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Abstract: As the Coronavirus Disease 2019 (COVID-19) continues to impact many aspects of life
and the global healthcare systems, the adoption of rapid and effective screening methods to prevent
the further spread of the virus and lessen the burden on healthcare providers is a necessity. As a
cheap and widely accessible medical image modality, point-of-care ultrasound (POCUS) imaging
allows radiologists to identify symptoms and assess severity through visual inspection of the chest
ultrasound images. Combined with the recent advancements in computer science, applications of
deep learning techniques in medical image analysis have shown promising results, demonstrating
that artificial intelligence-based solutions can accelerate the diagnosis of COVID-19 and lower the
burden on healthcare professionals. However, the lack of large, well annotated datasets poses a
challenge in developing effective deep neural networks, especially in the case of rare diseases and
new pandemics. To address this issue, we present COVID-Net USPro, an explainable few-shot deep
prototypical network that is designed to detect COVID-19 cases from very few ultrasound images.
Through intensive quantitative and qualitative assessments, the network not only demonstrates
high performance in identifying COVID-19 positive cases, using an explainability component, but
it is also shown that the network makes decisions based on the actual representative patterns of
the disease. Specifically, COVID-Net USPro achieves 99.55% overall accuracy, 99.93% recall, and
99.83% precision for COVID-19-positive cases when trained with only five shots. In addition to the
quantitative performance assessment, our contributing clinician with extensive experience in POCUS
interpretation verified the analytic pipeline and results, ensuring that the network’s decisions are
based on clinically relevant image patterns integral to COVID-19 diagnosis. We believe that network
explainability and clinical validation are integral components for the successful adoption of deep
learning in the medical field. As part of the COVID-Net initiative, and to promote reproducibility
and foster further innovation, the network is open-sourced and available to the public.

Keywords: ultrasonic imaging; lung; COVID-19; few-shot learning; deep explainable architecture

1. Introduction

The Coronavirus Disease 2019, or COVID-19, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has been continuously impacting individuals’
wellbeing and the global healthcare systems [1]. Despite the vaccination efforts, policies,
and regulations in place, due to the rapid transmission of the virus and waves of rising
cases, the development of effective screening and risk stratification methods remains to be
a critical need in controlling the disease [2]. Various types of diagnostic tools, including
reverse transcription-polymerase chain reaction (RT-PCR), rapid antigen detection tests,
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and antibody tests, have been developed and adapted globally to increase the rate of
screening. While RT-PCR has been the gold standard test for diagnosing COVID-19, the
technique involves large labour and laboratory resources and is time-consuming [3]. Other
rapid antigen tests and antibody tests with varying sensitivity are also less reliable in
comparison to RT-PCR tests [3].

For people with significant respiratory symptoms, medical imaging is used to identify
the disease and assess the severity of the disease progression [4]. Under this protocol, a
computed tomography (CT) scan, chest X-ray (CXR), or point-of-care ultrasound (POCUS)
imaging can be performed and used clinically as an alternative diagnostic tool [2]. To make
a diagnosis, acute care physicians and radiologists visually inspect the radiographic images
to find patterns related to symptoms and to assess the severity of COVID-19 infection and
deformation [3]. During times of high transmission rate of COVID-19, the large influx of
patients increases the burden on clinicians and radiologists. Medical image processing and
artificial intelligence (AI) can assist in reducing this burden and accelerate the diagnostic
and decision-making process, as existing models and algorithms continue to improve and
the amount of available medical image data continues to grow [5–7].

Different imaging modalities, including CT scan, X-ray, and ultrasound, may be used
in the diagnosis of COVID-19 and offer varying diagnostic values [8]. Chest CT scan is the
most sensitive imaging modality in the initial diagnosis and management of confirmed
cases, but it is more expensive and time-consuming [5,8]. In contrast, ultrasound imaging
is more accessible and portable, cheap, and safer, as radiation is not involved during the
examination, which are desirable properties for its usage, especially in resource-limited
settings/environments/areas/regions [8].

Deep learning usually requires a large set of training examples [4,7,9]. However, due to
the nature of novel diseases, the availability of such a huge amount of well annotated data
poses a great challenge to learning algorithms. Few-shot learning is an approach where
a model is trained to classify new data based on a limited number of samples exposed in
training [10]. This approach resembles how humans learn, as we can recognize new object
classes from very few instances, and it is different from conventional deep neural networks
that require a large amount of data in the training phase [10]. Since the few-shot model
requires much fewer data to train, the computational costs are also significantly reduced [10].
These properties make it an appropriate and promising approach for COVID-19 as it
relates to novel and rare disease diagnosis. One approach for few-shot learning is metric-
based learning. As a few-shot metric-based learning approach, prototypical networks
(PN) perform classification by computing distances to prototype representations of each
class [10]. PN has shown state-of-the-art (SOTA) results on other datasets and domains
(e.g., [11–13]), proving that simple design decisions can yield significant improvements
over other complicated architectures and meta-learning approaches [10].

In this work, we present an open-source explainable deep prototypical network, called
COVID-Net USPro, that can detect COVID-19 cases with high accuracy, precision, and
recall from a very limited number of lung ultrasound (LUS) images. When trained with
only 5 shots, COVID-Net USPro classifies between positive and negative COVID-19 cases
with 99.55% overall accuracy, 99.93% recall, and 99.83% precision for COVID-19 positive
cases. Intensive experimentation was conducted (e.g., testing different image encoders,
varying training conditions, and the number of classes to optimize the network) to assess
the performance of COVID-Net USPro. To ensure the network’s fairness and accountability,
an explainability module is constructed to assess the network’s decisions with visual
explanation tools, i.e., Grad-CAM [14] and GSInquire [15]. Moreover, our contributing
clinician (A.F.) carefully verified and validated the pipeline, as well as the results, to ensure
the validity of the proposed solution from the clinical perspective. To facilitate the adoption
and openness of AI in healthcare, support reproducibility, and encourage innovation, the
network, and all the experiment scripts, are open-sourced at the project’s Github repository.

Our work contributes to the existing body of literature on rare disease medical image
analysis using few-shot learning in at least the three following ways:
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1. We present a few-shot network that reaches 99.55% accuracy when trained with only
five shots, while other related works achieving similar (or lower) performance require
larger numbers of training examples (see details in Section 2).

2. COVID-Net USPro is an explainable network, as demonstrated quantitatively by analysis
from two explainability visualization tools and qualitatively by our clinician validation.

3. COVID-Net USPro is open-sourced and available to the public, which helps promote
the reproducibility and accessibility of AI in healthcare. This would encourage further
innovation in the field of deep learning applied to medical image analysis for novel
disease diagnosis.

The remainder of this paper is structured as follows. Section 2 describes related
previous studies and highlights their limitations. Section 3 explains data, techniques, and
the experiments conducted to assess the network performance in detail. Section 4 presents
findings of the research, including quantitative performance assessment and qualitative
explainability analysis results. Results are then discussed and summarized in Section 5,
where some limitations of the research and future directions are also presented.

2. Related Work

There are several studies that aim to apply deep learning to the screening and detection
of COVID-19 cases. As an open-source and open-access initiative, the COVID-Net [5,7,9,16]
includes research on the application of deep learning neural networks using a multitude
of image modalities, such as CT, X-ray, and ultrasound images. Multiple works have
demonstrated the effectiveness of deep learning in the classification of CT and X-ray
images. For example, Aboutalebi et al. proposed the COVID-Net CXR network [17], which
is a tailored deep convolutional neural network (DCNN/CNN) for the detection of COVID-
19 cases. The network that was trained on 5210 chest X-ray images achieved an overall
accuracy of 98.3% and 97.5% sensitivity for COVID-19 cases. In another work, Ozturk
et al. [18] proposed a DCNN network that was previously used for the you-only-look-once
(YOLO) real-time object detection system to classify X-ray images. Their proposed network
achieved 98.08% accuracy for binary COVID-19 case detection. Afshar et al. [19] proposed a
capsule network, called COVID-CAPS, which achieved over 98% accuracy and, specificity,
trained on 112,120 X-ray images. Gunraj et al. [6] proposed the COVID-Net CT network for
COVID-19 detection from CT images. Being trained on 194,922 CT images, the network
scored 96.2% in sensitivity and 99% in specificity for COVID-19 cases. The potential of
including both CT-scan and X-ray images for classification is also explored. For instance,
Thakur [20] presents a DCNN-based model achieving over 99% accuracy and precision for
COVID-19 detection using 11,095 X-ray and CT images. Few works proposed DL-based
solutions for COVID-19 detection from ultrasound images. In a recent study, MacLean
et al. [7] proposed a highly efficient self-attention deep neural network, called COVID-Net
US, for COVID-19 detection from POCUS ultrasound imaging. The network was trained
on 3947 positive COVID-19 and 3697 negative normal case images and achieved an area
under the receiver operating curve (AUC) of over 98%. In another study, Diaz-Escobar
et al. [21] leveraged pre-trained neural networks, such as VGG19 [22], InceptionV3 [23],
and ResNet50 [24], in the detection of COVID-19 from ultrasound images and achieved
89.1% accuracy and AUC of 97.1%. One main requirement of conventional deep neural
network architectures in most of the existing research is a large amount of training data, as
in all the mentioned works above, datasets surpassed 5000 total images [7,9,17]. This may
pose a serious limitation in the case of novel/rare diseases and new pandemics where not
many images are available for training the DL model.

The application of few-shot learning techniques has also been investigated. For exam-
ple, Shorfuzzaman et al. [25] proposed MetaCOVID, a Siamese few-shot neural network
with the contrastive loss for detecting COVID-19 using CXR images. The performance
of the best network achieved an accuracy of 95.6% and an AUC of 97% when tested in a
10-shot setting in the inference phase. In another work by Ebadi et al. [26], a deep Siamese
convolutional network called COVID-Net FewSE was proposed that can detect COVID-19
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positive cases with 90% recall and accuracy of 99.93% when the network is provided with
only 50 examples in the training phase. In the work by Karnes et al. [27], the use of adaptive
few-shot learning for ultrasound COVID-19 detection was studied.

Although the feasibility of adopting few-shot learning techniques for COVID-19
detection from medical imaging has been already investigated, most of the previous studies
only focused on the performance of the network, analyzing its accuracy, precision, and
recall. A comprehensive quantitative analysis of network explainability to ensure that
decisions are made based on actual patterns is either missing or inadequate. In addition,
a thorough validation assessment, performed by clinicians as the domain experts, is also
lacking. There are limited discussions on whether the data interpretation process of these
well performing networks aligns with real clinical settings [25]. These limitations could
jeopardize the full understanding of the network and hinders the adoption of the network
in the real clinical environment. In this work, we aim to address these limitations by
presenting a high-performing network that can accurately detect COVID-19 cases when
presented with only five shots. We also perform a comprehensive explainability analysis
to validate network behaviour. Additionally, most importantly, we further validate the
network and findings by an experienced practicing clinician.

3. Materials and Methods
3.1. Data

We use the COVIDx-US dataset v1.4. [1] as the data source. COVIDx-US is an open-
access benchmark dataset of lung ultrasound imaging data that contains 242 videos and
29,651 processed images of patients with COVID-19 infection, non-COVID-19 infection
(mainly pneumonia), other lung conditions, and normal control cases. The dataset provides
LUS images captured with two kinds of probes, linear probes, which produce a square or
rectangular image, and convex probes, which allow for a wider field of view [28]. Due to
the difference in the field of view, combining the linear and convex probe data in training
may increase noise and influence the performance of the network. As there are also a low
number of COVID-19 positive examples captured with the linear probes in the dataset,
we exclude them from this study. A total number of 25,262 convex LUS images are then
randomly split into the training set, containing 90% of images, and the unseen test set
with the remaining 10% of images, ensuring all frames from each video are either in train
or test set to avoid data leakage. The training set is then split into 80–20%, representing
the training and validation datasets. The validation dataset is used for hyperparameter
tuning and performance assessment in the training phase. All images are re-scaled to
224× 224 pixels to keep the images across the entire dataset consistent. The dataset is
further augmented by rotating each image by 90°, 180°, and 270°, resulting in a total of
101,048 images (25, 262× 4). This rotation technique is an appropriate method for increasing
the dataset size, as it keeps the images and areas of interest for clinical decisions unaltered
and in-bound [29].

3.2. Methods

COVID-Net USPro is a prototypical few-shot learning network that trains in an
episodic learning setting. It uses a distance metric for assessing similarities between
a set of unlabelled data, i.e., query set, and labelled data, i.e., support set. Labelled data
can be used to compute a single prototype representation of the class, and unlabelled data
are assigned to the class of the prototype they are closest to. A prototypical network [10] is
based on the idea that there exists an embedding in which points in a class cluster around a
single prototype representation for the class. During the training phase, a neural network
is used to learn the non-linear mapping of the inputs to an embedding space, and a class
prototype is computed as the mean of its support set data in the embedding space. Classifi-
cation is then done by finding the nearest class prototype for each query point based on a
specified distance metric. An episodic approach is used to train the model, where in each
training episode, the few-shot task is simulated by sampling the data point in mini-batches
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to make the training process consistent with the testing environment. The performance
of the network is evaluated using the unseen test set. Both quantitative performance
analysis based on accuracy, precision, and recall and qualitative explainability analysis are
conducted. A high-level conceptual flow of the analysis is presented in Figure 1.

Figure 1. High-level conceptual flow of the analysis.

We define the classification problem as a K-way N-shot episodic task, where K denotes
the number of classes present in the dataset, and N denotes the number of images for each
class in each episode. For a given dataset, N images from each of the K classes are sampled
to form the support set, and another M images from each class are sampled to form the
query set. The network then aims to classify the images of the query set based on the K ∗ N
total images presented in the support set. In this work, we consider three classification
scenarios and formulate the problem as 2-way, 3-way, and 4-way classification problems.
Details are included under Section 3.3.3.

The few-shot classification with a prototypical network can be summarized into three
steps: (1) encoding of the images, (2) generating class prototypes, and (3) assigning labels to
query samples based on distances to the class prototypes. Let S = {(x(1,s), y(1,s)), . . . , (x(N,s)
, y(N,s))} and Q = {(x(1,q), y(1,q)), . . . , (x(N,q), y(N,q))} be the support and query sets, respec-
tively, where each xi ∈ RD is a D-dimensional example feature vector and yi ∈ {1, . . . K} is
the label of the example. The prototypical network contains an image encoder fφ : RD → RH

that transforms each image xi onto a H-dimensional embedding space where images of the
same class cluster together. Class prototypes are then generated for each class by averaging
the embedding image vectors in the support set, where vk =

1
N ∑N

i=1 fφ(xi,s
(k)) denotes the

prototype of class k [10]. To classify the query image, a distance metric is used where dis-
tances between the embedding vector of a query image and each of the class prototypes are

computed. In this work, the squared Euclidean distance d(v, q) = ||v− q|| =
√

∑(vi − q)2
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is used, where q is the embedding vector of the query image, and vi is the embedding
vector of the i-th prototype. The choice of the squared Euclidean distance instead of other
distance metrics, e.g., cosine distance, is validated by Snell et al. [10], who proved that
metrics that are Bregman divergences, e.g., euclidean distance metrics, perform better in
the calculation of class prototypes based on embeddings in prototypical networks. After
distances are computed, a SoftMax function is applied over the distances to the prototypes
to compute the probabilities of the query image being in each class. The class with the
highest probability is then assigned to the query image.

In the training phase, the network learns by minimizing a loss function, i.e., the
negative log-SoftMax function (J = − log (p(y = k|x))) of the true class k. An Adam
optimizer with an initial learning rate of 0.001 is used, and the learning rate is reduced if
the validation loss is not improved after 3 epochs. In each episode, a subset of data points
is randomly selected, forming a support and query set. The loss terms on training and
validation sets are calculated at the end of each training episode. To facilitate an effective
training process and prevent over-fitting, early stopping is implemented to stop the training
process when the validation loss is not improved after 5 epochs. A total of 10 epochs is
set for all training processes, and 200 episodes are set for each training epoch. Figure 2
presents an architecture design overview of the COVID-Net USPro network.

Figure 2. COVID-Net USPro, network architecture design.

The trained model’s performance is evaluated quantitatively and qualitatively. In the
quantitative analysis, the model’s accuracy, precision, and recall for each class are analyzed
and reported. In the qualitative analysis, model explainability is investigated and visualized.
Explainable artificial intelligence (XAI) has been an important criterion when assessing
whether neural networks can be applied to clinical settings [30]. While AI-driven systems
may show high accuracy and precision in analyzing medical images, lack of reasonable
explainability will spark criticism of the network’s adoption [30]. COVID-Net USPro’s
explainability is assessed using two approaches, i.e., gradient-weighted class activation map
(Grad-CAM) [14] and GSInquire [15], on a selected dataset containing correctly classified
COVID-19 and normal cases with high confidence (i.e., >99.9% probability), as well as
falsely predicted COVID-19 and normal cases. Grad-CAM generates a visual explanation
of the input image using the gradient information flowing into the last convolutional layer
of the convolutional neural network (CNN) encoder and assigns importance values to each
neuron for making a classification decision [14]. The output is a heatmap-overlayed image
that shows the image regions that impact the particular classification decision made by the
network [14]. The other tool, GSInquire, identifies the critical factors in an input image that
are shown to be integral to the decisions made by the network in a generative synthesis
approach [15]. The result is an annotated image highlighting the critical region, which
could drastically change the classification result if removed [15]. Results from both tools are
reviewed by our contributing clinician (A.F.) with experience in ultrasound image analysis
to assess whether clinically important patterns are captured by the network.
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3.3. Experiment Settings

We comprehensively assess the performance of COVID-Net USPro in detecting COVID-
19 cases from ultrasound images by testing various training conditions, such as different
image encoders, the number of shots available for training, and classification task types.
Details are further discussed in this section.

3.3.1. Image Encoders

To leverage the power of transfer learning, we experiment with multiple encoders,
including, but not limited to, the ResNet, DenseNet, and VGG networks [22,24,31]. Pre-
trained models refer to using model parameters pre-trained on ImageNet [32]. To concisely
summarize the main results, we report the top-4 performing encoders with respect to our
research objectives:

• ResNet18L1: Pre-trained ResNet18 [24], with trainable parameters on the final con-
nected layer and setting out features as the number of classes. We consider this
pre-trained network as the baseline model for encoders, as it contains the least number
of layers and retrained parameters.

• ResNet18L5: Pre-trained ResNet18 [24], with trainable parameters on the last four
convolutional layers and final connected layer. Out features set to the number
of classes.

• ResNet50L1: Pre-trained ResNet50 [24], with trainable parameters on the final con-
nected layer and setting out features as the number of classes.

• ResNet50L4: Pre-trained ResNet50 [24], with trainable parameters on the last three
convolutional layers and final connected layer. Out features set to the number
of classes.

3.3.2. Number of Training Shots

The optimal number of shots for maximized performance is tested by training the
model under 5, 10, 20, 30, 40, 50, 75, and 100-shot scenarios. For selected models showing a
steady increase of performance over increasing shots, 150 and 200-shot conditions are also
tested to further verify that the maximum performance is reached at 100-shot. To ensure
the training process is faithful to the testing environment, the number of shots for each
class presented in each episode is the same in the support and query sets in both training
and test phases. For example, in the 5-shot scenario, five images in each class are presented
for both the support set and the query set in the training phase, and the same follows in the
test phase.

3.3.3. Problem Formulation

In comparison to other classes, e.g., non-COVID-19 and normal cases, the ability of the
model to correctly identify COVID-19-positive cases is valued the most. The classification
problem for identifying COVID-19 is formulated in three different scenarios as follows, in
ascending order of data complexity:

• 2-way classification: Data from all three other classes, namely, the ’normal’ class,
’non-COVID-19’ class, and ’other’ class, are viewed as a combined COVID-19 negative
class. The network learns from COVID-19 positive and COVID-19 negative datasets
in this setting.

• 3-way classification: As the ’other’ class contains data from multiple different lung
conditions, it has the highest variations and may disrupt the network’s learning
process due to the lack of uniformity in the data. In the 3-class classification, the ‘other’
class is excluded, and the network is trained to classify the remaining three classes.

• 4-way classification: As the dataset contains four classes, the four-class classification
condition remains in this setting, and the network is trained to classify ’COVID-19’,
’normal’, ’non-COVID-19’, and ’other’ classes.

The network hyperparameters and training settings are listed in Appendix A.
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4. Results

This section summarizes the quantitative performance results of all combinations of
experiment settings listed in Section 3.3, as well as the results of the network explaina-
bility analysis.

4.1. Quantitative Performance Analysis

The performance of COVID-Net USPro is evaluated using the overall accuracy, preci-
sion, and recall for each class. As the performance of the model to detect COVID-19 cases
is the most important for current clinical use cases, the following report contains precision
and recall for the COVID-19 class only. To reduce table size, Table 1 only summarizes the
performance of the network under 5-shot and 100-shot scenarios for encoders that scored
over 80% across all evaluated metrics. The complete experiment results for all classes,
encoders, and shot numbers are detailed in Appendix B.

Table 1. Summary of classification results for 5-shot and 100-shot conditions.

Scenario No. Shots Model Accuracy Precision Recall

2-way 5 ResNet18L1 0.9310 0.9384 0.9380
2-way 5 ResNet18L5 0.9955 0.9983 0.9993
2-way 5 ResNet50L1 0.9605 0.9567 0.9740
2-way 5 ResNet50L4 0.9910 0.9933 0.9900
2-way 100 ResNet18L1 0.9741 0.9741 0.9744
2-way 100 ResNet18L5 0.9999 1.0000 0.9999
2-way 100 ResNet50L1 0.9953 0.9954 0.9953
2-way 100 ResNet50L4 0.9999 0.9999 1.0000

3-way 5 ResNet18L1 0.9487 0.9470 0.9370
3-way 5 ResNet18L5 0.9947 0.9992 0.9920
3-way 5 ResNet50L1 0.9690 0.9761 0.9610
3-way 5 ResNet50L4 0.9953 0.9940 0.9940
3-way 100 ResNet18L1 0.9863 0.9858 0.9857
3-way 100 ResNet18L5 0.9998 0.9994 0.9998
3-way 100 ResNet50L1 0.9973 0.9947 0.9980
3-way 100 ResNet50L4 0.9998 0.9995 1.0000

4-way 5 ResNet18L1 0.8733 0.9283 0.898
4-way 5 ResNet18L5 0.9855 0.9980 0.9970
4-way 5 ResNet50L1 0.9320 0.9622 0.9550
4-way 5 ResNet50L4 0.9777 0.9967 0.9910
4-way 100 ResNet18L1 0.9369 0.9735 0.9643
4-way 100 ResNet18L5 0.9884 1.0000 1.0000
4-way 100 ResNet50L1 0.9811 0.9952 0.9962
4-way 100 ResNet50L4 0.9899 1.0000 1.0000

Across all classification scenarios and models, performance is higher under the
100-shot training condition than in the 5-shot condition, with performance metrics in-
creasing from 5-shot and plateauing after 75-shot, as shown in Figure 3. The ResNet-based
networks demonstrate the ability to classify COVID-19 with precision and recall above
87% consistently under both 5-shot, and above 99% under 100-shot conditions. As seen
in Table 1, increasing the number of classes (in 3-way and 4-way classification scenarios)
reduces the performance of the network. This is expected as the classification problem be-
comes more complex with more numbers of classes. However, this performance difference
among the three classification scenarios is reduced when the number of shots increases, as
more examples available for training improve the network’s ability to distinguish between
multiple classes. As shown in Figure 3, the performance of ResNet18L1, which has fewer
layers than ResNet50L4, is lower than ResNet50L4 at early training. ResNet50L4 is expected
to adapt better to input images in early training epochs and extract deeper and more com-
plex representations. In addition, models with more fine-tuned final convolutional layers
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(i.e., ResNet18L5 and ResNet50L4) achieve higher accuracy, precision, and recall. Therefore,
it can be said that, while using pre-trained parameters and simpler models, reducing the
computational complexity and space, tailoring parameters on the final convolutional layers
to the ultrasound images, and deepening image encoding can boost performance.

Figure 3. Performance results with increasing shots trained under 4-way condition: (a) Pre-trained
ResNet18 with trainable parameters on the final connected layer and setting out features as the
number of classes (ResNet18L1). (b) Pre-trained ResNet50 with trainable parameters on the last
3 convolutional layers and final connected layer (ResNet50L4).

In the 2-way and 3-way classification scenarios, it is observed that the precision and
recall for classes other than COVID-19 are similar to the COVID-19 class. In the 4-way
classification scenario, the precision and recall for the ‘other’ class are ≈2–3% lower than
those for ‘non-COVID-19’, ‘normal’, and ‘COVID-19’ classes. This is expected since the
‘other’ class covers various lung conditions/diseases that encompass a larger range of image
features and variations. Overall, with precision and recall achieving similar magnitude
in the 2-way, 3-way, and 4-way classifications, the network also demonstrates the ability
to distinguish between multiple classes/diseases. In comparison to studies outlined in
Section 2, the performance of COVID-Net USPro networks, which are tailored to ultrasound
images with re-trained parameters, is improved. Accuracy of ResNet50L1 and ResNet50L4
exceeds 98% under a 4-way 5-shot setting while past works such as the MetaCOVID
proposed by Shorfuzzaman et al. [25], which also applied a few-shot approach, achieved
95.6% accuracy under a 3-way, 10-shot setting. Additionally, the sensitivity of COVID-Net
USPro for COVID-19 cases is also higher than previously reported deep networks that
were trained on many images of other modalities such as X-ray or CT, where they scored
97.5% in the best-performing case [6].

4.2. Clinical Validation and Network Explainability Analysis

In addition to the intensive quantitative performance analysis, we clinically validated
the network outputs to ensure that the network captures important patterns in the ultra-
sound images. For this purpose, our contributing clinician (A.F.) reviewed a randomly
selected set of images and reported his findings and observations. Our contributing clin-
ician (A.F.) is an Assistant Professor in the Department of Emergency Medicine and the
ultrasound co-director for undergraduate medical students at McGill University. He is
practicing Emergency Medicine full-time at Saint Mary’s Hospital in Montreal.

Figure 4 presents two examples of COVID-19 positive ultrasound images, annotated
by Grad-CAM and GSInquire. As seen, the annotated images contain the lung pleura
region at the top of the image, while the second example (Figure 4b) also marks the bottom
region with high importance. B-lines, or the light comet-tail artifacts extending from pleura
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to the bottom of the image, and the presence of dark regions interspacing the B-lines at
the bottom part of the image, correspond to signs of lung consolidation and are indicators
of abnormality [33]. Hence, the visual annotations for the second example (Figure 4b) are
more representative of disease-related patterns within the ultrasound image. Figure 4a is
one of the examples where the model considers the rib as a structure of interest, which is
not an abnormality. Hence, although the model correctly classified the specific image, the
decision was made based on invalid clinical factors.

Figure 4. COVID-19 positive case examples correctly classified by COVID-Net USPro with high
confidence: (a) an example of wrong decision factors. (b) an example of a decision made based on
disease-related patterns.

We experimented with two strategies to solve the above-mentioned issue. First, as
the current dataset includes images of different qualities, we excluded images with low
quality to evaluate their impact on explainability. These low-quality images refer to those
with insufficient image depth or the lack of representative features. A severity grade was
introduced by COVIDx-US dataset v1.4, called lung ultrasound score (LUSS), which rates
each ultrasound video on a scale of 0 to 3 [1]. A score of 0 corresponds to the presence
of only normal features, and 3 corresponds to the presence of severe disease artifacts [1].
In the first attempt to improve the network further, images from videos with a score of 0,
representing the normal class, and images from videos with scores of 2 and 3, representing
the COVID-19 class, are used to train a binary classification model. By observing the
annotated images, the network shows to focus more on the bottom regions of the images,
though cases, where the network focuses on the top pleura region, are still present. The
second strategy to further improve model explainability is to exclude regions above the
pleura (i.e., soft tissue) of the images so that the network focuses on the disease-defining
features, which are mostly present at the bottom of the images below the lung pleura. Our
experiments confirm the effectiveness of this strategy, as the network shows to focus mainly
on the bottom regions of the images. Hence, combining the first and second strategies,
a binary model with LUSS score filtered and cropped images is trained. Figure 5 shows
examples from the analysis after cropping and filtering images. As suggested from the
annotated examples and confirmed by our contributing clinician (A.F.), clinically relevant
artifacts such as B-lines and lung consolidation are clearly identified in COVID-19-positive
images by COVID-Net USPro after implementing the two strategies.
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Figure 5. Four cropped COVID-19 positive examples predicted correctly with high confidence by
COVID-Net USPro (a–d), while recognizing disease artifacts, e.g., extended B-lines.

5. Discussion

Deep neural network architectures have shown promising results in a wide range
of tasks, including predictive and diagnostic tasks. However, such networks require a
massive amount of labelled data to train, which is against the nature of new pandemics
and novel diseases where there are no or very few data samples available, especially in the
initial stages. Using a diverse complex benchmark dataset, i.e., COVIDx-US, we introduced
the COVID-Net USPro network, tailored to detect COVID-19 infection with high accuracy
from very few ultrasound images. The proposed deep prototypical network leverages deep
pre-trained models with fine-tuned parameters on final layers to reduce computational
complexity and achieve high classification performance when only 5 examples from each
class are presented during the training phase. Accuracy, precision, and recall for the best
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performing network are over 99%, which are comparable to or outperforming other existing
works, even those that used large-scale datasets to train the models [7,27]. As mentioned
in Section 2, MetaCOVID network, proposed by Shorfuzzaman et al. [25], which adapted
the few-shot learning approach achieved 95.6% accuracy when tested under a 3-way
10-shot condition. COVID-Net FewSE, proposed by Ebadi et al. [26], achieved over 99%
accuracy when trained under a 3-way 50-shot setting. In comparison to these networks,
COVID-Net USPro is able to achieve over 98.5% accuracy in 2-way, 3-way, and 4-way
classification problem settings by using only 5 shots for training. These properties are
not only highly crucial for the control of the COVID-19 pandemic, but also for screening
patients for new/rare diseases or pandemics as the proposed network can be easily tuned.

In contrast to the lack of interpretability analysis in the previous works, we also inten-
sively assessed the explainability of the network and clinically validated its performance.
Experimental results demonstrate that COVID-Net USPro can not only achieve high per-
formance in terms of accuracy, precision, and recall, but also shows predictive behaviour
that is consistent with clinical interpretation, as validated by our contributing clinician
(A.F.). In addition, as part of the explainability-driven performance validation process, we
proposed and implemented two strategies to further improve the network performance in
accordance with the background clinical knowledge in identifying COVID-19 positive and
negative cases. Overall, we believe the simplicity and effectiveness of COVID-Net USPro
make it a promising tool to aid the COVID-19 screening process using ultrasound images.
We hope the open-source release of COVID-Net USPro helps researchers and clinical data
scientists to accelerate innovations in the combat against the COVID-19 pandemic that can
ultimately benefit the larger society.

Several future research directions can be explored to further improve the network.
First, some additional steps in data augmentation and preparation can be taken to improve
the data quality and the dataset size. In this work, ultrasound images captured with
linear probes were excluded. More image augmentation and preparation techniques
can be experimented with to include images captured with a linear probe and increase
the data size. Second, we used simple cropping to filter out the pleura region of the
images. A more procedural image segmentation step could be added to include only
clinically relevant areas of the images for network construction to further improve network
performance from the explainability standpoint. Lastly, we used COVIDx-US, which is a
public dataset that includes data of various sources and quality. Network training could be
improved by only using high-quality input ultrasound data with sufficient/specific image
depth, collected, and reviewed systematically. For this purpose, a data collection protocol
might be required to capture ultrasound images in a standardized manner from a set of
consented participants.
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Abbreviations
The following abbreviations are used in this manuscript:

LUSS lung ultrasound score
COVID-19 coronavirus disease 2019
POCUS point-of-care ultrasound
RT-PCR reverse transcription-polymerase chain reaction
LUS lung ultrasound
CXR chest X-ray
CT computed tomography
AI artificial intelligence
CNN convolutional neural network
PN prototypical network
SOTA state-of-the-art

Appendix A. Complete Network Hyperparameters

Table A1. Network Structure Hyperparameters.

Encoder Layers with
Pre-Trained Params

Layers with
Trained Params

Trained Parameters
(2-Way)

Trained Parameters
(3-Way)

Trained Parameters
(4-Way)

ResNet18L1 17 1 1026 1539 2052

ResNet18L5 13 5 8,394,754 8,395,267 8,395,780

ResNet50L1 49 1 4098 6147 8196

ResNet50L4 46 4 4,466,690 4,468,739 4,470,788

Table A2. Training Hyperparameters.

Optimizer Adam

Reduce learning rate on plateau

Target metric Validation loss

Starting learning rate 0.001

Number of patience 3

Early Stopping

Target metric Validation loss

Number of patience 5

Appendix B. Complete Experiment Results

Table A3. Complete experiment results for ResNet18L1.

2-Way Classification

N-Shot Accuracy Neg
Precision Neg Recall COVID

Precision
COVID
Recall

5 0.931 0.9473 0.924 0.9384 0.938

10 0.962 0.9666 0.961 0.9645 0.963

20 0.9677 0.9767 0.9597 0.9624 0.9757

30 0.9661 0.9703 0.9627 0.9642 0.9695

40 0.9698 0.9724 0.9677 0.9686 0.9719

50 0.9713 0.9703 0.9732 0.9737 0.9694

75 0.9759 0.9796 0.9723 0.9728 0.9795

100 0.9741 0.9747 0.9738 0.9741 0.9744

150 0.9758 0.9756 0.9763 0.9764 0.9754

200 0.976 0.9749 0.9757 0.9754 0.975



Sensors 2023, 23, 2621 14 of 18

Table A3. Cont.

3-Way Classification

N-shot Accuracy Normal
Precision

Normal
Recall

Non-COVID
Precision

Non-COVID
Recall

COVID
Precision

COVID
Recall

5 0.9487 0.9449 0.972 0.9783 0.937 0.947 0.937

10 0.976 0.9672 0.989 0.9866 0.975 0.9802 0.964

20 0.9806 0.9791 0.9905 0.9828 0.9775 0.9828 0.9737

30 0.9832 0.9809 0.989 0.9911 0.9768 0.9794 0.9837

40 0.982 0.979 0.9914 0.9839 0.9799 0.9847 0.9749

50 0.9844 0.9822 0.9879 0.9892 0.9805 0.9827 0.9847

75 0.9843 0.98 0.9915 0.9905 0.9771 0.9832 0.9844

100 0.9863 0.9823 0.9926 0.9914 0.9807 0.9858 0.9857

150 0.9866 0.9834 0.991 0.9906 0.9833 0.986 9854

200 0.987 0.9841 0.9903 0.9902 0.9841 0.9881 0.9871

4-Way Classification

N-shot Accuracy Normal
Precision

Normal
Recall

Other
Precision Other Recall

Non-
COVID

Precision

Non-
COVID
Recall

COVID
Precision

COVID
Recall

5 0.8733 0.8885 0.908 0.8361 0.798 0.9019 0.889 0.9283 0.898

10 0.8999 0.9088 0.9205 0.8653 0.831 0.9157 0.9 0.9397 0.948

20 0.9212 0.9251 0.9513 0.897 0.849 0.916 0.9268 0.9597 0.9577

30 0.927 0.9331 0.9542 0.8962 0.8657 0.9195 0.9302 0.9676 0.9578

40 0.9316 0.9374 0.9519 0.8933 0.887 0.9368 0.9263 0.9647 0.9614

50 0.9324 0.9287 0.9624 0.9103 0.8716 0.9278 0.9346 0.9669 0.9609

75 0.9377 0.9383 0.9665 0.9138 0.8855 0.9307 0.9327 0.9709 0.9663

100 0.9369 0.9382 0.9604 0.9024 0.8931 0.9353 0.9296 0.9735 0.9643

150 0.9384 0.9411 0.9655 0.9121 0.8898 0.9273 0.9335 0.9745 0.9649

200 0.941 0.9391 0.9661 0.912 0.8903 0.9348 0.941 0.9751 0.9651

Table A4. Complete experiment results for ResNet18L5.

2-Way Classification

N-Shot Accuracy Neg
Precision Neg Recall COVID

Precision
COVID
Recall

5 0.9955 0.9942 0.998 0.9983 0.993

10 0.9947 0.9911 0.9995 0.9995 0.99

20 0.9957 0.994 0.9977 0.9978 0.9937

30 0.998 0.9962 0.999 0.999 0.996

40 0.9997 0.999 0.9994 0.9994 0.9998

50 0.9999 0.9999 0.9997 0.9997 0.9999

75 1 1 1 1 1

100 0.9999 1 0.9999 1 0.9999

150 1 1 0.9999 1 0.9999

200 1 1 1 1 1

3-Way Classification

N-shot Accuracy Normal
Precision

Normal
Recall

Non-COVID
Precision

Non-COVID
Recall

COVID
Precision

COVID
Recall

5 0.9947 0.9958 0.998 0.9958 0.999 0.9992 0.992

10 0.9903 0.9893 0.991 0.9959 0.9925 0.9888 0.9875

20 0.9998 0.9998 0.9999 0.9998 0.9999 0.9999 0.9995

30 0.9999 0.9997 0.9999 0.9999 0.9997 0.9999 0.9999

40 0.9972 0.996 0.9984 0.9983 0.9991 0.9976 0.9941

50 0.9995 0.9995 0.9999 0.999 0.9999 0.9999 0.9985
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Table A4. Cont.

3-Way Classification

75 0.9988 0.9977 0.9995 0.9992 0.9991 0.9995 0.9978

100 0.9998 0.9999 1 1 1 0.9994 0.9998

150 1 1 1 1 1 1 1

200 1 0.9999 1 1 0.9999 0.9999 0.9999

4-Way Classification

N-shot Accuracy Normal
Precision

Normal
Recall

Other
Precision Other Recall

Non-
COVID

Precision

Non-
COVID
Recall

COVID
Precision

COVID
Recall

5 0.9855 0.9975 0.998 0.9904 0.957 0.9643 0.99 0.998 0.997

10 0.9819 0.9932 0.996 0.9551 0.9885 0.9949 0.946 0.9923 0.997

20 0.9809 0.9796 0.9977 0.9867 0.9383 0.9623 0.9882 0.999 0.9992

30 0.9852 0.9923 0.999 0.9707 0.979 0.9815 0.963 0.999 0.9997

40 0.9881 0.999 0.999 0.999 0.954 0.9565 0.999 0.999 0.9992

50 0.983 0.9995 0.9887 0.9539 0.9882 0.9883 0.9589 0.9931 0.9962

75 0.988 0.999 0.999 0.9979 0.954 0.9565 0.998 0.999 0.999

100 0.9884 1 1 1 0.9537 0.9562 0.999 1 1

150 0.9869 1 1 0.9694 0.9791 0.9788 0.9688 1 0.9997

200 0.9891 1 1 1 0.971 0.9731 0.998 1 0.9998

Table A5. Complete experiment results for ResNet50L1.

2-Way Classification

N-Shot Accuracy Neg Precision Neg Recall COVID
Precision COVID Recall

5 0.9605 0.9784 0.947 0.9567 0.974

10 0.974 0.9773 0.9725 0.975 0.9755

20 0.9864 0.9854 0.9882 0.9889 0.9845

30 0.9905 0.9919 0.9893 0.9897 0.9917

40 0.9939 0.994 0.9939 0.994 0.9939

50 0.9926 0.9938 0.9914 0.9916 0.9937

75 0.9952 0.9948 0.9958 0.9959 0.9947

100 0.9953 0.9953 0.9954 0.9954 0.9953

150 0.9962 0.9964 0.9961 0.9961 0.9964

200 0.9965 0.9962 0.9967 0.9967 0.9962

3-Way Classification

N-shot Accuracy Normal
Precision

Normal
Recall

Non-COVID
Precision

Non-COVID
Recall

COVID
Precision

COVID
Recall

5 0.969 0.9604 0.975 0.9847 0.971 0.9761 0.961

10 0.9895 0.9887 0.9925 0.9933 0.9895 0.9895 0.9865

20 0.9931 0.992 0.9935 0.9957 0.9957 0.9926 0.99

30 0.995 0.9942 0.9962 0.996 0.9967 0.9953 0.9922

40 0.9957 0.9959 0.9936 0.9982 0.9975 0.9933 0.9959

50 0.9966 0.9958 0.9967 0.9981 0.9978 0.9961 0.9953

75 0.9986 0.9968 0.9997 0.9995 0.9981 0.9996 0.9981

100 0.9973 0.9981 0.9947 0.9993 0.9992 0.9947 0.998

150 0.9984 0.9979 0.9974 0.9999 0.999 0.9974 0.9987

200 0.9978 0.9981 0.998 0.9999 0.9994 0.9961 0.9971

4-Way Classification

N-shot Accuracy Normal
Precision

Normal
Recall

Other
Precision Other Recall

Non-
COVID

Precision

Non-
COVID
Recall

COVID
Precision

COVID
Recall

5 0.932 0.9471 0.953 0.9286 0.88 0.9305 0.94 0.9622 0.955

10 0.9647 0.9789 0.98 0.9552 0.9425 0.9514 0.963 0.9869 0.9735
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Table A5. Cont.

4-Way Classification

20 0.9736 0.9857 0.985 0.9651 0.9475 0.9585 0.9715 0.9901 0.9905

30 0.977 0.985 0.9892 0.9607 0.9625 0.9737 0.9642 0.9917 0.9922

40 0.9791 0.9885 0.995 0.9738 0.9546 0.9618 0.9749 0.9945 0.9917

50 0.9796 0.992 0.9934 0.978 0.948 0.9563 0.9815 0.9941 0.9955

75 0.9812 0.9935 0.9937 0.9649 0.9677 0.973 0.9675 0.9945 0.9961

100 0.9811 0.994 0.9925 0.9704 0.9601 0.9656 0.9756 0.9952 0.9962

150 0.9823 0.9946 0.9926 0.9813 0.9536 0.9591 0.9867 0.9953 0.9963

200 0.9832 0.9943 0.9928 0.9833 0.9541 0.961 0.9859 0.9951 0.9968

Table A6. Complete experiment results for ResNet50L4.

2-Way Classification

N-shot Accuracy Neg Precision Neg Recall COVID
Precision COVID Recall

5 0.991 0.9919 0.992 0.9933 0.99

10 0.9955 0.999 0.991 0.999 0.9918

20 0.9982 0.9995 0.997 0.9971 0.9995

30 0.9997 0.9998 0.9995 0.9995 0.9998

40 0.9998 0.9996 0.9999 0.9999 0.9996

50 0.9982 0.9985 0.9979 0.9979 0.9985

75 0.9999 0.9999 0.9998 0.9998 0.9999

100 0.9999 0.9999 0.9999 0.9999 1

150 0.9981 0.999 0.9971 0.9971 0.999

200 0.999 0.999 0.999 0.999 0.999

3-Way Classification

N-shot Accuracy Normal
Precision Normal Recall Non-COVID

Precision
Non-COVID

Recall
COVID

Precision COVID Recall

5 0.9953 0.9967 0.994 0.9975 0.998 0.994 0.994

10 0.9958 0.9977 0.9975 0.9985 0.9915 0.9923 0.9985

20 0.9974 0.995 0.9997 0.9998 0.998 0.9979 0.9945

30 0.9999 0.9998 0.9998 0.9997 0.9998 0.9988 0.9979

40 0.9937 0.9889 0.9949 0.9964 0.9985 0.9962 0.9876

50 0.9979 0.9991 0.9955 0.9979 0.9999 0.9967 0.9981

75 1 1 1 0.9999 1 0.9999 0.9999

100 0.9998 1 0.9994 1 1 0.9995 1

150 1 0.9999 1 0.9999 0.9999 1 1

200 1 1 1 1 1 1 1

4-Way Classification

N-shot Accuracy Normal
Precision Normal Recall Other

Precision Other Recall Non-COVID
Precision

Non-COVID
Recall

COVID
Precision COVID Recall

5 0.9777 0.9942 0.979 0.9456 0.986 0.9913 0.955 0.9967 0.991

10 0.9789 0.994 0.982 0.9696 0.966 0.9682 0.9715 0.9923 0.996

20 0.9873 0.9999 0.9998 0.9702 0.9812 0.9819 0.9682 0.9999 0.9997

30 0.9875 0.9997 0.9998 0.9926 0.958 0.9611 0.9923 0.9998 0.9999

40 0.9872 0.9995 0.9966 0.9784 0.9719 0.9737 0.9805 0.9988 0.9996

50 0.989 0.999 0.999 0.9967 0.9593 0.9616 0.9968 0.9999 0.9999

75 0.9893 0.9999 0.9989 0.9952 0.9631 0.9648 0.9953 0.9989 0.9999

100 0.9899 1 1 0.9854 0.974 0.9746 0.9854 1 1

150 0.9904 1 1 0.9815 0.9802 0.9803 0.9814 1 1

200 0.9908 1 1 0.9861 0.9798 0.9805 0.9824 1 1
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