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Abstract: The complexity inherent in navigating intricate traffic environments poses substantial
hurdles for intelligent driving technology. The continual progress in mapping and sensor technologies
has equipped vehicles with the capability to intricately perceive their exact position and the intricate
interplay among surrounding traffic elements. Building upon this foundation, this paper introduces a
deep reinforcement learning method to solve the decision-making and trajectory planning problem of
intelligent vehicles. The method employs a deep learning framework for feature extraction, utilizing
a grid map generated from a blend of static environmental markers such as road centerlines and lane
demarcations, in addition to dynamic environmental cues including vehicle positions across varied
lanes, all harmonized within the Frenet coordinate system. The grid map serves as the input for the
state space, and the input for the action space comprises a vector encompassing lane change timing,
velocity, and vertical displacement at the lane change endpoint. To optimize the action strategy, a
reinforcement learning approach is employed. The feasibility, stability, and efficiency of the proposed
method are substantiated via experiments conducted in the CARLA simulator across diverse driving
scenarios, and the proposed method can increase the average success rate of lane change by 6.8%
and 13.1% compared with the traditional planning control algorithm and the simple reinforcement
learning method.

Keywords: autonomous driving; deep reinforcement learning; behavior decision making; trajectory
planning

1. Introduction

The realm of intelligent driving necessitates the establishment of safe and efficient
interactions between vehicles and the various obstacles encountered within the road envi-
ronment. To fulfill the driving tasks prescribed by the operator, an autonomous driving
system typically comprises four fundamental modules: perception [1], decision making [2],
planning [3], and control [4]. It is worth noting that sound behavior decision making and
trajectory planning are pivotal components that chart a secure and rational course for
the vehicle, ultimately underpinning the realization of intelligent driving [5]. Behavior
decision-making and trajectory planning processes are significantly influenced by various
critical factors. Chief among these are the static attributes of the road and lane infrastruc-
ture, alongside the dynamic attributes of other vehicles acting as obstacles [6]. In this
context, the static attributes, including road layouts and lane configurations, can be derived
via the integration of high-definition maps (HD Map) in conjunction with precise vehicle
positioning [7]. Concurrently, dynamic obstacle information primarily originates from
onboard sensors, which provide real-time data regarding the behavior of surrounding
vehicles [8].
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Presently, numerous research initiatives are focused on tackling the complex intrica-
cies related to the decision-making processes and planning methodologies employed by
intelligent vehicles. Significant efforts have been directed towards forecasting essential
variables such as the speed of surrounding vehicles. For instance, in Ref. [9], predictions
are formulated utilizing the hidden Markov model, while Ref. [10] employs the time-
space interval topology method. These predictions are subsequently mixed to steer the
planning and control of vehicle motion. The evolution of AI technology, coupled with
enhancements in hardware computing resources, has propelled learning-based approaches
to the forefront of research interests. In this context, Refs. [11–13] embraces deep learning
methodologies. Reference [11] leverages an attention-based convolutional neural network
(CNN) model to discern traffic flow characteristics from a bird’s-eye perspective of the
road environment. These extracted features inform decisions regarding the next course
of action for the intelligent vehicle, including predictions of lane change timings when
necessary. Reference [12] introduces a lane change decision model grounded in deep be-
lief networks (DBN) and a lane change implementation model based on long short-term
memory neural networks (LSTM). Together, these models holistically characterize and
validate the decision and execution of vehicle transitions. In Ref. [13], a more comprehen-
sive model called Transformer is adopted to model both the intent decision and trajectory
prediction. This integrated approach outperforms the performance of CNN and LSTM in
terms of intent prediction. Reinforcement learning methods bifurcate into two categories:
those operating within a discrete action space and those functioning within a continu-
ous action space [14–16]. In the discrete action space category, Ref. [17] incorporates the
deep Q network (DQN) to determine the behavior space, considering whether to initiate
lane changes, and the state space, reflecting personalized driver style parameters. This
approach thereby accommodates the influence of driver preferences on intelligent vehicle
behavior decisions. Building upon DQN, variants such as Ref. [18] employ the double
deep Q network (DDQN) to mitigate DQN error overestimation, while Ref. [19] introduces
duel double DQN (D3QN) to introduce the value of lane change benefits, optimizing lane
change decision selection for enhanced training stability. In the continuous action space
category, Ref. [20] leverages the proximal strategy optimization (PPO) and hybrid reward
mechanism to hierarchical plan vehicle behavior and motion. The strategy’s advancements
are validated using the traffic flow simulation software SUMO (version 1.15). Reference [21]
adopts the soft actor–critic (SAC) mechanism, with the state space structured around vehi-
cle and environmental information. The action space encompasses temporal and velocity
parameters, integrating trajectory planning into the reward function to enhance planning
efficiency. References [22,23] employ deep deterministic policy gradients to train strategies
within a continuous action space. In this approach, the policy network directly outputs
actions, thereby determining the timing of intelligent vehicle lane change decision. Further-
more, variant algorithms, such as the Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm [24], Distributed Distributional DDPG (D4PG) [25], and Asynchronous
Advantage Actor–Critic (A3C) [26], have been successfully applied to tasks associated with
behavior decision making and planning. These algorithmic variations have demonstrated
remarkable efficacy in these domains.

In the overarching framework of intelligent driving [27], the task of trajectory plan-
ning resides downstream of behavior decision making and shoulders the responsibility of
translating extended decision-making objectives into specific vehicle driving paths within
predefined temporal windows [28]. These driving trajectories encapsulate the vehicle
position and velocity data at discrete time intervals [29]. Moreover, it is imperative that
they adhere to the constraints imposed by kinematics and vehicle dynamics [30]. When the
behavior decision-making task provides the state information at the trajectory’s terminal
point, combined with the state information at the initiation of planning, the trajectory
specifics can be elucidated via optimization. An exemplary traditional vehicle trajectory
planning technique, grounded in the natural coordinate system and often referred to as
the Frenet coordinate system [31], has been successfully employed in autonomous driving
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initiatives, including Apollo [32–34], yielding commendable outcomes. Differing from the
conventional Cartesian coordinate system, the Frenet coordinate system dictates vehicle
coordinates based on the distance ‘s’ traveled along the road’s centerline and the lateral
offset ‘l’ perpendicular to the road’s centerline. Consequently, the road centerline, as pro-
vided in HD maps [35], serves as the foundational path. The vehicle’s driving trajectory
is then expressed within the Frenet space. This framework facilitates an intuitive repre-
sentation of the relationship between the road and vehicle’s location, thereby enhancing
model interpretability.

In the realm of intelligent driving, there is an abundance of rich datasets originating
from real vehicle sensors and trajectories, which find extensive application in perception
and the decision-making processes of intelligent vehicles. Real datasets offer the advantage
of being derived from actual vehicle testing, thereby capturing the authentic characteristics
of real-world driving scenarios. However, it is worth noting that most of these datasets
obtained from real vehicle operations predominantly encompass sensor information, tra-
jectory records, and obstacle movements, while often lacking semantic-level definition of
traffic scenarios. Real datasets are typically collected during routine driving on standard-
ized roads, with limited representation of accident scenarios or sudden road conditions.
Extracting such rare records from real-world driving necessitates significant manual effort.
Acknowledging this limitation as inherent to real datasets, this paper advocates for the
generation of scenario data within the driving simulator. Simulators possess the capability
to model a comprehensive spectrum of driving scenarios, encompassing both typical and
unexpected situations. Furthermore, simulators provide the flexibility to obtain various
scene attributes, such as dynamic obstacle trajectories and lane features. As a result, diverse
scenario states can be generated and acquired more readily compared to real datasets. To
address this need, this paper selects the CARLA simulator (version 0.9.11) [36] for scenario
data generation. CARLA offers the advantage of permitting the specification of environ-
mental vehicle information. The autonomous driving module integrated with CARLA
can achieve a certain level of autonomous driving based on predefined rules, although its
driving proficiency falls short of human expertise. Nevertheless, it supplies invaluable
Ground Truth data, which is indispensable for dataset compilation. CARLA also provides
HD map files in the Opendrive [37] format for simulated scenarios, enabling easy access to
road network connectivity and scene-specific information, including road curvature, lane
configuration, and path details.

As mentioned in the above literature, a variety of methods have been applied for
vehicle behavior decision-making and trajectory planning tasks. A common idea is to make
decisions on vehicle behavior (acceleration, deceleration, or lane change) according to the
learning-based method, while vehicle trajectory is planned and controlled according to
the decision-making results, which decouples behavior decision from trajectory planning.
Although the modularization is realized to a certain extent and the overall interpretability
of the model is improved, there are also situations where behavior decision is prone to
inefficiency or unsafe trajectory decision making. Therefore, it is necessary to improve the
efficiency and security of decision making and planning without losing the interpretability
of the model. Based on this need, this paper introduces an approach for intelligent vehicle
behavior decision making and trajectory planning, which leverages the Deep Deterministic
Policy Gradient (DDPG) technique within the Frenet space framework. The proposed
method is structured into two hierarchical layers. The upper layer employs Deep Rein-
forcement Learning (DRL) via the DDPG algorithm to make behavior decisions for the
intelligent vehicle. The DDPG model takes into consideration various input parameters,
such as the relative spatial positioning, dimensions, and velocities of the ego vehicle and
the surrounding environmental vehicles in the Frenet space. The output decisions are
subsequently transmitted to the lower-level planning module, which factors in key pa-
rameters, including the total planned trajectory duration, termination speed, and lateral
displacement within the Frenet coordinate system. This approach offers notable advantages,
particularly in generating continuous trajectories. In comparison to trajectory planning
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methods detailed in references [38–40], our method shown in Figure 1 eliminates the need
for trajectory sampling and the computational overhead of optimizing trajectories based on
cost functions, consequently optimizing the trajectory planning process. Furthermore, the
trajectory planning results from the lower-level planning module can be looped back to
the upper-level decision-making module. They actively participate in the learning process
as an integral component of the DRL reward function. This closed-loop system effectively
intertwines decision making and planning, enhancing the overall stability and safety of the
driving process.

DRL Agent

trajectory time
termination speed 

lateral displacement
Trajectory planner

Frenet space transformation

RL rewardcontinuous trajectory 
planning results

environment vehicle 
position, size, speed

𝑥𝑥

𝑦𝑦

Cartesian Frenet

Figure 1. Framework of proposed method.

The primary contributions of this paper encompass the following aspects:

(1) Integration of DRL and Frenet space: This research introduces the application of deep
reinforcement learning techniques into the upper-level behavior decision-making
process of intelligent vehicles. It extends the decision-making input parameters to
encompass both static road mapping and dynamic obstacle information, thereby
enriching the consideration dimension of decision-making process. In the lower-level
trajectory planning, the incorporation of upper-layer decision-making results within
the Frenet space context serves to streamline the trajectory planning procedure.

(2) Novel DRL Hybrid Reward Mechanism: A novel hybrid reward mechanism within
the framework of Deep Reinforcement Learning (DRL) is proposed. This mecha-
nism incorporates the results of lower-level planning into the upper-level decision-
making process, effectively establishing a closed-loop system that iteratively refines
the decision-making and planning strategies.

(3) Enhanced State Space Extraction: This paper introduces the integration of grid map-
ping and curve coordinate system conversion techniques into the state space extraction
process for intelligent vehicle DRL algorithms. The dimensionality of this space is
broadened to encapsulate size and velocity information from lane maps and environ-
mental vehicles, which are then transformed into grid image data. This transformation
streamlines the utilization of deep learning methods for feature extraction, thereby
enhancing the capacity to glean relevant state information.

2. Methods

In this research, we delineate the distinction between behavior decision-making and
trajectory planning tasks within the realm of intelligent vehicles. Behavior decision making
involves utilizing scenario information to forecast the desired speed for the ego vehicle at
each specific pathway point in the near future, while upholding safety. Trajectory planning
entails the determination of the vehicle’s path, along with the associated lateral and longi-
tudinal speed, within a defined time window. The results of behavior decision making are
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contingent upon the specific scenario and can be regarded as a Markov decision process
(MDP). Addressing MDP challenges is a forte of DRL, which underpins our approach
to vehicle behavior decision making. Within the DRL framework, deep neural networks
are leveraged to extract both dynamic and static features from the given scenario. Rein-
forcement learning techniques are subsequently employed to navigate the policy space
and generate optimal decision-making strategies. After a stipulated time period, based
on the target path points and the prescribed vehicle speed as furnished by the behavior
decision-making process, we employ polynomial programming. This technique yields
smooth trajectories that meet real-time requirements and are validated as the optimal
solutions, ensuring both comfort and safety. Consequently, this research advocates the
utilization of the polynomial method to tackle the vehicle trajectory planning task.

The presented DRL methodology is structured into three distinct sub-processes: firstly,
the determination of the state-action space; secondly, the extraction of scenario features; and
lastly, the optimization of behavior strategies. This section furnishes an intricate delineation
of each pivotal sub-process involved.

2.1. State-Action Space Determination

Frenet coordinate system conversion takes the road centerline as the reference path
and defines vehicle lateral offset as the vertical distance from the reference path. As shown
in Figure 2, assuming that the coordinate of the ego vehicle in the Cartesian coordinate
system was Q(x, y), the vehicle speed vector was v⃗h, the reference path was expressed as
Tre f , and the projection point of the vehicle position to the reference path was F(xr, yr),
where the s coordinate on the reference line at F is then equal to the s-direction coordinate
of the ego vehicle sq. The coordinates of the ego vehicle’s location lq and speed in the
s-direction ṡq are 

lq = n⃗r

√
(x − xr)

2 + (y − yr)
2

ṡq = |⃗vh |cos ∆θ
1−κlq

l̇q = |⃗vh|sin ∆θ

(1)

where n⃗r is the normal unit vector at projection point F on the reference path, ∆θ is the
yaw angle of the ego vehicle, and κ is the lane curvature at the ego vehicle’s location. The
state space is composed of the ego vehicle and environmental vehicles’ features, where
environmental features are represented in Frenet coordinates.

𝑋𝑋

𝑌𝑌

𝐹𝐹(𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟)

𝑄𝑄(𝑥𝑥, 𝑦𝑦)

�⃗�𝑣ℎ

tangential of 𝐹𝐹

reference path 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟∆𝜃𝜃
𝑛𝑛𝑟𝑟

𝑂𝑂
Figure 2. Frenet coordinate transformation.

The input state of the ego vehicle is expressed as

Stego =

[
sego − s0

send − s0
,

lego

∑m
i=1 LW(m)

]
(2)

where sego and lego are the s and l coordinates of the ego vehicle’s position in the Frenet
space, s0 is the s-coordinate of the ego vehicle’s starting position in the Frenet space, send is
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the s-coordinate position of the ego vehicle when it drives out of the current driving area,
m is the number of lanes on the side of the road reference line to the direction of the ego
vehicle, and LW is the lane width.

The environmental assessment encompasses vehicles located approximately in both
the front and rear of the ego vehicle’s current lane, in conjunction with those in adjacent
lanes situated within the ego vehicle’s sensing radius. In total, this encompasses an exami-
nation of six vehicles. Subsequently, the coordinates of these six vehicles are transformed
into the Frenet coordinate system, with non-existent vehicles represented as null vectors.
The composite state of the environmental vehicles is articulated as

Stn =

[
sn − sego

rd
,
ln − lego

2LW

]
(3)

The action is selected as a combination of the duration tlast of the ego vehicle’s tra-
jectory, the l-direction coordinate lego in the Frenet space, and the s-direction velocity
ṡego, i.e.,

A =
[
tlast, lego, ṡego

]
(4)

In order to ensure the stability of the generated trajectory, the action needs to be
constrained. Since the main application scenario is a vehicle driving at high speed or on the
expressway, the constraint of the action’s lasting time is tlast ∈ [0, 6]. The lateral coordinate
is constrained as lego ∈ [0, ∑m

i=1 LW(m)]. The speed constraint in the forward direction
is ṡego ∈ [10, 25], which corresponds to 36–90 km/h. The above three parameters are
determined as the action space for the following reason: in order to ensure the comfort of
the generated trajectory, a quartic polynomial in the s-direction and a quintic polynomial in
the l-direction are selected to ensure the continuity of longitudinal and lateral acceleration
according to the common practice in references. In the Frenet coordinate system, trajectories
can be written as {

s(t) = a0 + a1t + a2t2 + a3t3 + a4t4

l(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + b5t5 (5)

In the stage of the trajectory planning task, the known quantity is the initial state of
the ego vehicle

[
s0, ṡ0, s̈0, l0, l̇0, l̈0

]
. If the three parameters of the operating space can be

determined, the planning state of the vehicle after the planning time tlast can be determined
as

[
sego, ṡego, 0, lego, 0, 0

]
. The parameters of the planned trajectory can be obtained by

solving Equation (5).

2.2. Scenario Feature Extraction Method

The extraction of scenario features relies on a deep neural network and comprises two
core components: vehicle feature extraction and map scenario feature extraction.

Vehicle feature means a state sequence composed of 14 coordinate values representing
seven vehicles (one ego vehicle and six environmental vehicles) at each time step. According
to Equation (1)–(3), the Frenet coordinate system conversion method can be used to map
the coordinates of obstacles around the ego vehicle in the road coordinate system to the
Frenet space, and the calculation of vehicle scenario features can be completed.

The map scenario feature involves a grid map within the Frenet coordinate system.
This conversion process is illustrated in Figure 3, where a curved road in the Cartesian
coordinate system (Figure 3a) is transformed into a Frenet space (Figure 3b), representing
the road along the tangential (s-direction) and normal (l-direction) directions based on the
road’s radius of curvature. The Frenet coordinate system conversion allows for the mapping
of obstacles around the ego vehicle from the road coordinate system to the Frenet space.
Since the speed and size of environmental vehicles are vital factors, they are represented
via a grid map. This map is generated by converting Cartesian coordinate grids into a
Frenet coordinate grid, wherein the number of occupied grids corresponds to the size of
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environmental vehicles and the grid colors indicate their speed values. In total, five color
codes are employed, ranging from light to dark, to represent speeds less than, slightly less
than, approximately equal to, slightly greater than, and significantly greater than the ego
vehicle’s speed, as illustrated in Figure 3c. This approach of map scenario feature extraction
offers the advantage of simplifying the state space via the introduction of fuzzy sets while
considering various vehicle sizes.

The state sequence of vehicle feature extraction uses a 1D convolutional layer, while
the map scenario feature employs a backbone consisting of a convolutional layer, a pooling
layer, and a fully connected layer for feature extraction. Subsequently, these extracted
features are concatenated and fed into the policy network, as depicted in Figure 4.

SH
H
N
L
SL

low
speed

high
speed

(a) Road coordinate (b) Frenet space (c) Grid map

Figure 3. (a) Grid map in road coordinate. (b) Grid map in Frenet space. (c) Abstract grid map:
colored grids are occupied by environment vehicles; shades of color mean speed values.
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2.3. Action Strategy Optimization Method

The optimization of action strategies was conducted via reinforcement learning. Given
that vehicle speed adaptation involves a continuous-time process, this study employs the
deep deterministic strategy gradient algorithm (DDPG) as shown in Algorithm 1. DDPG
stands out as an applicable choice for resolving challenges posed by continuous state-action
spaces, rendering it well suited for tackling the behavior decision-making task in intelligent
vehicles. Two kinds of Actor–Critic networks representing the training and the target are
proposed, in which θµ and θµ′ are the parameters of the training Actor network µ

(
s
∣∣θµ

)
and the target Actor network µ′

(
s
∣∣∣θµ′

)
, respectively, and their input is the extracted scene

features. θQ and θQ′ are the parameters of the training Critic network Q
(
s, a

∣∣θQ
)

and the
target Critic network Q′(s, a

∣∣θQ′
)
, respectively. The Critic network is able to estimate the Q

value of the state action and provide an optimized gradient for the strategy network.

yi = ri + γQ
(

si+1, µ
(

si+1

∣∣∣θµ
′

)∣∣∣θQ′

)
(6)

where ri is the reward of the current action, γ is the discount factor, and yi is the Q value of
the target Critic network.

Parameter θQ of the training network is updated using the mean-square error (MSE),
and the parameter θµ is updated using the policy gradient, i.e.,

J
(
θQ

)
=

1
N ∑

t

(
yi − Q

(
si, µ

(
si
∣∣θµ

)∣∣θQ
))2 (7)

∇θµ
J(µ) ≈ 1

N ∑
t

(
∇aQ

(
s, a

∣∣θQ
)
|s=s(t),a=µ(s(t)) ×∇θµ

µ
(
s
∣∣θµ

)
|s=s(t)

)
(8)

Equation (7) represents the mean-square error (MSE) loss of the training Critic network,
N means that N transitions are randomly sampled in the replay buffer, and then the
average is calculated in place of the expectation. The target networks θµ′ and θQ′ use soft
updates, i.e.,

so f t update :

{
θ

µ
′ = τθµ + (1 − τ)θ

µ
′

θQ′ = τθQ + (1 − τ)θQ′
(9)

where τ ∈ (0, 1) and close to 1 means the update amplitude. Rewards are allocated
based on the current state and action, serving as metrics to assess the consequences of
the intelligent vehicle’s behavior decision making on the subsequent trajectory planning
task. The decision-making result, stemming from the reinforcement learning process,
subsequently informs the planning trajectory via Equation (5). Given the potential risk
of collisions or constraint violations within the vehicle’s trajectory, the reward function is
categorized and detailed as follows.

r(s, a) =


−20, income collision
−10, break constraint
15, reach target
r f , f easible trajectory

(10)

Constraint violations within the generated trajectory manifest when longitudinal
acceleration falls outside the range of [−5, 4], lateral acceleration exceeds [−0.8, 0.8], or
the absolute curvature at any point along the trajectory surpasses 0.2 m−1. For a feasible
generated trajectory, the reward attributed to this trajectory segment can be viewed as a
weighted summation encompassing aspects of comfort, deviation from the centerline at the
endpoint, and driving efficiency. In essence, this is expressed as

r f = ωcrc + ωoro + ωrrr (11)
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where rc is the comfort reward, ro is the off-center line reward, rr is the driving efficiency
reward, and ω∗ is the corresponding weight.

rc = −∑| ...
x |∆t (12)

ro = −
∣∣∣∣mod

(
lego, LW

)
− LW

2

∣∣∣∣ (13)

rr = ∑|ẋ|∆t (14)

where ẋ and
...
x are the speed and jerk in the Cartesian coordinate system, ∆t is the trajectory

discretization time step, and mod is the remainder function. Reward function settings are
diverse and dynamic, and the weight coefficients need to keep the calculated values of
these three parameters within the same order of magnitude so that the final result can
reflect the importance of all three factors.

Algorithm 1: A DDPG algorithm used to solve the behavior decision-making
task of intelligent driving vehicles

Input: discount factor γ, learning rate α, reward function, parameter update
interval T, state space formed by scenario features, and behavior space

Output: parameters of four updated networks
1 Init training actor network parameter θµ and training critic network parameter θQ;
2 Init target actor network parameter θµ′ and target critic network parameter θQ′ :

θµ′ = θµ and θQ′ = θQ;
3 Init replay experience pool D, the size is set to 5000;
4 for episode = 1 : M do
5 Obtain the environmental vehicle state information, and combine the ego

vehicle location and HD map to obtain the environmental vehicle state in
Frenet space according to Equation (1)–(4), which is used as the input state
s(t) of reinforcement learning;

6 for t = 1 : T do
7 Select initial actor network parameter and the action generated by current

policy a(t) = µ
(
s
∣∣θµ

)
;

8 Execute a(t), get reward r(t), and obtain new state s(t + 1);
9 After executing action, store the obtained transition [s(t), a(t), r(t), s(t + 1)]

in memory replay buffer D;
10 N transitions are randomly sampled in the replay buffer as the training

data for the training actor-critic network;
11 Equations (6) and (7) are used to calculate the loss of the trained Critic

network;
12 Use backpropagation and Adam optimizer to update critic network

parameters θQ;
13 Use Equation (8) to calculate policy gradient of training Actor network;
14 Use Adam optimizer to update critic network parameters θµ;
15 Use soft update Equation (9) to update target Actor and Critic network

parameter θµ′ and θQ′ ;
16 end
17 end

3. Experiments

The proposed methodology was trained and tested within a CARLA-based simulation
environment featuring a four-lane highway, inclusive of various scenarios comprising
both linear and curved road sections. The simulation platform assumes comprehensive
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knowledge of all road vehicles’ state, enabling access to vital information such as the
road’s reference line positioning and lane curvatures derived from HD maps. The vehicles’
physical dimensions are determined as per CARLA-defined models, while environmental
vehicle control leverages the CARLA simulator’s native rule-based autonomous driving
capabilities. In each training batch, the ego vehicle commences its journey from a randomly
generated starting position, progressing for a distance of 500 m or until a vehicular collision
is encountered, upon which the round’s reward is computed. The pertinent hyperparame-
ters employed during training are outlined in Table 1. At the onset of each training episode,
environmental vehicles are stochastically positioned around the ego vehicle. The learning
process is characterized by the average reward, as depicted in Figure 5, illuminating the
method’s rapid convergence within a span of 1.2 × 104 episodes.

Table 1. Hyperparameter in training process.

Hyperparameter Symbol Value Comment

Discount factor γ 0.99 Algorithm 1 input
Batch size 128 Algorithm 1 input
Replay buffer size D 5000 Algorithm 1 input
Parameter update interval T 5 Algorithm 1 input
Comfort reward weight rc 5 Equation (11)
Off-center line reward weight ro 1 Equation (11)
Driving efficiency reward weight rr 0.2 Equation (11)

Figure 5. Average reward during training process.

The training outcomes are rigorously evaluated across an array of traffic scenarios,
encompassing varying traffic densities and lane configurations. Four distinct scenarios,
varying in complexity and ranging from easy to challenging, have been defined: straight-
forward linear road, intricate linear road, uncomplicated curved road, and intricate curved
road, as visually depicted in Figure 6. This illustration further annotates the initial speeds
and distances of the environmental vehicles for each scenario. The ensuing test results are
presented in the subsequent discussion.

In the case of the straightforward linear road scenario, as illustrated in Figure 6a, the
roadway consists of four lanes. At the initial moment, the ego vehicle is positioned in
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the second lane from the right. Notably, there are three environmental vehicles directly
situated ahead, left, and front left of the ego vehicle. The predetermined target speed for
the ego vehicle is set at 70 km/h. The behavior decision made by the algorithm dictates
a lane change to the right. The lane change process is executed over a duration of 3.9 s,
commencing with an initial speed of 31 km/h at the onset of the lane change. The dynamic
evolution of the traffic flow, presented in Figure 7, showcases the state transitions at
distinct time intervals. The comprehensive analysis of the ego vehicle’s driving trajectory,
speed profile, and yaw angle is thoughtfully elucidated in Figure 8. Upon the successful
completion of the lane change maneuver, the ego vehicle proceeds to traverse to the
designated end point within the newly adopted lane. Throughout this journey, both safety
and efficiency considerations are diligently met. This is underscored by the average speed
maintained during the entirety of the trip, which attains 48 km/h, while the speed achieved
at the conclusion of the lane change approximates the preset target speed, registering at
67 km/h.

(a) (b)

(c) (d)

Figure 6. Four distinct scenarios: (a) straightforward linear road, (b) intricate linear road, (c) straight-
forward curved road, and (d) intricate curved road.

𝑡𝑡 = 1.4 s 𝑡𝑡 = 2.3 s

𝑡𝑡 = 3.4 s 𝑡𝑡 = 4.1 s

Straight simple

Figure 7. Straightforward linear road traffic flow at different moments.
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Straight simple

(a) (b) (c)

Figure 8. Straightforward linear road traffic analysis of ego car’s (a) driving trajectory, (b) speed, and
(c) yaw angle.

In the case of the intricate linear road scenario, presented in Figure 6b, the road
configuration remains consistent with the four-lane layout. Initially, the ego vehicle is
situated within the second lane from the left. The roadway scenario consists of four
environmental vehicles, distributed as follows: directly in front of the ego vehicle, ahead
of the ego vehicle in the right lane, behind the ego vehicle in the right lane, and ahead
of the ego vehicle in the left lane. The predetermined target speed for the ego vehicle is
established at 70 km/h. The algorithm prescribes a lane change maneuver, directing the ego
vehicle to transition to the left lane, subsequently following the vehicle positioned ahead
to the left, which is moving at a higher speed. The dynamic progression of the formed
traffic flow at varying temporal junctures is meticulously delineated in Figure 9. Further
elucidation is offered in Figure 10, comprising a comprehensive analysis of the ego vehicle’s
driving trajectory, speed dynamics, and yaw angle. The commencement of the lane change
is initiated by the vehicle at a speed of 36 km/h, with the entire lane change operation
being seamlessly executed within a time interval of t = 4.4 s. Following the completion
of the lane change, the ego vehicle proceeds to trail the preceding vehicle. The journey is
marked by an average speed of 50 km/h, culminating in a final speed upon the conclusion
of the lane change that mirrors the designated target speed, recorded at 70 km/h.

Straight complex

𝑡𝑡  = 1.4 s

𝑡𝑡  = 2.3 s

𝑡𝑡  = 3.4 s

𝑡𝑡  = 4.4 s

Figure 9. Intricate linear road traffic flow at different moments.
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Straight complex

(a) (b) (c)

Figure 10. Intricate linear road traffic analysis of ego car’s (a) driving trajectory, (b) speed, and
(c) yaw angle.

In the case of the uncomplicated curved road scenario, characterized by three lanes
and a consistent curvature, illustrated in Figure 6c, the initial conditions find the ego vehicle
navigating the middle lane and encountering a sluggish-moving environmental vehicle
positioned directly ahead and another in the right lane ahead. The predetermined target
speed for the ego vehicle is established at 90 km/h. The algorithm dictates a left lane
change maneuver. The dynamic evolution of the traffic flow, contingent upon varying
temporal dynamics, is meticulously charted in Figure 11. Further elaboration is offered in
Figure 12, encompassing a comprehensive analysis of the ego vehicle’s driving trajectory,
speed dynamics, and yaw angle. The lane change commences within the curved road at a
velocity of 44 km/h, attaining completion within a time span of 5.3 s. Subsequently, the
ego vehicle maintains its trajectory within the left lane. The journey is characterized by an
average speed of 65 km/h, culminating in a final speed upon the conclusion of the lane
change that closely approximates the established target speed, registered at 86 km/h.

Curve simple

𝑡𝑡  = 1.5 s

𝑡𝑡  = 2.6 s

𝑡𝑡  = 3.9 s

𝑡𝑡  = 5.0 s

Figure 11. Straightforward curved road traffic flow at different moments.
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(a) (b) (c)

Figure 12. Straightforward curved road traffic analysis of ego car’s (a) driving trajectory, (b) speed,
and (c) yaw angle.

Within the intricate curved road scenario, characterized by a four-lane configuration
featuring constant curvature, as depicted in Figure 6d, the initial conditions find the ego
vehicle situated within the third lane from the left. The lane to the left accommodates a
trailing vehicle, and the right lane features another vehicle in close proximity to the ego
vehicle. Furthermore, the ego vehicle encounters slower-moving vehicles positioned ahead
within the same lane and in the right lane. The pre-established target speed for the ego
vehicle is set at 90 km/h. The algorithm-driven decision dictates a lane change maneuver
to the left. This lane transition is executed within a duration of 4.8 s, with the vehicle
commencing the lane change at a velocity of 50 km/h. The dynamic evolution of the traffic
flow, contingent upon varying temporal dynamics, is meticulously charted in Figure 13.
Subsequent elucidation is furnished in Figure 14, comprising a comprehensive analysis
of the ego vehicle’s driving trajectory, speed dynamics, and yaw angle. Upon successful
completion of the lane change, the vehicle positions itself in the second lane from the left,
maintaining an average speed of 61 km/h and achieving a final speed, culminating at
86 km/h, closely approximating the established target speed.

The method proposed in this paper, which combines DDPG with the Frenet grid graph
for intelligent vehicle behavior decision making and planning, is systematically bench-
marked against alternative reinforcement learning techniques and planning algorithms.
This comparative analysis serves to elucidate the notable advancements offered by the
proposed method. To ensure a rigorous assessment, the DQN method from Reference [17]
and the EM-Planner method from Reference [32] are utilized as baseline comparisons.
Both the state function and reward structure used in the DQN method align with those
implemented in this paper. And these models, including the EM-Planner, are subjected
to the battery of four test scenarios as previously outlined. The method proposed in this
paper and the two comparison methods establish the same vehicle and road models in the
CARLA simulator, in which the reward function of the DQN method is set according to
Equation (10), and the EM-Planner method sets the same target speed and target position
of the ego vehicle, as well as it combines speed and position information of the obstacle
environment vehicle transmitted to the ego vehicle in real time via a simulator, to carry
out the speed planning method combining dynamic programming and quadratic program-
ming. Specifically, for straight road scenarios, the ego vehicle’s initial speed is calibrated to
35 km/h with a target speed of 70 km/h. Conversely, for curved road scenarios, the initial
speed of the ego vehicle is set at 45 km/h, with a target speed of 90 km/h. Performance
metrics encompassing task completion rates, average vehicle speeds, and their respective
standard deviations are scrutinized as key indicators. This comparison is executed over
100 trials for each of the four scenarios. The comprehensive results, as detailed in Table 2
where bold indicates the optimal value, distinctly demonstrate that the approach presented
in this paper outperforms its counterparts across all assessed scenarios.
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Curve complex 𝑡𝑡  = 1.5 s

𝑡𝑡  = 2.7 s

𝑡𝑡  = 3.9 s

𝑡𝑡  = 7.0 s

Figure 13. Intricate curved road traffic flow at different moments.

Curve complex

(a) (b) (c)

Figure 14. Intricate curved road traffic analysis of ego car’s (a) driving trajectory, (b) speed, and
(c) yaw angle.

The comprehensive findings derived from our testing endeavors yield several notewor-
thy conclusions. Firstly, juxtaposed with traditional planning algorithms, the reinforcement
learning methodology substantively augments the success rate of lane-change decisions
and planning, particularly in scenarios involving straight roads. Secondly, in contrast
to the conventional DQN approach, our proposed method markedly elevates planning
performance and robustness, furnishing evident advantages. However, in the context of
curved road evaluations, where the discrete nature of the DQN method is less compatible
with the discontinuous trajectory planning inherent to these scenarios, the DQN approach
faces a notable decline in task completion rates in comparison to the EM Planner method,
which leverages kinematics and vehicle dynamics. Moreover, the robustness of trajectory
planning within the DQN method remains suboptimal for these scenarios. In striking
contrast, the method advanced in this paper significantly surpasses the performance of the
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EM Planner approach. This distinction is rooted in the capability of our approach to yield
planning trajectories that not only adhere to vehicle dynamics constraints via polynomial
conditions within the Frenet coordinate system, but also factor in the curvature of the road.
As such, the comprehensive evaluation substantiates that the proposed approach stands as
the preeminent option among the three methods under scrutiny. It should be noted that the
simulations in this paper use CARLA’s own vehicle models and HD map files, which can
be further obtained in Ref. [36]. Further research may require the use of customized vehicle
dynamics and road models to facilitate better practical applications for environmental
vehicles and ego vehicles.

Table 2. Performance metrics for different methods at four mentioned scenarios.

Scenario Algorithm Task Completion Rate (%) Mean Velocity (km/h) Standard Deviation

straightforward linear road
DQN 96.8 45.6 0.92
EMP 94.6 46.4 0.77
ours 99.3 47.5 0.52

intricate linear road
DQN 95.9 46.3 0.82
EMP 93.2 48.7 0.77
ours 98.6 50.0 0.58

uncomplicated curved road
DQN 74.3 56.3 2.81
EMP 90.6 57.8 1.05
ours 97.8 64.2 0.66

intricate curved road
DQN 72.7 48.4 2.96
EMP 87.3 56.6 1.12
ours 96.5 60.3 0.69

4. Conclusions

In this research endeavor, we present a comprehensive framework for behavior deci-
sion making and trajectory planning for intelligent vehicles. This framework seamlessly
combines the tenets of the DRL method and the Frenet coordinate system, effectively seg-
menting the driving tasks of intelligent vehicles into two core subtasks: behavior decision
making and trajectory planning. The behavior decision-making component harnesses the
DDPG method to equip intelligent vehicles with the ability to make informed driving deci-
sions. This involves utilizing critical information such as relative positioning, dimensions,
and velocity of the ego vehicle in relation to environmental vehicles within the Frenet
coordinate space as inputs to the DDPG model. The outcome of this decision-making
process then serves as essential input for the trajectory planning subtask, augmenting it by
providing a comprehensive picture of parameters like the planned trajectory’s lasting time,
final velocity, and lateral displacement. The score of the obtained trajectory can also be used
as part of a reward to participate in the optimization of the DRL method. Notably, extensive
experimentation within the CARLA simulator substantiates the merit of our proposed
approach. It showcases robust feasibility, stability, and efficiency across diverse driving
scenarios, surpassing the baseline DRL methodology and traditional vehicle trajectory
planning algorithms.

Looking ahead, the avenue for future research could encompass broadening the scope
of applications for our proposed method, thereby enabling its utilization in a wider array
of scenarios. Furthermore, the pursuit of more precise mathematical and physical models
for vehicle control is encouraged, as these would furnish enhanced guarantees regarding
the real-world viability of our proposed method. Deep learning methods for extracting
environmental features and reinforcement learning methods for decision making can use
better performance schemes that have been proven in the literature.
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