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Abstract: The rehabilitation evaluation of Parkinson’s disease has always been the research focus
of human assistive systems. It is a research hotspot to objectively and accurately evaluate the gait
condition of Parkinson’s disease patients, thereby adjusting the actuators of the human-machine
system and making rehabilitation robots better adapt to the recovery process of patients. The rehabili-
tation evaluation of Parkinson’s disease has always been the research focus of rehabilitation robots.
It is a research hotspot to be able to objectively and accurately evaluate the recovery of Parkinson’s
disease patients, thereby adjusting the driving module of the human-machine collaboration system
in real time, so that rehabilitation robots can better adapt to the recovery process of Parkinson’s
disease. The gait task in the Unified Parkinson’s Disease Rating Scale (UPDRS) is a widely accepted
standard for assessing the gait impairments of patients with Parkinson’s disease (PD). However,
the assessments conducted by neurologists are always subjective and inaccurate, and the results
are determined by the neurologists” observation and clinical experience. Thus, in this study, we
proposed a novel machine learning-based method of automatically assessing the gait task in UPDRS
with wearable sensors as a more convenient and objective alternative means for PD gait assessment.
In the design, twelve gait features, including three spatial-temporal features and nine kinematic
features, were extracted and calculated from two shank-mounted IMUs. A novel nonlinear model is
developed for calculating the score of gait task from the gait features. Twenty-five PD patients and
twenty-eight healthy subjects were recruited for validating the proposed method. For comparison
purpose, three traditional models, which have been used in previous studies, were also tested by
the same dataset. In terms of percentages of participants, 84.9%, 73.6%, 73.6%, and 66.0% of the
participants were accurately assigned into the true level with the proposed nonlinear model, the
support vector machine model, the naive Bayes model, and the linear regression model, respectively,
which indicates that the proposed method has a good performance on calculating the score of the
UPDRS gait task and conformance with the rating done by neurologists.

Keywords: wearable sensors; unified Parkinson’s disease rating scale; gait analysis; human assistive
system

1. Introduction

Walking training is the main rehabilitation modality for PD. An accurate PD gait
assessment result can help the assistive system automatically adjust the actuators’ mode,
so as to better adapt to the training needs of PD in different rehabilitation periods [1,2]. For
assessing the extent of gait impairments in PD patients, the Unified Parkinson’s Disease
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Rating Scale (UPDRS) is a widely accepted standard in clinics [3]. The gait task in UPDRS
is rated with five levels (0, 1, 2, 3, and 4) to reflect the severity, which always shows normal
walking, slow walking with small steps, severe gait disorder, needs external assistance,
and loss of walking ability, respectively. The assessment is commonly done by neurologists
according to the corresponding descriptions about the levels. However, the descriptions
are subjective and the defined boundaries are ambiguous. Because of this reason, the
results of assessments can have differences between different raters [4]. For example, in [5],
about 25% of PD patients were rated as having different gait task levels by two different
neurologists.

As the development of sensor technology, motion capture systems and force platforms
have been used as more objective and accurate approaches for evaluating PD gait than the
assessments from neurologists [6-8]. However, because of their high cost and restricted
site, the inertial measurement unit (IMU) is gradually used as an alternative in this appli-
cation [9-12]. Many gait parameters, which reflect the spatial, temporal, and kinematic
gait characteristics, are extracted from the measurements of IMUs attached to trunk and
lower limbs for quantifying and evaluating the gait impairments in PD patients [13-17].
The evaluation results and the UPDRS gait task levels are found to have good consistency
by some researchers [13].

To expand the applicable area in the clinic, the results of the sensor systems need
to be matched with the clinical standards, such as UPDRS. For this purpose, several
researchers have used the results of the sensor systems to evaluate some tasks [18-21] in
the UPDRS. Various machine-learning-based classifiers such as support vector machine
(SVM), decision tree (DT), and k-Nearest Neighbors (k-NN) are implemented in these
studies [20]. For example, Parisi et al. [5] used three IMUs on the trunk and thighs to
calculate spatial and temporal gait parameter and explored three classifiers to estimate the
gait task level; they reached a similar accuracy with the judgement of a different neurologist.
Patel et al. [18] used eight IMUs attached to limbs and trunk to extract features in time
domain and frequency domain when patient performing specified movements and used
SVM to estimate the levels of tremor task and bradykinesia and dyskinesia tasks. Giuberti
etal. [19,21] used three IMUs on trunk and thighs to monitor the kinematic features during
patients taking sit-to-stand and leg ability task and explored the performances of three
classifiers on estimating the corresponding levels. Jeon et al. [20] used an IMU attached on
finger and explored four classifiers to assess the tremor task.

However, there is still little research on the automatic scoring for gait task of UP-
DRS [5,22]. Federico et al. [5] developed a Body Sensor Network (BSN) consisting of
3 IMUs and discussed the effect of different classification methods for automatic scoring
the gait task of UPDDRS and finally realized 53% with no error and 98% with the error
not more than 1. Heldman et al. [22] implemented multiple linear regression models for
quantifying the detailed scores of toe-tapping task, leg agility task, gait task, and freezing
of gait task based on two heel-attached IMUs, where the average correlation coefficient and
RMS error were 0.86 and 0.47, respectively. There are still some gaps in the current relevant
research and actual clinical application. First, the accuracy of the current research needs
to be improved, and it cannot meet the actual clinical needs. In addition, the assessments
are still too inaccurate in some situations. The range of each level is defined widely in the
UPDRS. The classifiers can distinguish the different levels, but they are hard to further
quantify the severity in the same level. This causes the difficulty of comparing the patients
who are in the same level and in monitoring the changes of a patient during a short term.

In this paper, we propose a new nonlinear model to automatically score the gait of
Parkinson’s patients, corresponding to UPDRS. By recruiting 28 healthy subjects (9 healthy
subjects over 50 years old and 19 healthy subjects under 50 years old) and 25 Parkinson’s
patients, the scoring results were verified. The first innovation of this paper is that the
scores output by the proposed model are continuous, which expands the application range
of UPDRS, because even if subjects are scored into the same level, there are also varying
degrees of severity. The second innovation is that compared with the results of three other
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commonly used classifiers (73.6%, 73.6%, and 66.0% for the support vector machine model,
the naive Bayes model, and the linear regression model, respectively), the accuracy of the
new nonlinear model reaches 84.9%, which improves the possibility of clinical application.
The third is that the hardware system is only composed of two MPU6050 chips, which is
low in cost, easy to use, and easier to integrate into the assistive system.

2. Methods
2.1. Participants and Protocols

The information of subjects is shown in Table 1, in which the healthy subjects are used
to define the healthy range and regarded as level 0. Because patients in level 3 and level
4 cannot walk independently, to avoid accidents, they are not involved in our study. To
better suppress the influence of irrelevant factors on the experimental results, subjects with
PD were recruited from the rehabilitation department of Zhejiang Hospital for gait data
collection experiments at the same time in one day from March 2021 to December 2021,
all with acupuncture as treatment method. In order to control variables, all patients were
graded by the same neurologist with more than 20 years of experience through UPDRS. All
patient data were measured prior to treatment, as treatment can have a modifying effect on
patient gait. All subjects gave their informed consent for inclusion before they participated
in the study.

Table 1. The information of subjects.

. . . Number of
Subjects UPDRS Height/m Weight/kg Age/Years Subjects

0 5

Subjects with 1 1.64 £1.07 62+ 8 69 + 8 4

Parkinson 2 16
Young

Healthy 0 1.67 £1.24 62 =11 32+5 19
subjects

Old Healthy 0 1.58 4+ 3.13 56 + 6 69 +£7 9
subjects

Each PD participant and healthy participant took a walking trial with a wearable IMU
system for three times. During the trial, participant was asked to walk in a straight line at a
preferred speed for more than 12 m on a flat floor. The initial four steps were regarded as
the accelerating phases of walking. The following ten steps were regarded as the steady
walking phase. The measurements of the system during the steady walking phase were
further used for the assessments of the gait task in UPDRS. This study was approved by
the Medical Ethics Committee of School of Biomedical Engineering and Instrument Science,
Zhejiang University (Project identification code:2021-39).

2.2. The Configuration of System

As shown in Figure 1, the motion information of the subjects is collected through
Wearable Sensors. Based on Feature Calculation, the gait features such as stride length from
the original motion data could be obtained, which is imported into the Nonlinear Model to
automated scoring of Parkinson’s patients.
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Figure 1. The configuration of the wearable sensors and actuators system.

2.3. Wearable System

The wearable system contains two Fuzhi™-gait (based on InvenSense MPU-6050 chip,
including a 3D accelerometer with a range of £8 g and a 3D gyroscope with a range of
£1000° /s, with a size of 25 x 40 x 15 mm, a weight of 100 g, and a sample rate of 100 Hz,
which will not become a burden for the subjects to walk and was also used in [23]). Each
IMU is attached close to the ankle on the lateral side of each shank.

The X-axis, Y-axis, and Z-axis are along to inferior-superior, anterior—posterior, and
mediolateral direction, respectively. For the convenience on describing the outputs, a global
coordinate system is introduced. The P-axis in the global coordinate system is along the
direction of progression (the connection between two adjacent landing points of the limb),
the V-axis is along the direction of gravity, and the L-axis is in the mediolateral direction.
Each IMU’s data is sampled at a frequency of 100 Hz. For research purposes, the data of
IMUs is saved into a micro SD card and processed offline on MATLAB (R2021a).

2.4. Feature Calculation

The outputs of the wearable IMU system are twelve gait parameters listed in Table 2,
which represent the kinematic characteristics of the shank. The gait parameters are fur-
ther used as inputs in the proposed model for automatically assessing the gait task in
UPDRS. Most of the gait parameters have already been applied in [24-26] and showed
good performance on gait evaluation and classification.

An algorithm developed in a previous study [24] is implemented for calculating the
gait parameters of both sides by the attached IMUs. The data collected by the IMUs are
first processed by a coordinate system correction algorithm [26], which is used to reduce
the estimation error caused by the unaligned sensors’ coordinate system. Heel-strike (HS)
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and toe-off (TO) gait events are detected according to the cyclic pattern of measured z-axis
angular velocity based on a method developed in [17]. HSs are used to separate the walking
into gait cycles. TO is used to separate a gait cycle into stance and swing gait phases. The
shank orientations and ankle motion trajectories during each gait cycle are calculated
by the integration of measured angular velocity and acceleration. To reduce integrated
error, zero velocity state of the ankle motion is detected in stance phase for resetting
the motion calculation, and compensations are calculated for correcting the integrated
error [24]. Based on the detected gait phases and ankle motion, three spatial-temporal gait
parameters including stride length (SL), gait cycle duration (GD) and percentage swing
phase (PSP), and nine kinematic gait parameters including max ankle height (MH), range
of lateral displacement (RL), range of shank Z-axis rotation (RSZ), range of shank y-axis
rotation (RSY), range of shank X-axis rotation (RSX), max ankle progressive velocity (MPV),
max ankle vertical velocity (MVV), max shank Z-axis angular velocity (MSV), and ankle
displacement at MH (MHD) are extracted.

Table 2. The definitions of gait parameters.

Gait Parameter Definition RMSE (Validated in [24])

The height-normalized linear
displacement between two 23m
adjacent ankle landing points.

Gait cycle duration (GD) Theai?;:;;iﬁsegsﬁzwo 14 ms
The duration between
adjacent TO event and HS
event divided by GD.
The maximum value of
height-normalized ankle
displacement in V-axis
direction during the gait cycle.
The range of

Stride length (SL)

Percentage swing phase (PSP) no validated

Max ankle height (MH) 1.0 cm

Range of lateral displacement
(RL)

Range of shank Z-axis rotation
(RSZ)

Range of shank Y-axis rotation
(RSY)

Range of shank X-axis rotation
(RSX)

Max ankle progressive
velocity (MPV)

Max ankle vertical velocity
(MVV)

Max shank Z-axis angular
velocity (MSV)

Ankle displacement at MH
(MHD)

height-normalized
displacement along the L-axis
direction during the gait cycle.
The range of the integration of
IMU Z-axis angular velocity
during the gait cycle.

The range of the integration of
IMU Y-axis angular velocity
during the gait cycle.

The range of the integration of
IMU X-axis angular velocity
during the gait cycle.

The maximum value of
height-normalized ankle
velocity in P-axis direction
during the gait cycle.

The maximum value of
height-normalized ankle
velocity in V-axis direction
during the gait cycle.

The maximum value of IMU
z-axis angular velocity during
the swing phase.

The height-normalized ankle
displacement in P-axis
direction when MH occurs.

no validated

no validated

no validated

no validated

3.0cm/s

no validated

no validated

1.9 cm
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Considering that some gait parameters are related with subject’s biomechanical pa-
rameters, the gait parameters SL, MH, RL, MPV, MVV, and MHD are normalized by
subject’s height.

2.5. Nonlinear Model
2.5.1. Structure

A novel multiple nonlinear model is proposed to simulate the nonlinearity in the
UPDRS assessment process of neurologists and is used for automatically estimating the
gait task scores from the gait features. Unlike the levels rated by neurologists, the scores
output by the proposed model are continuous. Thus, the actual range of the score is set
as0£0.5,1£05,2+05,3+0.5, and 4 £ 0.5 for the five levels of gait task in UPDRS,
respectively. The levels of gait task have a positive correlation with the severity of gait
impairment. However, they are not defined quantitatively and spaced evenly. Thus, four
adjustable parallel hyperplanes are developed in the proposed model to divide the five
levels. These hyperplanes are defined as

Wix+C=D;i=1,234 (1)

where x is the set of the gait features, W and C are coefficients, and D; is a set of coefficients
for differentiating the four hyperplanes. Because these hyperplanes are parallel with each
other, a unified expression can be used to describe the relative position of a data point with
these hyperplanes

~_ WIx+C

T
Xpp = ———— =Wix+c )
: na

where xj,, is the distance of a data point to the plane WTx + C. According to the value of
Xpp, the data point can be assigned into the five UPDRS levels. The detailed score can be
further calculated by the relative position of the data point with the adjacent hyperplanes.

Because the scores need to be limited by lower and upper bounds, a sigmoid function
is implemented to redefine the x;, [27]. The redefined distance (yrd) is calculated as

bu - bl 5
4= +bj=——7——5-05 (©)]
" 14 e~ op="3) 14 e w2
where b; and b, are the lower and upper bounds of the output score, which are equal to
—0.5 and 4.5, respectively.
A continuous piecewise function, used for calculating the final output score (y) from
Yrd, is expressed as

ﬁyrd - ﬁ + b, by < Yra < p1

p2—p1Yrd — Pzpjpl to+1pt<yua<p2

Y= el — it T2, p2 <ya < ps 4)
pi—psdrd — P4P*SP3 tb+3,p3 <Ya < pa

ﬁyrd - bu%m + by +4,ps < Ya < bu

where p1, p2, p3, and py4 are the values of y,; at the four demarcation hyperplanes, respec-
tively, and can be expressed as
5 .
pi=——5——05i=1234 ®)
14e T2

The five segments of (4) correspond to the five levels of gait task in UPDRS. With (4), y
are valued from 0.5, 1.5, 2.5, and 3.5 at the four demarcation hyperplanes, respectively.
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Considering the practical situation, constraints are added in the proposed model as

p1—b; >0
pi+1 —pi >0,i=1,2,3 (6)
by —ps >0

To further illustrate the proposed model and the relationships between x;,, y,4, and y,
we present an example in Figure 2.

450 (a) e
35 P
25} Level 0
Level 1
d
I 15t P Level 2
pL- Level 3
05 / Level 4
_05 1 1 1 1 1 1 1 I
-2 -1 0 1 2 3 4 5 6
Xhp
450 (b)
3.5
25 &
Y 15
0.5 &
_05 L I I 1 I
-0.5 05 p1 p215 25 p3 35 p4 45
YVrd
451 (¢)

25 /
Y 15

05 _—__/o

% a4 o 1 2 3 4 5 s

Figure 2. An example of the proposed model. The segments of the curve correspond to the five levels
of gait task in UPDRS (0 to 4). (a) The xy, - y,4 plot. (b) The y,4 —y plot. (c) The x;,,, -y plot.

2.5.2. Training and Validation

During each walking trial, gait features were collected from ten walking steps, and
mean values of gait features were calculated and used later. In total, 53 data points were
collected from the 53 participants.

To avoid overfitting, the redundant features need to be removed. For this purpose,
one-way analysis of variance (ANOVA) is used for preliminary selection of the features.
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The feature which shows little significant statistical difference (p < 0.01) between different
subjects would be removed in this operation.

For simplifying the training process, the coefficients w, ¢, and p; to p4 in the proposed
model are trained, instead of W, C, and D; to Dy4. For training the model, the fmincon
library of MATLARB is applied, which is used to find the optimal coefficients that satisfy the
minimum loss function (L). The parameters are defined as

nj
,;1 lyji —Yi
Ej= T )
M
Ry =) (wgestd(x))? ®)
k=1
1 1 1 1 1
R, = + + + + )
by—ps ps—p3 p3—p2 p2—p1 p1—b
N
L= () Ej)/N+AR+BRy (10)
j=0

where i, j represents the ith data point that is rated as level j by neurologists, n; is the
number of data points under level j, y is the score estimated by the propose model, Y is
the level rated by neurologists, M is the number of used gait features, N is the number of
levels appeared in the training dataset, E; is the mean absolute estimation error under level
j, Ry is a L, regularization term for preventing overfitting, and R is a compensation term
for preventing too close between hyperplanes. std(x) is the standard deviation of the set
of the kth gait feature in the training dataset, wy, is the corresponding coefficient of the kth
parameter in the model, A and B are the weight of Ry and Rj, respectively, and the A and f3
are selected as 0.1 and 0.005 in this study.

The initial value of w and c in the trained linear part are set as zero. The initial values
of pj to py are set as 0.5, 1.5, 2.5, and 3.5, respectively.

Leave-one-subject-out (LOSO) cross-validation [28] is performed. This implies that
when validating the performance of the proposed model on each participant, the data
points from the rest of the 43 participants are used for training the model, and the data
point of this participant is used for testing the model.

2.6. Traditional Models for Comparisons

Classifiers and linear regression models have been used in many existing studies for
automatically rating the levels of gait task in UPDRS. For comparison purposes, a SVM
classifier, a naive Bayes classifier, and a multiple linear regression (MLR) model, which
are widely used by current researchers for automatic classification, are tested by the same
dataset. LOSO cross validation is also implemented on the three traditional models.

2.7. Statistical Analysis

For calculating the estimation errors of the models, the estimated scores are rounded
into integers as the form of five levels of gait task in UPDRS according to their values. The
estimation error (e) is calculated as

e =[se — Sy (11)

where s, is the rounded score and s, is the level rated by neurologists. Cumulative distri-
butions (c;) of e are also calculated, as

¢ = ”ZQST’ * 100% (12)
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where 1,<; is the number of estimated scores with an estimation error less than or equal to
i and Nt is the total number of the estimated scores.

Recursive feature elimination (RFE) is implemented for each model to investigate the
relationship between the number of features and the accuracy and is also used to find the
optimal set of features. Starting with an empty feature set and ending until all the features
are involved, the REF would add certain features, which provide maximum decrease or
minimum increase on the mean estimation error [29]. The accuracy obtained during this
process is recorded.

3. Results
3.1. Gait Features Distributions

Figure 3 shows the distributions of each gait feature under different gait task levels
among the PD participants. For the convenience on presentation and comparison, the gait
features have been standardized by the mean values and standard deviations obtained
from healthy participants. The range of healthy participants are also plotted in this figure.
One-way ANOVA is used for the preliminary selection of the features. The p-values of
SL, MH, RSZ, MPV, MSV, and MHD are less than 0.01, which indicates the significance of
the distribution variance between different gait task levels. The other six gait features are
removed from the feature set as redundant information.

4 T T T T T T T T T T T T
) A A A 0 Healthy mean & 1.96 S.D.
A  Healthy‘mean &= SD. 4 i L1
Q 0
= § 8 2 O§ [ /AN
2 ok g C§ 0 IO o% % A AN O i
S @% §§ 4 9% - o 9 88 op 5@
PR VS B NS I v
- LW = -
35 2 % § A A A A A
E % A A A
—:% -4 N N @ A A A AT
Z O  Level0
6| Level 1 7
A Level 2
| 1 IA | |

S GD PSP MH RL RSZ RSY RSX MPV MVVMSV MHD
Gait features

Figure 3. The distributions of the gait features under different gait task levels among the PD
participants. Each point represents one data point. The gait features have been standardized by their
mean values and standard deviations of the healthy participants.

3.2. Results of Gait Task Assessment

Figure 4 shows the results of RFE for the proposed nonlinear model and the three
traditional models. Obviously, for different learning models, the number and types of
optimal feature combinations are different, and blindly increasing the number of features
will even increase the error of the system, which are consistent with the statement that
neuroscientists who evaluate Parkinson’s gait always focus on a few gait features. The
optimal feature set for the proposed nonlinear model consists of feature MH, SL, and
RSZ. The mean value of the gait task level estimation error calculated by (11) is 0.151.
The optimal feature set for the SVM model consists of MSV, SL, and RSZ, with a mean
estimation error of 0.264. The optimal feature set for the naive Bayes model consists of
SL and RSZ with a mean estimation error of 0.264. The optimal feature set for the linear
regression model consists of MH, RSZ, and MHD with a mean estimation error of 0.340.
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0.5
L~ Nonlinear Model
0.45%v, >~ —==SVM
- R == =Naive Bayes
S 8 ===== Linear Model @
= Y \ Tl 4.‘___.0_-
= . -
Z 03 . Yoo
-
5 R
= 0.25
02r
0.15 |

Number of features

Figure 4. The RFE results of the proposed nonlinear model and the three traditional models.

Figure 5 shows the estimation error distributions of the four models with their own
optimal feature set. In order to more intuitively evaluate and compare the automatic
scoring results of the four models, we mainly focus on two scenarios, namely accurate
scoring (e = 0) and slight deviation (e < 1). In terms of percentages of participants, 84.9%,
73.6%, 73.6%, and 66.0% of the participants are accurately assigned into the true level
with the proposed nonlinear model, the SVM model, the naive Bayes model, and the
linear regression model, respectively. Regarding estimation error, 96.2%, 92.5%, 96.2%,
and 98.1% of the participants have an estimation error not more than 1 with the proposed
nonlinear model, the SVM model, the naive Bayes model, and the linear regression model,
respectively.

100% r

-]
£
= -
"'5 95 %
E 90 % / m—— Nonlinear Model
] ¥
£ e S
5] 35 5’ == =Naive Bayes
S 0 //_-‘ “==== Linear Model
= 2t
E80%F o
Ao R
- I
E 2 m“o :
=
E 70% r
65 % - . '
0 <l <2

Estimation error(e)

Figure 5. The cumulative distribution function of estimation error for the proposed nonlinear model
and the three traditional models.

Figure 6 shows a boxplot of the distribution of the gait task scores estimated by the
proposed nonlinear model with the optimal feature set. The theoretical score range of each
gait task level is also marked in the figure. For the healthy subjects, the estimated gait
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task scores are 0.26 &= 0.32 (mean =+ standard deviation). The estimated gait task scores are
0.31 +£0.12,1.27 £ 0.70, and 1.64 £ 0.66 for PD subjects in level 0, 1, and 2, respectively.

4 T T T T
Level 4
351 ! _f__
3t Level 3
L
: T
e 2T o _ Level2
© |
= +
&3]
1r Level 1
- ! T 1
05r 1 —_ 1 ]
== T | T
or __ Level 0
0.5k : ! i ! —_—
HC PD PD PD
Level 0 Level 0 Level 1 Level 2

Figure 6. The distribution of the gait task scores estimated by the proposed nonlinear model. HC
and PD represent the healthy control subjects and the subjects with Parkinson’s disease, respectively.
The theoretical score range of each gait task level is marked in the figure. The box presents the 50% of
the estimated scores around the median line (namely the red horizontal segment). Its vertical width
gives a direct indication of the value of the interquartile range. The whiskers indicate the maximum
and minimum value of the scores. The outliers (+) are also plotted.

Figure 7 shows the accuracy of different methods to score HC and PD. Among them,
the nonlinear model proposed in this paper has 2, 0, 3, and 3 errors for HC and PD with a
level of 0 to 2, respectively. The error of SVM is 3, 0, 3, and 8, and the error of naive Bayes is
3,1, 2, and 8, respectively. For the linear model, the errors are 4, 3, 1, and 10, respectively.

10 T - I ;
I Nonlinear Model
B SVM
8t [ INaive Bayes — :
B incar Model

A N

[\

Number of subjects scored incorrectly

HC PD PD PD
Level 0 Level 0 Level 1 Level 2

Figure 7. The number of HC and PD scored incorrectly by different methods

=]
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4. Discussion

In this study, a novel nonlinear model is developed for automatically classifying the
levels of gait task in UPDRS. According to the results shown in Figure 5, 84.9% of the
subjects are accurately rated as their actual levels, and the results are significantly better
than other traditional algorithms (73.6%, 73.6%, and 66.0% for the support vector machine
model, the naive Bayes model, and the linear regression model, respectively). In addition,
according to the results shown in Figure 6, the distribution of the estimated scores of PD
patients in level 0 is similar with that of the healthy subjects, which matches the UPDRS
definition of level 0 in gait task. The estimated scores of PD patients show an obvious
positive correlation with the actual levels. These results also indicate good performance of
the proposed method.

To accomplish the comparisons of the different models for the automatic scale as-
sessments, the two classifier models and a linear regression model are also performed,
which have been used in previous studies. According to the comparison results shown in
Figures 4, 5 and 7, the proposed nonlinear model is generally superior to the other three
methods but not all aspects, as linear models and naive Bayes are more superior for subjects
rated level 1 (only 1 subject with level 1 was mis-scored, while the proposed model had
3 subjects with level 1 mis-scored). However, from practical clinical considerations, we
are more faced with the scoring of patients from level 0, 1, and 2 rather than limited to
level 1 only. Therefore, the nonlinear model proposed in this paper has more application
value. Among the four methods, the linear model appears to have the largest error which
is caused by the hardness for linear model to match the nonlinearities existing in the rating
process. The decision boundaries in the proposed model for different levels are parallel
with each other while in the traditional classifier models are not. The parallel decision
boundaries is helpful for further quantifying the extent of gait abnormality of a data point
withn its level, which enables the proposed model to output the detailed score but not just
the level. With the proposed model, the data points in the same level can also be compared.
This would make sense in the evaluation of rehabilitation and treatment effectiveness for
patients in short term.

A RFE method is implemented in our study for finding the optimal feature set. As
Figure 4 shows, to reach the highest accuracy, only a small set of features is needed. The
similar phenomenon also happened in some previous studies [29]. This is reasonable
because the neurologists only focus on a few main aspects of gait which are special in PD
patients during the assessment process. The low-dimensional gait features are sufficient
to accomplish the assessment, which can reduce the complexity of model and improve
generalization ability.

Only two shank-mounted IMUs are involved in the proposed system. It has a great
potential to be applied in the daily environment for long-term assessment of PD gait due to
its convenience and comfort [30]. The long-term assessment can monitor the variance of
gait in few days to few months, which is meaningful for the evaluation of the progression
of the disease and the effectiveness of treatments.

There are some limitations in this study. First, the rating of gait task by neurologists
and the collection of IMU data were not at the same time in one day, which may cause
some inevitable errors between calculated and actual values. Second, because most PD
patients recruited in our study are in middle or late stage, the data are not collected
evenly. Most PD subjects are in level 2 of gait task in UPDRS. Only a few PD subjects
are in level 0 and level 1. The overall number of PD subjects is also smaller than some
previous studies [5]. Overfitting is prone to occur due to the small and unevenly distributed
dataset, brings additional errors, and reduces the practicability. In addition, although the
proposed gait features show a good performance in the automatic assessment of gait scores,
the selection of them still deserves further investigating. Only limited gait features are
extracted from the motion of shank and ankle. Other features commonly used in literature
for gait classification or evaluation such as the variance of gait parameters [15] are ignored
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in this study. These features would be considered in future work to improve the current
accuracy of the proposed model.

5. Conclusions

In this paper, a novel method on automatic assessment of the gait task in UPDRS is
developed based on only two shank-mounted IMUs and 12m straight walking test. With the
proposed nonlinear model and under the optimal feature set, 84.9% of the recruited subjects
were accurately rated as their actual gait task levels, and 96.2% of the subjects have a level
rating error not more than 1. This indicates the good conformance between the automatic
rating results and the results from neurologists. For comparison purpose, several traditional
models were tested by the same dataset. Compared with the results of other three models
that 73.6%, 73.6%, and 66.0% of the recruited subjects were accurately rated as their actual
gait task levels by the support vector machine model, the naive Bayes model, and the linear
regression model, the proposed nonlinear model shows a much higher accuracy because of
the well matching with the nonlinearities existing in the assessment. However, for safety
reasons, this method is not suitable for patients with level 3 and 4 of UDRRS. The proposed
model can further quantify the extent of gait abnormality of a data point within its level,
which enable the proposed model to output the detailed score but not just the level. This is
helpful for the evaluation of rehabilitation and treatment effectiveness in short term. The
approach has great potential for further clinical applications as a convenient and objective
tool on automatically classifying the levels of gait task in UPDRS.
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