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Abstract: Colonoscopy is a valuable tool for preventing and reducing the incidence and mortality of
colorectal cancer. Although several computer-aided colorectal polyp detection and diagnosis systems
have been proposed for clinical application, many remain susceptible to interference problems,
including low image clarity, unevenness, and low accuracy for the analysis of dynamic images;
these drawbacks affect the robustness and practicality of these systems. This study proposed an
intraprocedure alert system for colonoscopy examination developed on the basis of deep learning.
The proposed system features blurred image detection, foreign body detection, and polyp detection
modules facilitated by convolutional neural networks. The training and validation datasets included
high-quality images and low-quality images, including blurred images and those containing folds,
fecal matter, and opaque water. For the detection of blurred images and images containing folds,
fecal matter, and opaque water, the accuracy rate was 96.2%. Furthermore, the study results indicated
a per-polyp detection accuracy of 100% when the system was applied to video images. The recall
rates for high-quality image frames and polyp image frames were 95.7% and 92%, respectively. The
overall alert accuracy rate and the false-positive rate of low quality for video images obtained through
per-frame analysis were 95.3% and 0.18%, respectively. The proposed system can be used to alert
colonoscopists to the need to slow their procedural speed or to perform flush or lumen inflation
in cases where the colonoscope is being moved too rapidly, where fecal residue is present in the
intestinal tract, or where the colon has been inadequately distended.

Keywords: colonoscopy; intra-procedure alert system; dynamic colon polyp image; blurred image
detection; foreign body detection; polyp detection; deep learning

1. Introduction

Colonoscopy is a valuable tool for detecting colorectal diseases. Chromoendoscopy
is often used in the diagnosis of polyps through the enhancement of the color, vascular
structure, and surface morphology of polyp lesions [1]. Generally, chromoendoscopy is
divided into dye- and equipment-based types [2]. Equipment-based chromoendoscopy,
or virtual chromoendoscopy, is the type that is most extensively used in current clinical
practice; it involves narrowband imaging, flexible spectral imaging color enhancement,
i-scan, and blue laser imaging [3]. When used in conjunction with magnifying colonoscopy,
such equipment-based techniques can help to accurately distinguish non-neoplastic and
neoplastic lesions, help predict the depth of invasion, and assist endoscopists in using the
correct treatment methods [4], thereby effectively reducing the incidence and mortality of
colorectal cancer [5].
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Patients undergoing colonoscopy are required to maintain a low-residue diet and take
laxatives to empty their bowels of excrement to allow the colonoscopists to have a clear
view of the intestinal mucosa. While performing a colonoscopy, a colonoscopist inserts a
colonoscope into the patient’s anus and further guides it into their bowel lumen, passing
through the rectum, sigmoid colon, descending colon, transverse colon, and ascending
colon before finally reaching the cecum. The colonoscopist then slowly pulls back the
colonoscope from the cecum and may push it forward or pull it farther back as necessary
to examine the mucosa in detail. Polypectomy or biopsy may be performed if a polyp
or lesion is detected. Among the quality indicators of colonoscopy [6], the adenoma
detection rate (ADR), quality of bowel cleansing, withdrawal time, cecal intubation rate,
and complete polypectomy rate are closely correlated with the occurrence of colorectal
cancer after colonoscopy [7]. However, considerable variance in ADRs may occur among
endoscopists, which could, in turn, diminish the clinical benefits of colonoscopy.

Several deep learning–based systems have been formulated for the diagnosis and
detection of colorectal polyps [8–14]. For example, Chen et al. [15] used deep neural
networks to distinguish narrowband images of neoplastic and hyperplastic polyps at the
Tri-Service General Hospital in Taiwan. Park et al. [16] used a convolutional neural network
(CNN) to classify polyps captured in colonoscopic images. Shin et al. [17] proposed
a method based on a region-based CNN (R-CNN) that engages in false-positive and
offline learning for polyp detection. Ren et al. [18] used an R-CNN to segment polyps in
images. Wang et al. [19] used a segmentation network called SegNet to screen for polyps.
Zheng et al. [20] employed a you only look once (YOLO) model to detect polyps in white-
light and narrowband images. Hsu et al. [3] used grayscale images and a CNN-based
deep network to enhance features in colonoscopic images, detect the location of colorectal
polyps, and identify polyp types. Nogueira-Rodríguez et al. [21] used an updated version
of the YOLO model, called YOLOv3, for real-time polyp detection. Li et al. [22] collected
endoscopic images, publicly available on the Internet, including those in the MICCAI 2017,
CVC colon DB, GLRC, and KUMC datasets; the researchers extracted the polyp images of
interest and employed multiple deep learning models—including Faster R-CNN, YOLOv3,
RetinaNet, DetNet, RefineDet, YOLOv4, and adaptive training sample selection—for polyp
detection and identification. However, many of the systems proposed in these studies
rely on perfect manually captured images or require magnified images for model training,
verification, and testing. Thus, the result may be a model that is vulnerable, has low
accuracy, or yields excessive false positives, which would be difficult to apply in clinical
settings [23].

The clarity of images of the colorectal mucosa strongly affects the quality of colonoscopy.
The factors behind low colonoscopic image quality include inadequate bowel preparation,
insufficient air or carbon dioxide insufflation, lens fogging or a colonoscopic lens stained
with fecal matter, and blurred images (Figure 1). In addition, a patient not complying
with the instruction to consume a low-residue diet or not taking their prescribed dose of
bowel-cleansing medication can result in the presence of residual fecal material or water in
their colorectal lumen, and insufficient air or carbon dioxide insufflation may lead to poor
inflation of the lumen, which may hinder the clear identification of abnormalities. Finally,
lens fogging or a colonoscopic lens stained by fecal matter or tissue fluid can hinder image
recognition.

Blurred images refer to images rendered out of focus because of motion resulting
from the rapid withdrawal of the colonoscope or from withdrawal with an unsteady
hand, either of which can prevent the accurate observation and identification of lesions.
Colonoscopists may miss lesions because of low image quality, and machine vision systems,
whose accuracy is particularly dependent on image quality, may perform much worse if
the problem of poor image quality is not addressed. Hassan et al. [24] reported an average
rate of 3.2 false positives when a computer-aided polyp detection system was used in
colonoscopy. Most of the false positives were due to bowel content, artifacts from the
mucosal wall, air bubbles, fecal water, or blood in the intestinal tract. Another factor behind
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these false-positive cases was computer-aided diagnoses made on the basis of images
obtained under insufficient air insufflation. Rutter et al. [25] suggested that patients may
still develop colorectal cancer, despite having undergone screening; they reported that
2.5–7.7% of patients had colorectal cancers within 3–5 years after receiving a colonoscopy,
primarily due to inaccurate screening results.
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(c) Insufficient air insufflation resulting false positive.

Sharp and clear images are necessary for the computer-aided detection and identifica-
tion of colorectal polyps and lesions. The technique of searching for and identifying the
shape, texture, and morphology of protrusions in the intestinal tract is akin to the identifi-
cation of foreign object damage (FOD) on an airport runway, which severely hinders flight
and passenger safety [26,27]. Some FOD detection systems used in airports worldwide
are based on optical detection with deep learning or hybrid techniques. Thus, it is crucial
to establish a robust intraprocedure artificial intelligence (AI) alert system to reduce the
burden of clinicians involved in colonoscopy.

This study proposed an alert system for colonoscopic examinations that uses deep
learning to alert the colonoscopist with a message when the image is blurred because of
rapid movement or when fecal matter or water in the lumen, insufficient air inflation, or
polyps are detected. Colonoscopists should pay attention to any abnormalities during
examination to avoid missing lesions and to improve the quality of colonoscopy. A CNN
model was used to determine when an alert message ought to be sent. The experimental
results revealed that the number of polyps of each case identified by the proposed system
is the same as the number of polyps detected by endoscopists through per-polyp analysis.
In addition, the sensitivity rates for the detection of high-quality images and the detection
of polyps were 92% and 95.74%, respectively, and the false alarm rate of low-quality images
was 0.18%. The proposed system can be employed by clinicians to improve the quality of
colonoscopies.

The remainder of this paper is organized as follows: Section 2 describes the materials
and methods; Section 3 details the evaluation experiments; and Section 4 discusses the
results and concludes the paper.

2. Materials and Methods

The training and validation datasets used for the proposed system were obtained from
the PolypsSet dataset [22] and Chang Gung Memorial Hospital (Table 1). In total, 3750 low-
quality images and 2500 high-quality images were selected by experienced colonoscopists
from the experimental datasets. The low-quality images included blurred images and
images that contained folds, fecal matter, and opaque water. High-quality images were
defined as images with clear and well-distended colon lumen and with no fecal residue or
opaque fluid. Each image had a resolution of 640 × 480 pixels and was a TIF file. Among
the low-quality images, the number of blurred images and the number of images containing
folds, fecal matter, and opaque fluid were 2500 and 1250, respectively. In addition, the
number of high-quality images containing polyps and the number of those containing no
polyps were 1250 and 1250, respectively. The test dataset was derived from six videos
(Table 2) that had been obtained for this study from Linkou Chang Gung Memorial Hospital.
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Each video was in MKV format, lasted approximately 15 min, and displayed 30 frames
per second. The colonoscope model was CF-H290L/I, which featured a 170◦ angle of view,
a forward-viewing direction of view, and a depth of field of 5–100 mm. After the images
were de-identified and all of the non-intestinal information was cropped from the images,
the images had a resolution of 720 × 960 pixels. After the deletion of the first 3–10 min
portion of each video, which showed the insertion of the colonoscope into the cecum, the
remaining footage was employed for polyp detection and identification at 3 frames per
second. Among the dynamic images obtained from the videos, the number of blurred
images and the number of images containing folds, fecal matter, and opaque water were
8716 and 1967, respectively, and the numbers of high-quality normal images and polyp
images were 399 and 50, respectively. All of the videos featured one polyp, except for
Case #1, which featured two polyps (Table 3). Polyp detection was performed using a
CNN model for classification, and the training dataset comprised 612 images from the
CVC-ClinicDB dataset and 500 images from the PolypsSet dataset (Table 4).

Table 1. Training and validation image dataset.

Image Type Image#

Blurred image 2500
Folds/fecal matter and water 1250

Good quality image Polyp 1250
Normal 1250

Total 6250

Table 2. Dynamic image test dataset.

Image Type Image#

Blurred image 8716
Folds/fecal matter and water 1967

Good quality image Polyp 50
Normal 399

Total 11132

Table 3. Number of polyps.

Case# Polyp#

1 2
2 1
3 1
4 1
5 1
6 1

Table 4. Polyp-detection training dataset.

Dataset Image# Size

CVC-ClinicDB-training 612 384 × 288
PolypsSet-training 500 640 × 480

Total 1112

Figure 2 shows the architecture of the proposed intraprocedure alert system, which
provides blurred image detection, foreign body detection, and polyp detection. Blurred
image detection is used to identify blurred images that have occurred due to camera
shaking, to the colonoscope being withdrawn too rapidly, or to the lens being stained with
fecal matter or opaque fluid. The presence of a colon fold and fecal matter or methods for
fluid detection are used to indicate abnormal protrusions that may be haustral folds and
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creases or fecal residue. Finally, polyp detection is used to identify polyp protrusions in the
colon lumen [3]. All of these functions are provided by the proposed CNN deep learning
model. Figure 3 and Table 5 present the proposed CNN deep learning model architecture
for the detection of blurred images, fecal matter, opaque water, and colon folds. Figure 4
and Table 6 present the polyp detection architecture for feature extraction and the bounding
box transformation layer for the result output. Notably, polyp detection was performed
on images from the six videos to verify the effectiveness of the system in identifying false
alerts after low-quality images were excluded.
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Table 5. CNN model of alert system.

Layers Filters (N) Size/Stride Output (W × H)

Image Input 480 × 640
Convolution 16 (3 × 3) 480 × 640

Batch Normalization 480 × 640
ReLu 480 × 640

Max pooling 2 × 2/2 240 × 320
Convolution 16 (3 × 3) 240 × 320

Batch Normalization 240 × 320
ReLu 240 × 320

Max Pooling 2 × 2/2 480 × 640
Convolution 32 (3 × 3) 480 × 640

Batch Normalization 480 × 640
ReLu 480 × 640

Max Pooling 2 × 2/2 120 × 160
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Table 5. Cont.

Layers Filters (N) Size/Stride Output (W × H)

Convolution 32 (3 × 3) 120 × 160
Batch Normalization 120 × 160

ReLu 120 × 160
Max Pooling 2 × 2/2 60 × 80
Convolution 32 (3 × 3) 60 × 80

Batch Normalization 60 × 80
ReLu 60 × 80

Max Pooling 2 × 2/2 30 × 40
Convolution 32 (3 × 3) 30 × 40

Batch Normalization 30 × 40
ReLu 30 × 40

Max Pooling 2 × 2/2 15 × 20
Convolution 32 (3 × 3) 15 × 20

Batch Normalization 15 × 20
ReLu 15 × 20

Max Pooling 2 × 2/2 7 × 10
Fully Connected 7 × 10

Softmax 7 × 10
Classification Output 7 × 10

Table 6. CNN model of polyp detection.

Layers Filters (N) Size/Stride Output (W × H)

Image Input 128 × 128
Convolution 32 (3 × 3 + 3 × 1 + 1 × 3) 128 × 128

Batch Normalization 128 × 128
ReLu 128 × 128

Max Pooling 2 × 2/2 64 × 64
Convolution 64 (3 × 3 + 3 × 1 + 1 × 3) 64 × 64

Batch Normalization 64 × 64
ReLu 64 × 64

Max Pooling 2 × 2/2 32 × 32
Convolution 128 (3 × 3 + 3 × 1 + 1 × 3) 32 × 32

Batch Normalization 32 × 32
ReLu 32 × 32

Max Pooling 2 × 2/2 16 × 16
Convolution 256 (3 × 3 + 3 × 1 + 1 × 3) 16 × 16

Batch Normalization 16 × 16
ReLu 16 × 16

Max Pooling 2 × 2/2 8 × 8
Convolution 256 (3 × 3 + 3 × 1 + 1 × 3) 8 × 8

Batch Normalization 8 × 8
ReLu 8 × 8

Convolution 256 (3 × 3 + 3 × 1 + 1 × 3) 8 × 8
Batch Normalization 8 × 8

ReLu 8 × 8
Convolution 256 (3 × 3 + 3 × 1 + 1 × 3) 8 × 8

Batch Normalization 8 × 8
ReLu 8 × 8

Convolution 24 1 × 1/1 8 × 8
Transform 8 × 8

Output

The size of each input image was measured in terms of the width (W) × Height (H)
× filter number (N). All of the images were adjusted to fit the specification of the CNN
deep learning model. We employed convolution, batch normalization, a rectified linear
unit, and maximum pooling operations to conduct feature extraction [3]. Tables 5 and 6
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show the filters, size/stride, and output image size of each operation. A classification
conversion layer was used to distinguish blurred images from non-polyp foreign body
images. In addition, fully connected, softmax, and classification output layers were used
for classification.

3. Experimental Results

Tables 7 and 8 present the training and validation datasets for the low-quality images,
respectively, including blurred images and foreign body images, which numbered 5000
and 2500, respectively. Tables 9 and 10 present the respective confusion matrices for the
blurred image and foreign body detection. “TP,” “FN,” “TN,” and “FP” denote “true
positive,” “false negative,” “true negative,” and “false positive,” respectively. A five-fold
cross-validation method was used to verify the performance effectiveness. Table 11 presents
the calculation method for the classification performance index, and Table 12 presents the
classification performance for the blurred image and foreign body detection. For the
detection of blurred images, the accuracy, precision, recall, F1-measure, and F2-measure
were 96.2%, 98.8%, 93.6%, 96.1%, and 94.6%, respectively. For the detection of folds, fecal
matter, and opaque water images, the accuracy, precision, recall, F1-measure, and F2-
measure were 96.2%, 97.5%, 94.8%, 96.1%, and 95.3%, respectively. Among the factors
behind the occurrence of false positives was an increased concentration of fecal matter or
water near a polyp or the presence of a crease next to a tiny polyp, which tended to cause
the system to issue an alert for the presence of fecal matter or colon folds (Figures 5 and 6).

Table 7. Training and validation datasets for blurred image detection and classification.

Image Type Training Set# Validation Set # Total#

Blurred image 2000 500 2500
Good quality

image
Polyp 1000 250 1250

Normal 1000 250 1250
Subtotal 4000 1000 5000

Table 8. Training and validation datasets for foreign body detection and classification.

Image Type Training Set# Validation Set # Total#

Folds/fecal matter and water image 1000 250 1250
Good quality

image
Polyp 500 125 625

Normal 500 125 625
Subtotal 2000 500 2500

Table 9. Validation results for blurred image detection.

Blurred Image
(Predicted)

Good Quality Image
(Predicted)

Blurred image (Actual) 468 (TP) 32 (FN)
Good quality image (Actual) 6 (FP) 494 (TN)

Table 10. Validation results for detection of colon folds and fecal matter or water.

Folds/Fecal Matter and Water
Image (Predicted)

Good Quality Image
(Predicted)

Folds/fecal matter and water
image (Actual) 237 (TP) 13 (FN)

Good quality image (Actual) 6 (FP) 244 (TN)
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Table 11. Performance index.

Accuracy
(Acc) Acc = TP+TN

TP+FP+TN+FN
F1-measure

(F1) F1 = 2×Prec×Rec
Prec+Rec

Precision
(Prec) Prec = TP

TP+FP
F2-measure

(F2) F2 = 5×Prec×Rec
4×Prec+Rec

Recall
(Rec) Rec = TP

TP+FN

Table 12. Performance index for blurred image and foreign body detection.

Acc% Prec% Rec% F1% F2%

Blurred image detection 96.2 98.8 93.6 96.1 94.6
Foreign body detection 96.2 97.5 94.8 96.1 95.3
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Tables 13 and 14 present the actual numbers of polyps detected after blurred images
and images containing fecal matter or water and colon folds were excluded, respectively,
along with the identification accuracy levels for the high-quality normal colon images and
polyp images. The numbers of polyps, high-quality normal image frames, and polyp image
frames were 7, 399, and 50, respectively. The number of polyps in each case identified
by the proposed system was the same as the number of polyps detected by endoscopists
through per-polyp analysis. The recall rates for the high-quality image frames and polyp
image frames were 95.7% and 92%, respectively. The overall alert accuracy rate and the
false-positive rate for the low-quality dynamic images obtained through per-frame analysis
were 95.3% and 0.18%, respectively.
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Table 13. Total number of polyps.

Case# Actual Polyp# Predicted Polyp#

1 2 2
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1

Total polyp 7 7

Table 14. Recall and false alarm rate for detection of image quality and polyp by per-frame analysis.

Good Quality Image Polyp Image Total

Image# 399 50 449
Predicted# 382 46 428

Recall (%) 95.7 92 95.3

False alarm rate 21/11132 = 0.0018 = 0.18%

4. Discussion

Nearly 70% of colorectal adenocarcinomas develop from conventional adenomas, with
the remaining 30% develop from sessile serrated polyps [28]. The progression from polyp
to adenocarcinoma generally occurs over 5–10 years [29], meaning that the incidence and
mortality rates of colorectal cancer can be reduced through appropriate screening strategies.
Several studies have indicated that appropriately performed screening colonoscopy and
post-polypectomy colonoscopy surveillance can substantially decrease the incidence and
mortality of colorectal cancer [5,30,31]. However, this protective effect is likely to be
considerably compromised by low colonoscopy quality, which could increase the risk of
post-colonoscopy colorectal cancer (PCCRC) [32].

Colorectal lesion detection is markedly affected by the quality of the colonoscopic
image obtained, which is evaluated in terms of colon cleanliness, the clarity of mucosal
images, and the degree of bowel distension [33]. Colon cleanliness refers to the degree of
bowel cleanliness required for the careful examination of the mucosa after fecal water and
residue have been suctioned. Although colon cleanliness is evaluated as excellent, good,
fair, or poor, the differences between each level are not governed by any standardized
criteria [34]. An alternative method is to assign quantitative scores based on the individual
cleanliness of each region of the colon (e.g., Boston Bowel Preparation Scale, Ottawa Bowel
Preparation Scale); however, these scoring systems are rather complicated [35,36]. Poor
colon cleanliness prolongs the procedure duration and may lead to the missed detection
of colorectal cancer or colorectal polyps. In addition, the early follow-up colonoscopy
requirement, of within one year, because of poor colon cleanliness increases the economic
burden on patients, medical institutions, and society as a whole [37]. The score calculated
after colonoscopy cannot improve a patient’s bowel cleanliness for a current examination.
Therefore, we developed an alert system to provide real-time feedback regarding the
bowel cleanliness of a patient to the colonoscopist so that irrigation can be employed to
clean the bowel lumen and improve the quality of the colonoscopy. Nevertheless, further
clinical trials are required to verify whether this system can improve the detection rate of
colorectal adenomas.

In addition to poor bowel preparation, another factor that may affect the clarity of
mucosal images is the rapid withdrawal of the colonoscope, which can result in blurred
images. According to multiple studies, physicians whose colonoscope withdrawal duration
during a normal inspection is 6 min or longer have a considerably higher ADR than
physicians whose withdrawal duration is less than 6 min [38]. In addition, retrospective
studies have confirmed that the longer the colonoscope withdrawal duration, the lower is
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the risk of PCCRC [39]. Blurred images may cause physicians to miss colorectal cancers
or polyps; therefore, alerting colonoscopists to unclear mucosal images may remind them
to withdraw the colonoscope more slowly or to move the colonoscope back and forth
in order to observe the unclear regions, and thus improve the examination quality. One
clinical trial indicated that the use of the ENDOANGEL AI system, which features a built-in
monitoring function for withdrawal speed, increases the ADR by 8% [40]. Another cause
of blurred images is the unsteady movement of the colonoscope. Automatic quality-control
AI systems can help monitor the stability of colonoscopy movement and alert physicians
when an image is blurred [41]. One clinical trial revealed that such systems can increase
the ADR by up to 12.4%.

Optimal colon distension is a prerequisite for colonoscopists to examine every part of
the mucosa in detail. Several studies have confirmed that physicians who can adequately
distend the lumen have a lower miss rate for colorectal adenomas [34]. A study comparing
conventional colonoscopy with virtual colonoscopy indicated that approximately 11%
of the polyps found, of which nearly 4% were adenomas larger than 6 mm [42], were
missed with conventional colonoscopy. Most of these missed adenomas were located in
the proximal part of a fold or near the anus orifice. Therefore, optimal distension can
improve the ADR, and the real-time alert system proposed in the present study could alert
endoscopists to the need to distend the lumen when a region is insufficiently inflated; such
distension could in turn reduce the risk of clinicians failing to spot lesions.

The results of our study revealed that the proposed system could effectively alert
endoscopists to low-quality images or poor colon preparation, prompting them to focus
the image, clean the bowel, or inflate the lumen for detailed examination. This system
reduces the likelihood of clinicians failing to spot colon polyps. The main limitation of
this study was that only retrospectively recorded videos from a single medical center were
used. Therefore, a large-scale prospective multicenter clinical trial is needed to validate the
efficacy of the proposed system in increasing the colon polyp detection rate.

5. Conclusions

This study proposed an intraprocedure AI alert system for colonoscopy examination.
Using feature extraction and classification alongside a CNN model, this system can identify
blurred images, instances of inadequate bowel cleansing, and instances of insufficient
air insufflation during colonoscopies. The system then alerts the clinician to the need to
correct or pay greater attention to specific elements during examination in order to reduce
the loss of crucial information and improve the reliability of the examination. The main
novel feature of our study was the detection of low-quality images and foreign bodies
in intestinal lumen to alert endoscopists and, thus, achieve higher-quality colonoscopy
examination. Our experimental results indicated that blurred image and foreign body
detection can prevent misjudgments and yield accurate polyp detection. In addition, our
dynamic image sampling method indicated that the use of just three or four images from
each second of footage for detection can yield accurate results; this means that our method
is computationally lightweight.

Several polyp detection and classification systems can reduce the false-positive rate
by enlarging training datasets. However, these systems still encounter challenges in the
presence of colon folds, fecal matter, or water during examination. Our experimental results
indicated that blurred image and foreign body detection can prevent misjudgments and
be used to accurately detect polyps. Furthermore, thanks to our dynamic image sampling
method, the use of just three or four images from each second of footage for detection can
reduce the information processing load and thus lower the hardware requirements for
image processing.
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