74].

Synaptic plasticity is an important feature of synapses. It is often considered to be
the major cellular mechanism for learning and memory [75]. According to the duration,
synaptic plasticity can be divided into short-term plasticity and long-term plasticity. Short-
term plasticity has a shorter duration of action, typically tens of milliseconds to minutes.
Long-term plasticity, including long-term potentiation (LTP) and long-term depression
(LTD), can last much longer, from tens of minutes to even some days [76]. Meanwhile, the
conversion between LTP and LTD allows for the easy regulation of synaptic weights [77,78].
In the work of Liu et al., artificial devices with Li-AlOx ion electrolytes were proposed [79],
and the short-term potentiation (STP) and LTP emulations of the synaptic weight modula-
tion by the ion electrolyte were emulated based on the electrostatic coupling of Li ions in
the electrolyte and electrochemical doping with the metal-oxide In2O3, respectively [80,81].
After the gate-electrolyte stimulus, the diffusion of the accumulated ions in the electrolyte
as the result of the gradient potential leads to the decay of the channel current to the resting
level, emulating STP behavior. Electrical stimulus with higher amplitudes or long durations
induces electrochemical doping, leading to an LTP behavior of the synaptic weight [9].
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Normally, memory is divided into two categories by duration: short-term memory
(STM) and long-term memory (LTM). In the process of consolidating LTM, STM processes
are responsible for cognition. STM can be converted into LTM. STM can be achieved by
the continuous firing of neurons [82]. It is believed that LTM is related to the change
in the probability of neurotransmitter release by presynaptic neurons, the change in the
sensitivity of postsynaptic neuronal receptors to neurotransmitters, and the change in
synaptic structure and synthesis of new proteins [83]. The relationships and properties of
LTM and STM need to be further studied. That is why it is important to fabricate devices
capable of regulating pre- and post-synapses in synaptic electronics.

Emerging metal-oxide heterojunctions can provide a good opportunity for developing
brain-inspired neuromorphic devices. Neuromorphic metal-oxide heterojunction devices
can be classified as two-terminal memristors and three-terminal transistors. In the following
section, we provide a brief description of the working mechanisms of these different
device structures.

3.2. Two-Terminal Devices Based on Metal-Oxide Heterojunctions

• Forming conducting filaments

Two-terminal synaptic devices, also known as memristors, have resistive states that
depend heavily on past states, which opens up the possibility of emulating synaptic
connections between neurons. The typical device structure is based on a metal-oxide
resistive switching layer sandwiched between two metal electrodes [84,85], as shown in
Figure 4a. A “SET” voltage switches the device from a high-resistance state to a low-
resistance state due to the electrically generated oxygen vacancies (Vo) in the metal-oxide
layer. In contrast, a “RESET” voltage switches the device from a low-resistance state to
a high-resistance state due to the restoration of the Vo [86,87]. In general, after the SET
process, one or more conductive filaments are formed in the oxide layer, while some of the
conductive filaments are broken after the RESET process [88].

Moreover, metal-oxide heterojunctions can tune the filament microstructure by con-
trolling the growth and dissolution rates. Wang et al. proposed a resistive switching
device by introducing a SiO2 ion diffusion limiting layer (DLL) at the TiN/TaO interface
(Figure 4b,c) [89]. The device architecture consisted of a multi-layered Pt/TiN/SiO2/TaOx/Pt
stack. The DLL layer led to more linear conductance changes and holds high promise for
neuromorphic applications [90].

• Vacancy migration

The relatively high mobility of oxygen-related defects can also be used as an important
method for adjusting the synaptic weights in memristors. Oxygen anion migration under
an external electric field is one of the main resistive switching phenomena [21]. Dmitri B.
Strukov et al. introduced a physical model for Pt/TiO2/Pt devices [77,91]. As reported by
Hansen et al. in 2015, Al/Al2O3/NbxOy/Au double-barrier memristors were proposed
for the optimization of electron tunneling [92] and ion diffusion [89]. Two models used
to describe the double-barrier tunnel junctions are shown in Figure 4d,e. This migration
enables nuanced, area-dependent resistance modulation. These studies highlight the critical
role of vacancy migration in achieving precise control over electrical conductance, laying
the groundwork for more stable and efficient artificial synapses [90].

3.3. Three-Terminal Devices Based on Metal-Oxide Heterojunctions

While memristors primarily focus on information storage and plasticity, the conduc-
tance of neuromorphic field-effect transistors (FETs) can be well controlled through the
three terminals [93]. In fact, the gate electrode in a transistor can be viewed as the presynap-
tic membrane, while the channel layer can be treated as the postsynaptic membrane [94–96].
The presynaptic stimulus is a spike input from the gate electrode, and the change in channel
conductance is used to emulate the excitatory postsynaptic current [79,93]. Furthermore,
synaptic characteristics such as paired-pulse facilitation (PPF), LTP, and LTD can be easily
observed in heterostructures for neuromorphic computing [97].
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Herein, we categorize metal-oxide FETs based on the device architecture with two
types, namely top-gate and bottom-gate FETs, as detailed in the following section.
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Figure 4. (a) Diagram of a resistance random access memory cell with a capacitor-like structure.
Reprinted with permission from [84]. Copyright 2008, Elsevier. Schematic of filament (b) growth
and (c) dissolution dynamics. Reprinted with permission from [89]. Copyright 2009, RSC Pub.
(d,e) Two models describing the memristive double-barrier tunnel junctions. (d) Simplified cross-
sectional view of the memristive tunnel junctions. (e) An alternative model to (d) [92]. (f) Process flow
for fabrication of a self-aligned top-gate oxide TFT. Reprinted with permission from [98]. Copyright
2013, John Wiley and Sons. (g) Schematic structure of the InP/ZnSe quantum dot (QD)/SnO2 hybrid
TFT. Reprinted with permission from [27]. Copyright 2022, American Chemical Society. (h) Schematic
diagrams of the device structures with bottom gate. Reprinted with permission from [20]. Copyright
2015, IEEE. (i) Scheme of the four transistor structures: top gate, top contacts (TGTC); top gate, bottom
contacts (TGBC); bottom gate, top contacts (BGTC); bottom gate, bottom contacts (BGBC). Reprinted
with permission from [99]. Copyright 2020, American Chemical Society.
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3.3.1. Bottom-Gate FETs

Bottom-gate FETs have the simplest device structure. For example, the production
of the BGBC structure shown in Figure 4h just needs one lithographic step, which makes
the device fabrication relatively quick and cheap [20]. The bottom-gated three-terminal
FETs proposed by Rehman et al. are auspicious candidates for the emulation of biological
functions in realizing proficient neuromorphic computing systems [100]. These devices
exploit the hysteresis effect in the transfer curves of that kind of FET to explore excita-
tory/inhibitory post-synaptic currents (EPSCs/IPSCs), LTP, LTD, spike timing/amplitude-
dependent plasticity (STDP/SADP), and PPF.

As a special kind of FET, TFTs were first fabricated in 1962 by Paul K. Weimer, and
in 1979, the first functional TFT was successfully demonstrated [101,102]. Oxide-based
TFTs were first reported in 1964 by Klasens et al., and then the most famous indium
gallium zinc oxide TFT was proposed by Nomura et al. in 2004 [103,104]. Oxide TFTs have
obvious advantages: high mobility, good stability, nice chemical resistance in liquids, high
transparency, and ease of processing [94,105,106].

In some research, managing vacancies has proved important for improving the per-
formance and stability of oxide TFTs, particularly in heterojunction configurations. Liang
et al. [27]. proposed a structure of InP/ZnSe QD/SnO2 hybrid TFTs using full printing
technology. In this structure (Figure 4g), the band alignment near the heterojunction re-
sulted in the effective separation of photogenerated electrons and holes, which resulted
in a spectrally dependent response in photonic synaptic devices. Using both the high
photosensitivity of InP/ZnSe QDs and the high electron mobility of SnO2, the devices
could well emulate key synaptic behaviors such as EPSC, STP, LTP, and PPF. An artificial
vision system was finally demonstrated with enhanced image recognition and processing
efficacy. These findings underscore the viability of employing such heterojunction devices
for optoelectronic synapses and also offer a scalable fabrication strategy for advanced
artificial vision systems [27].

3.3.2. Top-Gate FETs

As for the top-gate structure, the fabrication process involves the channel structure,
followed by the gate dielectric and gate electrode (Figure 4f) [98]. In this structure, the
current flows effectively at the top interface of the semiconductor. The semiconductor layer
is encapsulated by dielectric and gate electrodes, protecting it from damage in subsequent
processing steps.

However, at the same time, the semiconductor may be also affected by thermal cy-
cling and solvents in subsequent process steps, potentially deteriorating the transistor
performance. When a sintering step is employed, a bottom-gate structure may be more
suitable. This is because subsequent sintering steps can degrade the semiconductor perfor-
mance in top-gate transistors. Although top-gate and bottom-gate structures have their
own exquisite manufacturing technology, they all play an important role in neuromorphic
applications [107].

4. Neuromorphic Applications

In the actual activity of life, the sensory nervous system is formed by various neural
networks and circuits connected by synapses with neurons as the basic unit. Neuromorphic
devices with metal-oxide heterojunction have attracted increasing interest and become a
hot topic in recent years. In the following sections, we summarize the recent progress for
these neuromorphic devices in visual, tactile, and nociceptive systems.

4.1. Neuromorphic Visual System

The visual nervous system is an essential way for humans to acquire external infor-
mation, more than 80% of which is obtained by vision [108]. In the nervous system, when
incident light enters the eyeball, optic nerve fibers in the retina convert external signals into
biological signals and transmit action potentials to the visual cortex in the brain to form
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vision, as shown in Figure 5a [109–111]. Figure 5b illustrates a method of emulating the
human visual nervous system using neuromorphic devices [112].
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Figure 5. Neuromorphic visual system. (a) Schematic diagram of the human visual system. Reprinted
with permission from [109]. Copyright 2022, American Chemical Society. (b) Schematic diagram of
artificial visual system. Reprinted with permission from [112]. Copyright 2021, American Chem-
ical Society. Some typical visual features: (c) Lightness and darkness. Reprinted with permission
from [109]. Copyright 2022, American Chemical Society. (d) Dynamic image [113]. (e) Light adapta-
tion. Reprinted with permission from [114]. Copyright 2022, Elsevier. (f) Color perception. Reprinted
with permission from [115]. Copyright 2021, John Wiley and Sons. Several applications of artificial
visual systems: (g) Visual information learning and memory processing. Reprinted with permission
from [27]. Copyright 2022, American Chemical Society. (h) Image preprocessing. Reprinted with
permission from [79]. Copyright 2022, Elsevier. (i) Image recognition. Reprinted with permission
from [116]. Copyright 2022, John Wiley and Sons. (j) Color pattern recognition. Reprinted with
permission from [117]. Copyright 2023, Royal Society of Chemistry.



Sensors 2023, 23, 9779 12 of 23

The visual system under lightness/darkness conditions can be successfully emulated
as shown in Figure 5c. When a signal is transmitted to the terminal of the presynaptic
neuron, the electrical signal is converted into a chemical signal and accompanied by
the release of neurotransmitters, which can bind to the receptors of the postsynaptic
neuron to complete the signal transmission between neurons. When artificial synapses
are stimulated by external light, the number of photocarriers can be increased to tune the
device conductance, which is similar to the function of neurotransmitters in the actual
nervous system. Therefore, the photoresponse of artificial synapses is weaker in the dark
than in sufficient light, which is very consistent with human visual neural behaviors [113].
This helps neuromorphic devices to capture both static and dynamic images, as shown
in Figure 5d [114]. Under bright light, a photoreceptor with rod and cone cells will adapt
to external light and then produce the appropriate level of electrical spikes according to
the ambient light intensity, which is known as light adaptation [118,119]. By introducing
a negative voltage pulse, a neuromorphic device can adapt to light and avoid possible
damage from strong light, as shown in Figure 5e [109]. At the same time, a neural network
can reduce the response of nerve impulses near the target, and color recognition can
be demonstrated [120]. Different neuromorphic devices can be designed to realize light
absorption for the recognition of different colors, as shown in Figure 5f [115,116,121,122].
Different visual functions can be successfully demonstrated, such as visual information
learning/memory, image preprocessing, and color pattern recognition [27,79,116,117].

4.2. Neuromorphic Tactile System

Skin, as the largest sensory organ in the human body, plays an important role in the
actual interaction process. It is embedded with countless tactile receptors, helping the
body to complete a series of complex physical interactions, such as snatching, sliding, and
the judgment of object properties [123]. The basic principle of the human tactile nervous
system is shown in Figure 6a. An artificial tactile nervous system may be a powerful way
to realize the future of bionic robots. So far, various ways to implement these systems
have been reported, including the use of piezoelectric, piezophototronic, piezoresistive,
capacitive, deformable ionic dielectric, and triboelectric materials, as detailed below.

(i) Piezoelectric materials generate an electrical potential when the pressure/stress
changes, which achieves the conversion of mechanical signals to electrical signals, as shown
in Figure 6b [124,125]. (ii) The piezophototronic effect is that the interface band structure is
effectively modulated by a piezoelectric polarization charge caused by external stress [126].
A piezophototronic material can be used in a light-emitting diode array of pixels, resulting
in a nice pressure distribution, as shown in Figure 6c [127]. (iii) The resistance of a piezore-
sistive material will change with external pressure or stress. Consequently, piezoresistive
materials could be deployed as tactile receptors to detect mechanical stress or pressure,
as shown in Figure 6d. This change in resistance largely comes from the variation in
the conductive path or structure of the material itself. Wang et al. fabricated a carbon
nanotube paper film (CNTF)/stress-induced square frustum structure (SSFS) pressure
sensor with ultra-sensitive and wide-range flexible performance. An external effect will
change the inner conductive path of the sensor, which is composed of contacts between
interdigital electrodes (IDEs) and fibers inside the CNTF as well as contacts between fibers
themselves [128]. Cheng et al. developed sensors based on Au/graphene composite films
(AGCFs) with hierarchical cracks. By using electrical resistance varying with the change
in crack number and areas, the sensing performance presents high sensitivity, excellent
linearity, and adjustability due to tuning pattern regulation [129]. (iv) For capacitive tactile
receptors, external effort usually causes a change in the thickness of the dielectric layer,
which affects the conductive value, mimicking skin, as shown in Figure 6e. Recently, there
has also been great interest in utilizing 4D printing devices to fabricate capacitors to be
used in physiological monitoring sensors [130]. (v) In a deformable ionic dielectric, external
pressure will effectively force ions accumulated at the interface between the semiconductor
and dielectric to influence the current level, as shown in Figure 6f. (vi) As for triboelectric
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receptors, the principal mechanism is the triboelectric nanogenerator (TENG). In devices,
the variation in two layers in the TENG will cause the motion of electrons to modulate the
gate voltage, as shown in Figure 6g. Tactile devices with the various principles above have
been developed, and their functions in neuromorphic tactile systems are endless.

Figure 6h shows a prosthetic hand with tactile sensors that can transform mechanic
signals into nervous signals. Although only three tactile sensors are integrated per finger,
they can still help amputees feel pain and distinguish shapes [131]. As shown in Figure 6i,
tactile devices with high sensitivity to pressure can be utilized to help blind people learn
braille or recreate the sense of touch [132]. Since a capacitive tactile device is highly sensitive
to distance, fingerprint recognition was successfully realized, as shown in Figure 6j [133].
In addition, the typical functions of tactile neurons can be emulated to perceive dynamic
pressures with different intensities, sizes, and frequencies, as shown in Figure 6k [134].
Tactile devices have many promising applications, as shown in Figure 6l for physiological
signal detection [135], Figure 6m for recognition of three gestures [136], Figure 6n for
monitoring human motions [137], and Figure 6o for near-sensor analog computing [24].

4.3. Neuromorphic Nociceptive System

Tactile perception is one of the primary methods by which the human body coordinates
and interacts with its surroundings. At the same time, touch operation is also the primary
way of human–computer interaction. Human skin is covered with different types of
mechanoreceptors. When the skin senses changes in pressure, temperature, or humidity
in the external environment, it sends out tiny electrical signals that are transmitted to the
brain with nerve fibers, which in turn produce the sense of touch [138]. The combination of
tactile sensors and synaptic devices provides a solution for implementing neuromorphic
functions for strain pattern recognition and processing [24]. As critical sensory components
in the nervous system, nociceptors can recognize noxious stimuli collected from tactile
sensory signals and transmit signals to the central nervous system, enabling a response that
avoids damage to the body, as shown in Figure 7a [139]. Figure 7b shows the characteristics
of the nociceptive nervous system. There are several basic characteristics in the nociceptive
system [140–145]: (i) Threshold behavior means that a significant response appears until the
external stimulus approaches or even exceeds the threshold value, as shown in Figure 7c.
(ii) Relaxation behavior means that nociceptors can maintain an extremely high response
after the removal of stimuli, as shown in Figure 7d. (iii) Hyperalgesia and allodynia
behaviors indicate an enhanced response to noxious stimuli is generated even below the
stimulus threshold, as shown in Figure 7e. (iv) Adaption means that nociceptors will not
respond to dangerous stimuli, as shown in Figure 7f [146].
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Figure 6. Neuromorphic tactile system. (a) Schematic diagram of the human tactile nervous system.
Reprinted with permission from [24]. Copyright 2019, John Wiley and Sons. Sensing mechanisms:
(b) Piezoelectric. Reprinted with permission from [125]. Copyright 2020, Elsevier. (c) Piezopho-
totronic. Reprinted with permission from [127]. Copyright 2019, Elsevier. (d) Piezoresistive.
Reprinted with permission from [147]. Copyright 2020, John Wiley and Sons. (e) Capacitive.
Reprinted with permission from [148]. Copyright 2018, American Chemical Society. (f) Piezocapaci-
tive. Reprinted with permission from [149]. Copyright 2020, John Wiley and Sons. (g) Triboelectric
Reprinted with permission from [150]. Copyright 2017, American Chemical Society. Applications of
neuromorphic tactile systems: (h) Prosthesis with tactile sensor feedback. Reprinted with permission
from [131]. Copyright 2019, IEEE. (i) Touching convex braille numbers. Reprinted with permission
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from [132]. Copyright 2012, Royal Society of Chemistry. (j) Touch-fingerprint sensor. Reprinted with
permission from [133]. Copyright 2018, John Wiley and Sons. (k) Mechanical sensory mechanism.
Reprinted with permission from [134]. Copyright 2020, IEEE. (l) Physiological signal detection.
Reprinted with permission from [135]. Copyright 2018, American Chemical Society. (m) Recognition
of three gestures. Reprinted with permission from [136]. Copyright 2019, IEEE. (n) Monitoring
human motions. Reprinted with permission from [137]. Copyright 2023, American Chemical Society.
(o) Near-sensor analog computing system. Reprinted with permission from [151]. Copyright 2022,
John Wiley and Sons.
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Figure 7. Neuromorphic nociceptive system. (a) Schematic diagram of human nociceptive ner-
vous system. Reprinted with permission from [139]. Copyright 2009, Royal Society of Chemistry.
(b) Characteristics of nociceptive nervous system: (c) threshold, (d) relaxation, (e) allody-
nia/hyperalgesia, (f) no adaptation. Reprinted with permission from [146]. Copyright 2012, Royal
Society of Chemistry. Artificial pain modulation system: (g) schematic diagram, (h) pain inhibition in
the artificial tactile nervous system, and (i) inhibition abilities. Reprinted with permission from [152].
Copyright 2022, John Wiley and Sons. Graded pain perception: (j) oxide transistor arrays and test
system, (k) evaluations of pain-perception behaviors, and (l) degree of pain sensitivity for different
gate–channel combinations. Reprinted with permission from [153]. Copyright 2009, Royal Society
of Chemistry.

Fu et al. proposed a kind of charge-regulated FET (CRFET) to realize an artificial
pain-perceptual system that adopted graphene as a channel and GdxOy/AlxOy as dielectric
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layers to provide opposite polarities of oxide charges [152]. The GdxOy dielectric layer
containing positive oxide charges plays an important role in the IPSC/EPSC behaviors.
However, the neuromorphic behaviors would be opposite for the AlxOy dielectric layer
with negative oxide charges. An artificial pain modulation system (PMS) was proposed
based on the above behaviors [152]. Figure 7g shows biological PMS and artificial PMS.
The enhanced conductivity of the memristor can increase the voltage drop of the channel
and effectively suppress the amplitude of the signal from the gate, as shown in Figure 7h.
Figure 7i shows the ability of the pre-synapse to inhibit both pre- and post-stimulus signals.

For array networks, Li et al. utilized sodium alginate (SA) as a common neurotrans-
mitter layer to fabricate a 5 × 5 ionotronic junctionless indium-tin-oxide transistor array
for realizing pain-perception and threshold-modulation functions [153]. Figure 7j shows
the oxide transistor array and test system. Pain is also recognized by defining a threshold
current, as shown in Figure 7k,l. A coplanar–multiterminal transistor array is very suitable
for not only realizing the nociceptor networks but also avoiding complex architectures with
multiple layers, interconnects, or other complex components. Moreover, this particular
structure also has the ability to modulate synaptic weights according to spatial orientation,
through which orientation-dependent spike timing plasticity learning rules can be success-
fully implemented. Such devices provide a viable method for building spatiotemporally
correlated neuromorphic systems [154]. This device can provide a novel approach for
achieving praiseworthy pain-perceptual functions and may also create a new opportunity
for oxide transistor arrays in future multifunctional robotics and auxiliary equipment.

5. Conclusions and Perspectives

This review investigates neuromorphic devices based on metal-oxide heterostructures,
encompassing their fabrication, properties, and applications. Initially, we discuss various
preparation methodologies for metal oxides, including both bottom-up and top-down
approaches. Subsequently, the fabrication methods and properties of metal-oxide het-
erostructures are elaborated. Further, the review delves into different neuromorphic device
architectures with metal-oxide heterostructures, including two-terminal memristors as well
as three-terminal transistors. More importantly, we present the recent progress in their neu-
romorphic applications, including in visual, tactile, and nociceptive systems. Metal-oxide
heterostructures have several advantages, such as low power consumption, high stability,
and excellent electrical performance. However, there are still several challenges that cannot
be overlooked. Due to the nonlinear and dynamic nature of metal-oxide heterostructures,
there are various aspects that need to be considered when constructing metal-oxide het-
erostructures, such as determining how to obtain a combination of the excellent properties
of the two materials and make them outstanding while at the same time keeping other poor
properties of the two materials that are not conducive to the performance of the device from
becoming outstanding. The integration of metal-oxide-based neuromorphic devices with
existing silicon-based electronic devices still faces compatibility and interconnectivity chal-
lenges, as the fabrication of metal-oxide heterostructures is incompatible with conventional
CMOS fabrication techniques. As far as bionic sensing systems are concerned, most of the
current research has only been directed towards systems with a single sensing capability
through the integration of sensors and synaptic devices, e.g., vision and haptics.

In light of these drawbacks, several remedial strategies can be considered. Firstly,
data analytics based on a machine learning approach could be employed to accurately
predict material properties and device performance. Secondly, researchers could investigate
metal-oxide materials and device structures that are compatible with existing CMOS
processes. Also, researchers could develop simplified manufacturing processes to reduce
manufacturing steps and costs. Then, they could design flexible interface technologies
for the seamless integration of metal-oxide devices with silicon-based circuits. Also, they
could develop modular designs so that components from different technologies can be
easily integrated. Finally, new micro- and nanofabrication techniques for reducing device
variability and leakage on small scales should be researched and developed. Also, 3D
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integration techniques for increasing device density without sacrificing performance should
be explored.

Nevertheless, neuromorphic devices based on metal-oxide heterojunctions integrating
sensing, storage, and computing are urgently needed for the booming fields of artificial
intelligence and machine learning. Therefore, research on synaptic devices based on metal-
oxide heterojunctions is an exciting topic in the age of intelligence. From the perspective
of future applications, especially in the field of self-driving cars, smart sensors, and per-
sonalized medicine, the functions of metal-oxide heterojunction neuromorphic devices in
synapse emulation, image sensing, and preprocessing will be further developed through ra-
tional material selection and device structure design. In conclusion, the field of metal-oxide
heterostructures for neuromorphic applications holds great promise for revolutionizing var-
ious aspects of computing and artificial intelligence. Continued research and development
in this area are expected to yield groundbreaking advancements in the coming years.
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