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Abstract: With the global spread of the novel coronavirus, avoiding human-to-human contact has
become an effective way to cut off the spread of the virus. Therefore, contactless gesture recognition
becomes an effective means to reduce the risk of contact infection in outbreak prevention and control.
However, the recognition of everyday behavioral sign language of a certain population of deaf people
presents a challenge to sensing technology. Ubiquitous acoustics offer new ideas on how to perceive
everyday behavior. The advantages of a low sampling rate, slow propagation speed, and easy access
to the equipment have led to the widespread use of acoustic signal-based gesture recognition sensing
technology. Therefore, this paper proposed a contactless gesture and sign language behavior sensing
method based on ultrasonic signals—UltrasonicGS. The method used Generative Adversarial Net-
work (GAN)-based data augmentation techniques to expand the dataset without human intervention
and improve the performance of the behavior recognition model. In addition, to solve the problem of
inconsistent length and difficult alignment of input and output sequences of continuous gestures and
sign language gestures, we added the Connectionist Temporal Classification (CTC) algorithm after
the CRNN network. Additionally, the architecture can achieve better recognition of sign language
behaviors of certain people, filling the gap of acoustic-based perception of Chinese sign language. We
have conducted extensive experiments and evaluations of UltrasonicGS in a variety of real scenarios.
The experimental results showed that UltrasonicGS achieved a combined recognition rate of 98.8%
for 15 single gestures and an average correct recognition rate of 92.4% and 86.3% for six sets of
continuous gestures and sign language gestures, respectively. As a result, our proposed method
provided a low-cost and highly robust solution for avoiding human-to-human contact.

Keywords: ultrasonic sensing; gesture recognition; sign language recognition; GAN; CTC

1. Introduction

The world has suffered from a sudden outbreak of a new coronavirus that has had a
widespread impact on people’s lives. In particular, in recent times, a number of countries
and regions around the world have seen a recurrence of the situation. The situation of
epidemic prevention and control is still serious. In the face of this massive epidemic,
the World Health Organization (WHO) states in its guidance article that avoiding human-
to-human contact can effectively cut off the spread of the virus [1]. Therefore, contactless
gesture recognition becomes an effective means to reduce the risk of contact infection
in outbreak prevention and control. However, especially in the face of daily behavior
recognition for certain populations, such as the deaf, the labor cost of hiring a sign language
teacher is high. Therefore, how to correctly and efficiently recognize sign language gestures
and perform human–computer interaction has become a problem that needs to be solved.

Past research work on gesture recognition was divided into three main categories:
sensor-based [2], vision-based [3], and Wi-Fi-based [4,5]. In sensor-based systems, limb
motion features are captured by body-worn sensors. In vision-based systems, limb motion
features are captured by optical cameras. In Wi-Fi-based systems, extracting channel state
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information (CSI) can recognize limb motion. By collecting human behavior information,
different data processing processes, and classification learning, all of the above methods
can identify people’s behaviors. However, there are certain limitations to these techniques.
Vision-based sensing technology is highly influenced by light and has poor privacy and
high energy consumption requirements for long-term detection. Sensor-based sensing
technology causes a lot of inconvenience to users because they need to wear external
devices for a long time. For Wi-Fi-based sensing technology, recognition accuracy is
affected because Wi-Fi signals are susceptible to interference from electromagnetic waves.

To compensate for the limitations of traditional techniques, the use of acoustic waves
for human activity perception is gradually gaining attention. Due to the advantages
of slow propagation speed, low sampling rate, and easy access to equipment, in recent
years, relevant research based on ultrasonic signals has also made great progress in smart
homes [6], location tracking [7], gesture recognition [8], and facial recognition [9]. Research
work in gesture recognition includes: Gao et al. [10] captured gestures using lightweight
MobileNet by using dual speakers and microphones in smartphones. LLAP [11] obtained
the accurate motion direction and distance by measuring the phase change of the received
signal to realize two-dimensional gesture tracking. Strata [12] achieved more accurate
recognition of gestures by estimating the Channel Impulse Response (CIR) of the reflected
signal. In this paper, we focus on human gesture recognition, especially extending to sign
language recognition for certain groups, such as deaf people [13], and providing higher
perceptual accuracy.

Due to the complexity of gesture movements, implementing acoustic-based fine-
grained, and highly robust gesture and sign-language-recognition methods have two
challenges. The first challenge is insufficient training data. The approach in this paper
involves three tasks: single gesture recognition, continuous gesture recognition, and sign
language gesture recognition. It takes time and effort to collect sufficient data for each
task. Past work either did not use data augmentation methods or used traditional data
augmentation methods based on geometric transformations and image manipulation.
Although it can alleviate the problem of neural network overfitting and improve the
generalization ability to a certain extent, the method used lacks flexibility and covers more
limited situations. The second challenge is to solve the problem of inconsistent length and
difficult alignment of input and output sequences of continuous and sign language gestures.
Because most of the previous perception-based research work [14] can only recognize a
single gesture, or several consecutive individual actions, especially since there is no research
work using acoustic perception for Chinese sign language recognition. Continuous gesture
and sign language recognition is an indeterminate length sequence prediction problem.
Traditional sequence prediction networks usually only produce fixed-length outputs and
can not determine the length of the prediction sequence adaptively.

For this purpose, a highly robust gesture and sign language recognition method based
on ultrasonic signals are proposed in this paper. First, we use the ultrasonic device Acoustic
Software Defined Radios Platform (ASDP) to capture the gesture movement data and the
amplitude information is used as the feature value for denoising and smoothing. Then we
use short-time Fourier transform (STFT) to extract the Doppler shift of the movement data.
To address the challenge of insufficient training data, we use GAN to automatically generate
data. Then ResNet34 is used to extract the feature values and the bi-directional long short-
term memory (Bi-LSTM) algorithm is used to classify the single gesture. For continuous
gestures and sign language gestures, the CTC algorithm is added after the Bi-LSTM network.
We use the dynamic programming method to find the output result with the highest
probability as the final output result of the model. The main contributions of this paper are
as follows:

1. We propose a data augmentation method based on GAN. Due to the randomness
of GAN itself, it makes the generated samples more diverse and can cover more
real situations, while it can reduce the classification model error and improve the
performance of the model.
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2. We feed the multi-scale semantic features extracted by the residual neural network
into the Bi-LSTM algorithm. The algorithm enables the classification network to
fuse the information of feature dimension and temporal dimension to achieve high-
precision gesture recognition. Meanwhile, in order to fill the gap of acoustic perception
recognition of continuous gestures and Chinese sign language gestures and solve the
problem of inconsistent length and difficult alignment of continuous gesture and sign
language gesture input and output sequences, we add the CTC algorithm after the
Bi-LSTM network. It enables the model to achieve good results for continuous gesture
recognition and sign-language-recognition problems as well.

3. In this paper, we obtain real data on gestures from multiple groups of volunteers
and form an open-source database. Through two real scene tests, it is verified that
the proposed method has high robustness, the accuracy of single gesture recognition
reaches 98.8%, and the recognition distance is 0.5 m. At the same time, the sign
language data collected can provide data support for education professionals to study
the daily interaction behavior of certain groups, such as the deaf.

The remaining sections of this paper are organized as follows. Section 2 summarizes
the existing work related to gesture and sign language recognition. Section 3 explains the
implementation process of the UltrasonicGS method. In Section 4, we experiment and
evaluate the performance of the UltrasonicGS method. Finally, Section 5 summarizes the
work of this paper and explains the next research directions.

2. Related Work

In this section, we present the current research related to single gesture recognition,
continuous gesture recognition, and sign language gesture recognition in terms of Inertial
Measurement Unit (IMU) sensors, vision, and acoustic. A single gesture is the execution
of one action at a time, and a continuous gesture is the execution of multiple actions at a
time. Additionally, a sign language gesture is the execution of all the gestures contained in
a complete sentence at a time.

IMU sensor: IMU sensor is composed of a gyroscope (GYRO) and an accelerometer
(ACC). It is usually placed on the user’s arm to capture the movement of the arm. The IMU
sensor-based recognition of single gestures works as follows. Trong et al. [15] used the ac-
celerometer and gyroscope in a smartwatch to collect data and combined a one-dimensional
convolutional neural network with a bi-directional long short-term memory (1D-CNN-
BiLSTM) to analyze and learn the signal features from the sensor signals. The proposed
model could achieve a 90% correct rate. Rinalduzzi et al. [16] proposed a machine learning
method in conjunction with a magnetic positioning system for recognizing the static ges-
tures associated with the sign language alphabet. The proposed machine learning method
is based on a support vector machine, which demonstrated good generalization properties
and resulted in a classification accuracy of approximately 97%. There is no related work on
continuous gesture recognition, but more on recognition of sign language gestures based
on IMU sensors. Hou et al. [17] designed the SignSpeaker system using the IMU sensor of
a smartwatch. The SignSpeaker system provided an isolated fine-grained fingerspelling
recognition model and a continuous sign language recognition model. Additionally, the
system used LSTM and CTC to recognize sign language gestures, but it could not use
a smartwatch to recognize two-handed movements. In a sensor-based system, gesture
behavior is captured by the wearable sensor. Although it can accurately capture fine-
grained behavior characteristics, wearable sensors will bring great inconvenience to daily
life, and the cost is high, which can only be used in a few fixed places.

Vision: vision-based systems typically use optical cameras to capture human be-
havioral features. After the research, vision-based technologies are mainly used to im-
plement continuous gesture and sign language recognition. For continuous gestures,
Liu et al. [18] proposed a few-shot continuous gesture recognition scheme based on RGB
video. The scheme used Mediapipe to detect the key points of each frame in the video
stream, decomposed the basic components of gesture features based on certain human
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palm structures, and then extracted and combined the above basic gesture features by a
lightweight autoencoder network. Mahmoud et al. [19] presented a robust deep learning
approach for characterizing, segmenting, and classifying isolated and continuous gesture
sequences using depth, RGB, and grayscale input data. The proposed process was suitable
for both full human action and gesture recognition. For sign language recognition and sign
language translation work, Guo et al. [20] proposed a hierarchical-LSTM framework for sign
language translation, which builds a high-level visual semantic embedding model for SLT.
However, unseen sentence translation was still a challenging problem with limited sentence
data and unsolved out-of-order word alignment. Tang et al. [21] proposed a graph-based
multimodal sequential embedding graph (MSeqGraph) network to solve sign language
translation with multimodal cues. Experiments on two benchmarks demonstrated the
effectiveness of the proposed MSeqGraph and showed that exploiting multimodal cues con-
tributes to a better representation and improved performance. GEN-OBT [22] was proposed
to solve the task of sign language translation. Additionally, it designed a CTC-based reverse
decoder to convert the generated poses backward into glosses, which guaranteed semantic
consistency during the processes of gloss-to-pose and pose-to-gloss. Vision-based sign-
language-recognition technology is already mature, and the technology not only considers
sign language movements but also incorporates facial expressions, lip-synthesis, etc., which
has improved recognition accuracy to a certain extent. Additionally, many sign language
translation efforts have been proposed in order to reduce the differences between natural
language and sign language recognition. However, the technology is susceptible to light,
some infringement of user privacy, and high energy demand for long-term monitoring.

Acoustic: acoustic-based systems typically use speakers and microphones embedded
in electronic devices such as smartphones, headphones, and smart bracelets to obtain
gesture information. Acoustic gesture recognition can solve the problem of wearable
sensors inconvenient high cost but also based on the visual sensitivity to light, the user
privacy impact of the problem. Acoustic technology only requires the use of speakers and
microphones embedded in smart devices to collect data, reducing device collection costs,
expanding the scope of everyday use, and slowing propagation characteristics to enable
more accurate recognition. Some recent research works on acoustic gesture recognition
have appeared. For single gestures, Mao et al. [23] proposed a system to measure the
propagation distance and angle of arrival (AOA) of reflected signals using a four-element
microphone array and dual speakers. The system did not allow for finger-level gesture
recognition because the user need to hold the phone. Wang et al. [24] solved the frequency
selective fading problem caused by multipath effects by periodically transmitting acoustic
signals of different frequencies. Additionally, they solved the challenge of insufficient data
by automatically generating data based on the correlation between CIR measurements and
gesture changes, achieving a breakthrough in the limitations of acoustic gesture recognition
in terms of accuracy and robustness. However, this research work can only recognize
single gestures and can not handle the case of continuous gestures. For continuous gestures,
FingerIO [25] analyzed the echo signal changes caused by finger movements by transmitting
orthogonal frequency division multiplexing (OFDM) modulated acoustic signals to achieve
accurate tracking of moving objects. However, it only captured finger movements in the
two-dimensional plane and could not capture arm movements. The work most similar
to ours is the work of Jin’s team. Jin et al. [26] used the speaker and microphone in a
commercial headset to send and receive signals for real-time dynamic recognition of sign
language gestures, and the system achieved 93.8% recognition for 42 words and 90.6%
recognition for 30 sentences. However, the system is dependent on a wearable device
(headset) to operate, making it a poor experience to use. Unlike Jin’s team, we did not rely
on any wearable device and proposed the first acoustic-based Chinese continuous gesture
and sign language recognition system with state-of-the-art results.
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3. System Design
3.1. Overview

The system proposed in this paper is divided into four main parts: data collection,
data pre-processing, feature extraction and gesture classification, and the system flow is
shown in Figure 1. In the data collection and processing phase, two speakers are used
as transmitters to send a single 20 kHz audio signal, a microphone is used as a receiver,
and the receiving device records and stores the original echo signal. The raw echo signal is
processed and converted to Doppler shift. Firstly, the images are filtered using a Butter-
worth bandpass filter and STFT, followed by a Gaussian filter to smooth the images. Finally,
the dataset is expanded using GAN. In the feature extraction phase, the features of the spec-
trogram are extracted using the Resnet34 algorithm to generate feature vectors. The gesture
classification phase feeds feature vectors into a Bi-LSTM network for classification and
recognition. For the sequence prediction problem where the input and output sequences of
continuous gestures and sign language gestures are of inconsistent length and difficult to
align, we add the CTC algorithm after the Bi-LSTM network, which can convert the feature
vector into an indeterminate length gesture sequence or sign language sequence.
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Gaussian Filter

Data Augmentation

20kHz

Data Collection Data Processing

+ + + +
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…
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…
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…
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Figure 1. Overview of UltrasonicGS (In the output result module, “我是教师” is a Chinese sentence,
which means “I am a teacher” in English. Where “我”“是”“教师” correspond to “I”, “am” and
“teacher” respectively.).

3.2. Data Collection and Pre-Processing

Data collection and pre-processing. The frequency of living noise is usually located at
[1000, 4000] Hz [27]. In order to ensure that the signal frequency used in the experiment
does not conflict with the frequency of living noise, this paper sets the speaker to send a
single audio signal of 20 kHz. The single audio signal has the advantage of low complexity
and high resolution in terms of Doppler shift [28]. Figures 2–4 show the schematic diagrams
of the Doppler effect corresponding to 15 single gestures, six sets of continuous gestures,
and six sets of sign language gesture data after pre-processing, respectively. To better
describe the gesture under test, in Figure 2 we use X→ to indicate the hand motion along
the X-axis and double arrows (e.g., X↔ ) to indicate the back and forth motion of the hand
along the X-axis.
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Figure 2. Single gesture spectrogram.
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Figure 3. Continuous gesture spectrogram.
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“I am a teacher”“I am fine,  thanks”“What day is today?”“Sorry, I am late” “What do you do?”“What is your name?”

Figure 4. Sign language gesture spectrogram.

Hand gesture data processing. A Butterworth bandpass filter with a frequency of
[19,000, 21,000] Hz is first used to eliminate the interference of background noise, followed
by an STFT to extract the Doppler shift caused by the gesture motion. STFT is the most
commonly used method for time-frequency analysis, but the time resolution and frequency
resolution are difficult to balance. To balance real-time and frequency resolution, we set
the frame length to 8192 and the window step size to 1024. The frequency change of the
signal after reflection is estimated by calculating the Doppler shift, and the image shown in
Figure 5a is obtained.
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Figure 5. Single gesture action data processing process. (a) Bandpass filtering data; (b) Gaussian
smoothing data.

∆ f = f0 × |1−
vs ± v f

vs ∓ v f
| (1)

where f0 is the frequency of the signal sent by the speaker (20 kHz), vs is the speed of sound
(340 m/s), v f is the speed of gesture movement (maximum movement speed 4 m/s). So
the synthesized frequency shift is about 470.6 Hz, and the effective frequency range should
be within [19,530, 20,470] Hz.

To eliminate the effect of isolated noise generated by sudden hardware noise on
the signal, the point where the STFT value changes most dramatically, 0.15, is set as the
threshold value, and any isolated noise less than this threshold is set to 0. After we use a
Gaussian filter to smooth the image. For two-dimensional images, the following Gaussian
functions are used for smoothing.

G(x, y) =
1

2πσ2 exp(− x2 + y2

2σ2 ) (2)

where x is the distance of the horizontal axis from the origin, y is the distance of the
vertical axis from the origin, σ is the standard deviation of the Gaussian distribution,and
the processed image is shown in Figure 5b.

3.3. Data Augmentation

Traditional data augmentation [29] generates new data from limited data by synthesis
or transformation. Traditional data augmentation techniques in the image domain are
based on a series of known affine transformations, such as rotation, scaling, displacement,
etc., and some simple image processing tools, such as light color transformation, contrast
transformation, noise addition, etc. This method of data augmentation based on geometric
transformation and image manipulation can alleviate the overfitting problem of neural
networks and improve the generalization ability to a certain extent, but the addition of
new data does not fundamentally solve the problem of insufficient data compared with the
original data. The recent emergence of GAN [30] can also be used for data augmentation.
This network-based synthesis method is more complex than traditional data enhancement
techniques, but the generated samples are more diverse and can be applied to various
scenarios, such as image editing and image denoising.

GAN consists of a discriminator network and a generator network. Discriminators
are two-category classification networks that distinguish whether x comes from the true
distribution or the generative model. Unlike the fully connected neural network-based
discriminator in the original GAN network, we use CNN as a discriminator to better
extract features in gesture images. The generation needs to make the discriminator network
distinguish its own generated samples from real samples. First, the generator randomly
initializes a latent vector, and then continuously performs convolution and upsampling
operations to transform the latent vector to the size of the actual image. The basic structure
of GAN is shown in Figure 6.
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X represents the real data, z represents the noise of the generator network, G(z) means
unreal data generated by the generator network, and D(x) represents the probability that
x belongs to the real sample distribution, where D ∈ [0, 1]. The optimization principle of
GAN is simply that the generator network, G, generates G(z) through continuous training
and learning and makes the discriminator network, D, unable to distinguish the difference
between G(z) and X. D is to improve their discriminant ability through continuous training
and learning, that is, to recognize that X and G(z) are different.

The optimization function of the whole GAN network can be summarized by Equation (3):

min
G

max
D

V(D, G) = Ex∼Pdata(x)[logD(x)] + EZ∼PZ(Z)[log(1− D(G(z)))] (3)

The main meaning of this equation is that one is the G remains constant and the
D wants to distinguish the real samples from the training samples. Additionally, the
other is the D remains constant and by adjusting the G it wants the D to make a mistake
and not let it distinguish as much as possible. The training process of generators and
discriminators is iterated alternately. First, optimize the discriminator D. The purpose
of the discriminator is to be able to correctly distinguish between G(z) and X. When
optimizing the discriminator network, it is necessary to give D and G in advance and try to
increase D(x) and decrease D(G(z)), i.e., the optimization objective of the discriminator
network is max

D
V(D, G). When optimizing the generator network, it is also necessary to

give D and G in advance and optimize min
G

V(D, G).

Specifically, we set the set of input images P = {p1, p2, . . . , pm}. To train the discrimi-
nator model, for each small batch, m samples are sampled from the prior noise distribution
pg(z) as {z(1), . . . , z(m)}, and m samples are obtained from the real data distribution pdata(x)
as {x(1), . . . , x(m)}, and the discriminator is updated by boosting the random gradient
Equation (4). When training the generator model, for each small batch, again m samples are
sampled from the prior noise distribution pg(z) and the generator is updated by reducing
the random gradient Equation (5).

∇θd

1
m

m

∑
i=1

[logD(x(i)) + log(1− D(G(z(i))))] (4)
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∇θg

1
m

m

∑
i=1

log(1− D(G(z(i)))) (5)

In practice, we build a GAN network for each category of data separately. As shown
in Figure 6, the generated images are basically the same as the original images, and it is
difficult to distinguish the difference between the real samples and the generated samples.
Therefore, by means of GAN, a large amount of high-quality data can be expanded in a
short time and used for the training of subsequent gesture recognition models.

3.4. Feature Extraction and Gesture Classification
3.4.1. Feature Extraction

In this paper, we use ResNet34 [31] to extract features, and its structure is shown
in Figure 7. The ResNet34 model has 34 convolutional layers, including a total of 16
residual learning units, where all convolutional operations use a convolutional kernel
of size 3 × 3. The spectrogram obtained from data augmentation is used as the input
to ResNet34, ensuring that the input images are all 64 × 64 pixels in size. After each
convolutional layer and before the activation function (ReLU), batch normalization is used
to accelerate the convergence. Performing reshapes and flatten operations on the output of
the last residual block, we can obtain the feature vector y = [y1, y2, . . . yT ], the total number
of feature vectors T = 512, and the length of each feature vector is 16.
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3.4.2. Gesture Classification

Bi-LSTM. Traditional LSTM can only encode information from front to back, not from
back to front, but information from back to front is also important for determining activity.
Bi-LSTM [32] can better capture the semantic dependencies in both directions. The Bi-LSTM
network computation is usually divided into the following four steps:

Step 1: from the forgetting gate ft, determine the information to be discarded from the
cell state. The forgetting gate can read the output ht−1 of the previous sequence, the input
xt of the current sequence and perform the Sigmoid operation:

ft = σ(W f · [ht−1, xt] + b f ) (6)

Step 2: determine what new information will be stored in the sequence state. First of
all, the Sigmoid layer determines which values we will update. Subsequently, a new vector
of candidate values C̃t is created using the tanh layer.

it = σ(Wi · [ht−1, xt] + bi) (7)

C̃t = tanh(Wc · [ht−1, xt] + bc) (8)
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Step 3: update sequence status.

Ct = ft ∗ Ct−1 + it ∗ C̃t (9)

Step 4: determine the output values based on the updated sequence states. First of
all, the Sigmoid layer is used to determine which sequence states can be output. Then the
sequence states Ct obtained in the third step are mapped to between −1 and 1 using tanh
and multiplied with the Sigmoid gate ot to obtain the final output ht.

ot = σ(W0 · [ht−1, xt] + b0) (10)

ht = ot ∗ tanh(Ct) (11)

where ht−1 denotes the output of the spectrogram sequence at the previous moment, xt
denotes the input of the spectrogram sequence at the current moment, W and b are the
weight term and bias term to be learned, respectively, σ denotes the Sigmoid operation,
ft denotes the output of the forgotten gate at time t, it denotes the information of the
spectrogram sequence to be activated at the moment t, Ct−1, and Ct denote the state of the
spectrogram feature sequence at the moment t− 1 and moment t, respectively, ht is the
output result of the output gate at time t.

Specifically, the feature vectors y extracted by the residual neural network are passed
to two LSTM layers, each of which has T(T = 512) LSTM storage units. To improve
the generalization ability of the model set the dropout of the model to 0.8. These two
layers perform sequence feature extraction in opposite directions, and each LSTM memory
cell will be computed by three gating units. After calculation, the output H f orward of the
forward LSTM and the output Hbackward of the reverse LSTM can be obtained. After that, we
concatenate and flatten H f orward and Hbackward to obtain the vector P. In the single-category
gesture recognition task, since the classifier eventually needs to recognize 15 gestures,
we design a fully connected neural network with 15 output neurons. Finally, softmax
operations are performed on the output of the fully connected layer to accurately classify
and recognize different gestures. In the case of continuous gesture or sign language
recognition tasks, it is necessary to input the vector p to the CTC algorithm for processing,
and we will describe this process in detail in the next section.

CTC. In this paper, we use the CTC [33] algorithm as a classifier for the continuous
gesture and sign-language-gesture recognition. CTC is an algorithm commonly used in
speech recognition, text recognition, and other fields to solve the problem of unaligned
input and output sequences of different lengths. Unlike single gesture prediction, after the
Bi-LSTM network obtains the feature vector p ∈ Rc×n (c represents the length of the feature
vector and n represents the number of classes of gestures or sign language), the fully
connected layer is no longer designed, but p is input into the CTC algorithm. Algorithm 1
shows the steps of the CTC method.

First, the CTC layer receives the output sequence p from the Bi-LSTM and then
computes the probability pctc(Y|p) between p and the true label Y on any alignment π,
where π[t] is the character ID aligned to the tth frame in p, as follows:

C = so f tmax(pWctc + bctc) (12)

p(B(π) = Y|p) =
nsub

∏
t=1

C[t, π[t]] (13)

pctc(Y|p) = ∑
π
′∈B−1(Y)

p(B(π) = Y|p) (14)

where Wctc ∈ Rn×char and bctc ∈ Rchar are learnable parameters, C ∈ Rc×char is the output
of CTC, C[t, π[t]] is the probability that the output character π[t] is aligned with the tth
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frame. The many-to-one mapping B(π) is used to remove redundant symbols from the
alignment π, for example, B(aa∅b) = ab, where ∅ is a blank character and the one-to-many
mapping B−1 projects the sequence of characters into a set of character sequences with
redundant symbols.

B−1(Y) = {π|Y = B(π)} (15)

In the training phase, we train the entire set of models using the CTC loss function.

Lctc = −logctc(Y|p) (16)

In the prediction phase, we need to use the Beam Search Decoding algorithm to convert
the feature vectors predicted by Bi-LSTM into the final sign language sequence prediction
results. In the sequence prediction problem, the model prediction process is essentially a
spatial search process, the core of which is to calculate the probability of expanding nodes
at each step. The sequence with the highest probability the last time is taken as the final
output of the model.

Algorithm 1 Steps of CTC
Input: Sequence of strings L, Number of nodes in each expansion W
Output: The sequence Q with the maximum probability at time T
1: for t = 1 to T do
2: Set B̂ = the W most probable sequences in B (L when t = 1)
3: Set B={ }
4: for p ∈ B̂ do
5: if p 6= ∅ then
6: r+(p, t) = r+(p, t− 1)yt

pe

7: if p̂ ∈ B̂ then
8: r+(p, t)+ = Probability(pe, p̂, t)
9: r−(p, t) = r(p, t− 1)yt

b
10: add p to B
11: for k = 1 to K do
12: r−(p + k, t) = 0
13: r+(p + k, t) = Probability(k, p, t)
14: add (p + k) to B

15: return argmax
p∈B

r(p, T)
1
|p|

4. Experimentation and Evaluation
4.1. Experiment Setting

Experimental platform. In the experimental phase, ASDP equipped with one mi-
crophone and two speakers were chosen as the data collection tool. Two speakers are
transmitters (Tx) and one microphone is a receiver (Rx). ASDP is an acoustic software-
defined radio platform, a multi-functional communication and sensing platform. The ASDP
is mainly composed of hardware, such as Raspberry Pi, INMP411, TPS54332, WM8731, etc.
The platform is shown in Figure 8a. Set the speaker to emit a 20 kHz continuous single
audio signal and set the microphone sampling rate to 44.1 kHz.

Dataset. We collected data in two scenarios, laboratory, and corridor, and the real
scenario was shown in Figure 8b,c. We invited 6 male volunteers and 6 female volunteers
to perform 15 single gestures. Additionally, we collected 720 sets of data under 4 practical
influencing factors of distance, speed, noise, and angle. Then we invited 2 male volunteers
and 2 female volunteers to perform 6 continuous gestures and 6 sign language gestures,
and 120 sets of data were collected for each. All of the above actions were performed by the
volunteer while keeping the body stationary and within a distance of 0.2 m to 0.5 m from
the device. The open source address for the dataset is: https://github.com/yuejiaowang/
database (accessed on 31 December 2022).

https://github.com/yuejiaowang/database
https://github.com/yuejiaowang/database
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Figure 8. Experimental equipment and environment. (a) Data collection equipment; (b) Laboratory
environment; (c) Corridor environment.

Implementation details. In our experiments, the input image for single gesture recog-
nition is resized to 512 × 512, and the input image for the continuous gesture and sign
language gesture recognition is resized to 620 × 462. For data augmentation, we use the
method mentioned in Section 3.3 for 20× data augmentation with the addition of random
scaling and random rotation. In the experiments for single gesture recognition, continuous
gesture recognition, and sign language recognition, we use 80% of the data as the training
set and the remaining 20% as the test set. Additionally, the results reported in the exper-
iments are all 5-fold cross-validation results. Our network architecture is implemented
in PyTorch. In single gesture recognition experiment, we use Adam optimizer with a
learning rate 1× 10−3 and set the batch size to 16. A total of 60 epochs are trained. In the
experiments of continuous gesture and sign language gesture, we use the Adam optimizer
with an initial learning rate of 1× 10−4 and set the batch size to 2. A total of 100 epochs
are trained and the learning rate is reduced by a factor of 10 in the 60th and 80th epochs,
respectively. All recognition models are not loaded with any pre-training weights and
experiments are conducted on NVIDIA Tesla P40 GPU.

4.2. Ablation Study
4.2.1. Impact of Different Influencing Factors

In order to evaluate the UltrasonicGS method in terms of different influencing factors,
this paper designed experiments in three aspects: distance between gesture and transceiver,
angle of arrival, and gesture speed in laboratory and corridor environments, respectively.
(1) Five experimenters were asked to execute the gesture at 5 cm, 15 cm, 25 cm, 35 cm,
and 50 cm from the transceiver position. (2) Five experimenters were asked to execute the
gestures at 30°, 60°, 90°, 120°, and 150° with the equipment. (3) Five experimenters were
asked to perform gestures of duration 0.5 s, 1 s, 1.5 s, 2 s, and 2.5 s, respectively. The results
of the experiment are shown in Figure 9.

Figure 9a shows the impact of environment and distance on the correct gesture recog-
nition rate. From the perspective of the environment, it can be seen that the recognition
result of the corridor environment is higher than that of the laboratory environment at
the same distance from the transceiver. This is due to the fact that the laboratory contains
regularly distributed equipment with tables and chairs, so the multipath effect is more
disturbing. From the perspective of distance, it can be seen that when the distance between
the hand and the device is 15 cm, the correct gesture recognition rate reaches up to 98%.
As the distance between the hand and the device increases, the correct gesture recognition
rate gradually decreases. When the distance is 50 cm, the correct gesture recognition rate
is close to 88%. The reason for this phenomenon is that when the distance is too small,
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the signal reflected by the hand is not completely received by the microphone. When the
distance is too large, the interference of the multipath effect on the reflected signal increases.
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Figure 9. Impact of different distance, angles and speeds. (a) Impact of different distance; (b) impact
of different angles; and (c) impact of different speeds.

Figure 9b shows the impact of environment and angle of arrival on the correct gesture
recognition rate. As can be seen from the figure, when the experimenter performs the ges-
ture at 90° to the device, the gesture recognition rate is 99% correct. When the experimenter
is at 30°, 60°, 120°, and 150° to the device, the gesture recognition rate does not differ much,
fluctuating around 96%. This is because when the angle of arrival is 90°, the direction of
hand motion is perpendicular to the signal domain, which has a greater impact on the
signal. Additionally, when the experimenter is at other angles to the device, the hand
motion generates a horizontal motion component with a smaller signal amplitude. Overall,
UltrasonicGS is able to maintain high performance specifications in all directions.

Figure 9c shows the impact of environment and speed on the correct rate of gesture
recognition. The figure shows that when the gesture duration is 1.5 s, the highest correct
gesture recognition rate can reach 98.7%. As the duration of the gesture increases or
decreases, the correct gesture recognition rate decreases. This is because the gesture
duration is too long, the gesture speed is too slow, and the signal change caused by the
Doppler shift is not obvious. The gesture duration is too short, the gesture speed is too fast,
and the microphone fails to receive the complete signal in a short period.

The experimental results demonstrate that UltrasonicGS maintains good recognition
performance within a distance of 50 cm between the hand and the transceiver, in all
directions, and within a hand gesture duration of 2.5 s.

4.2.2. Impact of Noise and Personnel Interference

To evaluate the impact of the UltrasonicGS method on ambient noise, line-of-sight
(LOS), non-line-of-sight (NLOS), and personnel interference, we designed the following two
experiments. (1) Experimenters were asked to perform 15 gestures at 15 cm from the device
position in the no noise, low-frequency noise, and 19 kHz ultrasonic noise of LOS and NLOS
environments, respectively. (2) Experimenters were asked to perform 15 gestures in four
situations of interference: no human interference, human static interference (experimenter
standing still), human light interference (experimenter walking back and forth), and human
heavy interference (experimenter executing disturbance gestures while walking).

The results in Figure 10a show that the correct gesture recognition rate stays above
98% in the LOS environment and fluctuates around 91.2% in the NLOS environment.
This is due to the better signal quality and higher throughput in the LOS channel model,
however, the multipath effect in the NLOS channel model leads to frequency selective
fading. From the perspective of noise, it can be seen that low-frequency noise and ultrasonic
noise have basically no effect on the experimental results, which further verifies that the
data pre-processing method proposed in this paper can remove noise interference well.
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The cumulative distribution functions (CDF) of the error rate for different interference
states are given in Figure 10b. The x-axis represents the recognition error rate and the
y-axis represents the CDF percentage. At a CDF of 0.8, the error rates corresponding to no
human interference, human static interference, human light interference, and human heavy
interference are 0.09, 0.11, 0.14, and 0.18, respectively. The highest accuracy is achieved in
an environment without human interference, and the worst recognition performance is
achieved in an environment with human heavy interference. However, the error rate of
about 80% of the test data is less than 18%, which indicates that the method proposed in
this paper has some anti-interference capability.

No Noise Low Frequency Ultrasonic
0.80

0.84

0.88

0.92

0.96

1.00

Different environments

A
cc
ur
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y

  LOS
  NLOS

(a) (b)

Figure 10. Impact of different environments and interference states. (a) Impact of different environ-
ments and (b) impact of different interference states.

4.2.3. Impact of Dataset Size

To evaluate whether data augmentation helps to improve the performance of the
gesture recognition model, we conducted experiments in three tasks: single gestures,
continuous gestures, and sign language gestures, respectively. Figure 11 shows the ROC
curves with and without data augmentation in turn.

In Figure 11, the blue curve and the area surrounded by the x-axis are the Area Under
Curve (AUC) when the data augmentation method is used in the UltrasonicGS method
and the red curve and the area surrounded by the x-axis are the AUC when the data
augmentation method is not used. We can observe that, whether it is a single gesture,
continuous gesture, or sign language gesture, when we use the GAN data augmentation
method, the receiver operating characteristic (ROC) curve rises faster and the area occupied
by AUC will be larger, and the recognition effect will be better than without the method.
Therefore, data augmentation techniques can extend the dataset and help to improve the
performance of the gesture recognition model. We will use data augmentation techniques
in a series of subsequent experiments.
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Figure 11. Impact on recognition performance of single gesture, continuous gesture and sign language
gesture when data augmentation is used or not. (a) Single gesture; (b) continuous gesture; and (c) sign
language gesture.

4.3. Comparison with the State-of-the-Art Methods

In order to verify the superiority of our proposed method in gesture recognition, we
compared it with the classical methods of acoustic sensing gesture recognition in recent
years. Table 1 details the differences between the five methods with respect to the five
aspects of sending signal, device, application, algorithm, and feature extraction for the
word level. Table 2 compares with SonicASL, which is based only on acoustics for sign
language sensing.

Table 1. Comparison with the word level methods.

Project Signal Device Free Application Algorithm Feature Accuracy

AudioGest [34] Ultrasound Yes Whole-hand Gesture / Doppler Effect 89.1%
SoundWave [35] Ultrasound Yes Whole-hand Gesture CNN Doppler Effect 88.6%
UltraGesture [36] Ultrasound Yes Finger-level Gesture CNN CIR 93.5%

Push [24] Ultrasound Yes Finger-level Gesture CNN+LSTM CIR 95.3%
Ours Ultrasound Yes Finger-level Gesture CNN+Bi-LSTM Doppler Effect 98.8%

Table 2. Comparison with the sentence level methods.

Project Signal Application Algorithm Single Continuous Sign Language

SonicASL [26] Ultrasound Word and Sentence CNN+LSTM+CTC 93.8% / 90.6%
Ours Ultrasound Word and Sentence CNN+Bi-LSTM+CTC 98.8% 92.4% 86.3%

In Table 1, it can be observed that the recognition accuracy of our proposed method
reaches 98.8%, which is the best performance among all methods. AudioGest and Sound-
Wave are suitable for recognizing whole-hand gestures, while our dataset contains fine-
grained finger-level gestures, resulting in poor recognition of the above two methods,
with recognition accuracies of 89.1% and 88.6%, respectively. Thanks to the multiscale
semantic features extracted by our CNN fed into the Bi-LSTM algorithm, we can make the
classification network fuse the information of feature dimension and temporary dimen-
sion. Additionally, the recognition performance is significantly better than that of other
finger-level recognition methods UltraGesture and Push. In Table 2, both SonicASL and our
method can recognize word-level and sentence-level gesture activities. Additionally, our
proposed method recognizes individual gestures with a 5% higher correct rate than Soni-
cASL but recognizes sign language gestures with 4.3% lower than the comparison method.
The reason for this situation is that we perform Chinese sign language recognition, while
SonicASL performs English sign language recognition, which is a more complex situation
involving homophones and split words. After experiments, our method increases the
recognition correct rate when recognizing continuous sentences in English. Therefore, our
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proposed method can meet the demand for action recognition in general perceptual space
and can ensure stable recognition accuracy.

4.4. Overall Performance
4.4.1. Overall Accuracy of Single Gestures

In order to evaluate the accuracy of 15 single gestures, the experimenters were asked to
perform this experiment in different environments (multipath-rich and multipath-not-rich
rooms) and with different influencing factors (distance angle and speed) in this section.
The results of the experiment are shown in Figure 12.

Figure 12 shows the overall confusion matrix for performing 15 single gestures in
different environments and with different influencing factors. The results of the confusion
matrix show that the UltrasonicGS method has a combined recognition rate of 98.8%.
Among them, 10 gestures, such as “1, 2, pinch, pull, push” can achieve 100% correct
recognition rate. In order to ensure the authenticity and expandability of the dataset,
each experimenter can perform the gestures “3” and “OK” according to their own habits
when actually collecting data. This resulted in similar gestures for “3” and “OK”, with a
small difference in the Doppler effect. The recognition rate of the above two gestures is
slightly lower, but the correct rate is 93%. In summary, the UltrasonicGS method is able to
distinguish the 15 single gesture actions well.
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Figure 12. Overall performance of single gestures.

4.4.2. Performance Evaluation of Continuous Gesture

To evaluate the performance of the UltrasonicGS method for continuous gesture recogni-
tion, four classification models were selected. ResNet34 extracted feature values, Bi-LSTM,
and CTC-classified gestures. VGG16 [37] extracted feature values, Bi-LSTM and CTC classified
gestures. ResNet34 extracted feature values, LSTM [38], and CTC classified gestures. VGG16
extracted feature values, LSTM, and CTC-classified gestures. The six groups of continuous
gestures selected in the experiment were: Spread and Pinch; Push and Pull; Hover and OK;
Around Left and Around Right; One, Two, and Three; and Slide Up, Slide Down, Slide Left,
and Slide Right. The experimental results are shown in Figures 13 and 14.
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Figure 13. Impact of classification model on continuous gesture performance. (a) Spread and Pinch;
(b) Push and Pull; (c) Hover and OK; (d) Around Left and Around Right; (e) One, Two, and Three;
and (f) Slide Up, Slide Down, Slide Left, and Slide Right.

 VGG16-LSTM-CTC

Figure 14. Impact of different models on accuracy of continuous gestures.

The CDF of error rates for different classification algorithms are given in Figure 13.
The six CDF figures represent six different continuous gestures, where the first four CDF
figures are continuous gestures composed of two gestures, the fifth is a continuous gesture
composed of three gestures, and the sixth is a continuous gesture composed of four gestures.
Globally, the six CDF plots of error rates for each classification algorithm vary essentially
uniformly. Using ResNet34 to extract feature values, Bi-LSTM and CTC achieve the highest
accuracy for classification of continuous gestures, where approximately 89% of the tested
data have an error rate of less than 10%. Using ResNet34 to extract feature values, LSTM
and CTC gesture classification have similar recognition rates as using VGG16 to extract
feature values, with approximately 80% of the test data having an error rate of less than 20%.

Figure 14 shows the accuracy of six continuous gestures with different classification
models. C1, C2, C3, C4, C5, and C6 correspond to each of the six gestures in Figure 13.
For each gesture using ResNet34 to extract the feature values, both Bi-LSTM and CTC
classification achieved the highest accuracy, with an average accuracy of 92.4%. Using
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VGG16 to extract the feature values, LSTM and CTC achieved the lowest accuracy, with an
average accuracy of 90.97%. This shows that the method used in this paper can recognize
not only single gestures but also continuous gestures. Additionally, the method incorporates
the information of feature dimension and temporary dimension, which effectively improves
the accuracy of gesture recognition.

4.4.3. Performance Evaluation of Sign Language Gesture

In order to evaluate the performance of the UltrasonicGS method for sign language
gesture recognition, we also chose the same four classification models as in the previous
experimental continuous gesture performance evaluation for “I am a teacher.” “I am fine,
thanks.” “What day is today?” “Sorry, I am late.” “What do you do?” “What is your name?”
six groups of Chinese sign language carried out the experiment, and the experimental
results are shown in Figures 15 and 16.
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Figure 15. Impact of classification model on sign language gesture performance. (a) I am a teacher.
(b) I am fine, thanks. (c) What day is today? (d) Sorry, I am late. (e) What do you do? (f) What is
your name?

 VGG16-LSTM-CTC

Figure 16. Impact of different models on accuracy of sign language gestures.
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The ROC curves of different classification models are given in Figure 15. The x-axis
represents the false positive case rate, the y-axis represents the true case rate, and the six
ROC plots represent the six different sign language gestures. Globally, there is almost no
difference in ROC curves and similar AUC areas for the six different sentence descriptions,
which indicates that the same model is similarly effective in recognizing six different sets of
sign language sentences. Using ResNet34 to extract feature values, the Bi-LSTM and CTC
algorithms are used to classify sign language gestures with the fastest ROC curve change
and the largest AUC area, while the other three classification models have a slightly slower
ROC curve change and smaller corresponding AUC areas.

Figure 16 shows the accuracy of the six sign language gestures under different classifi-
cation models. S1, S2, S3, S4, S5, and S6 correspond to the six gestures in Figure 15. For each
gesture using ResNet34 to extract the feature values, both Bi-LSTM and CTC classification
achieved the highest accuracy with an average accuracy of 86.3%. Using VGG16 to extract
feature values, LSTM and CTC achieved the lowest correct classification rate of 84.2% for
gestures. This shows that the method used in this paper can recognize not only continuous
gestures but also sign language gestures. The method incorporates the information on
feature dimension and temporary dimension, which effectively improves the accuracy of
gesture recognition.

5. Conclusions

In this study, we propose the UltrasonicGS, a highly robust gesture and sign language
recognition method based on ultrasonic signals. The method can recognize 15 single ges-
tures with high accuracy and robustness. Additionally, in order to satisfy more audience
groups, especially special groups, such as the deaf, we extend the method to recognize con-
tinuous gestures and sign language gestures. To achieve fine-grained gesture recognition,
the extraction of feature values using ResNet34 and the classification of single gestures by
Bi-LSTM. For continuous gestures and sign language gestures, we add CTC algorithm after
Bi-LSTM network to solve the problem of inconsistent length and difficult alignment of
input and output sequences of continuous gestures and sign language gestures. To fur-
ther improve the robustness of UltrasonicGS, automatic data generation using GAN can
alleviate the problem of neural network overfitting and improve the generalization ability
to a certain extent. Finally, a dataset containing three categories of gestural behavior is
constructed and open sourced. The experimental results show that the method recognize
a distance of 0.5m, and the overall correct rate of single gestures reach 98.8%, and the
average correct rates of recognition for six groups of continuous gestures and sign language
gestures are 92.4% and 86.3%, respectively.

In future work, we will further investigate (1) improving the recognition accuracy of
this model for sign language datasets and (2) replacing the collection device with a cell
phone to achieve sign language gesture speech conversion and text conversion functions to
improve human–computer interaction.
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