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Abstract: Nowadays, ultra-wideband (UWB) technology is becoming a new approach to localize
keyfobs in the car keyless entry system (KES), because it provides precise localization and secure
communication. However, for vehicles the distance ranging suffers from great errors because of
none-line-of-sight (NLOS) which is raised by the car. Regarding the NLOS problem, efforts have been
made to mitigate the point-to-point ranging error or to estimate the tag coordinate by neural networks.
However, it still suffers from some problems such as low accuracy, overfitting, or a large number of
parameters. In order to address these problems, we propose a fusion method of a neural network
and linear coordinate solver (NN-LCS). We use two FC layers to extract the distance feature and
received signal strength (RSS) feature, respectively, and a multi-layer perceptron (MLP) to estimate
the distances with the fusion of these two features. We prove that the least square method which
supports error loss backpropagation in the neural network is feasible for distance correcting learning.
Therefore, our model is end-to-end and directly outputs the localization results. The results show that
the proposed method is high-accuracy and with small model size which could be easily deployed on
embedded devices with low computing ability.

Keywords: car keyless entry system; none-line-of-sight; UWB localization; ranging error correction

1. Introduction

Car keyless entry system (KES) has been emerging as a new trend of car accessing
solution [1,2]. Drivers can conveniently access and start the car with a digital key on
their smartphone. One important issue of the KES is how to accurately locate the driver’s
smartphone to provide a welcome message when approaching the car, unlocking the door
when nearing the car, and locking when leaving the car [3]. The proper operation of those
functions needs to obtain the accurate position of the keyfob. For example, when the user
is standing outside the driver’s door attempting to open it, the KES needs to accurately
give a localization result to prove that the keyfob is outside the vehicle, which requires the
localization error to be lower than 30 cm. Currently, most existing KESs employ Bluetooth
low energy (BLE) to localize keyfobs. BLE’s distance ranging is based on the signal strength
and its limitation is that the estimated distance between the BLE nodes is quite sensitive
to the environment. Nowadays, ultra-wideband (UWB) technology is becoming a new
approach of localizing keyfobs in the KES because it provides precise localization and
secure communication [4,5].

However, for vehicles the distance ranging shows significant errors because of none-
line-of-sight (NLOS) raised by the car. Figure 1 shows the NLOS challenge in the KES. The
five-anchor configuration is popular in the KES [6], where four anchors are at the corners
of the car and the fifth is inside. The KES always uses the time-of-flight (ToF) method [7]
to measure the distance between the keyfob and the anchors. The anchors, which are at
the sides of the keyfob, i.e., d2 and d3, are on the direct line-of-sight (LOS) path, yielding
accurate ToF distances. Therefore, d1, d4, and d5, are on the NLOS path. The table in
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Figure 1 shows real distances, ToF distances, and relative errors. We find that the errors of
the NLOS paths are more than 40%. Therefore, the distances of the NLOS paths can lead to
large positioning errors in localizing the keyfob.

User
LOS Path
NLOS Path

Figure 1. Illustration of the NLOS challenge in the KES. The solid lines d2 and d3 denote the LOS
paths and the dashed lines d1, d4, and d5 denote the NLOS paths. The estimated position of the
keyfob can be greatly affected by distances d1, d4, and d5, i.e., more than 40% relative error.

In this paper, we propose a novel neural network and linear coordinate solver fusion
method (NN-LCS) to mitigate errors caused by the NLOS paths, resulting in localizing
keyfobs accurately. The proposed method is an end-to-end learning architecture. The model
extracts the localization information from the ToF distances and received signal strength
(RSS) measurements to estimate the corrected distances and then calculate the coordinates
of the keyfob as the output. We obtain state-of-the-art performances in the localization task
in the KES. The contributions of this paper are as follows:

• This study demonstrates the possibility and effectiveness to embed a localization
algorithm in a neural network. The results show that it is better to train the model
by minimizing the weighted sum of ranging error and localization error than by
minimizing either the ranging error only or the localization error only.

• The parameter number of the proposed method is very small. Hence, it is edge-
affordable both spatially and temporally and can be deployed in cheap microcon-
trollers (MCU) with low computing ability and small memory.

2. Related Work

UWB technology provides an excellent means for wireless positioning due to its
high-resolution capability in the time domain. The fundamental mechanisms for lo-
calization can apply to all radio–air interfaces, which includes angle-of-arrival-(AOA-),
time-of-flight-(ToF-), time-difference-of-arrival-(TDOA-) [8], and RSS-based methods. How-
ever, due to the high time resolution of UWB signals, time-based ranging schemes usually
provide better accuracy than other mechanisms [9]. However, time-based UWB ranging
and localization methods still suffer from NLOS errors, which is especially serious in the
KES scenario. In the past, efforts have been made to mitigate the ranging and localization
error caused by the NLOS. Generally, we divide previous studies into numerical methods,
deep learning methods estimating ranging error, and deep learning methods estimating
coordinates.

Many numerical algorithms have been proposed to calculate the tag positions [10–12]. For
example, Tomic et al. [10] proposed an algorithm for localization in an NLOS environment
utilizing RSS and range derived by converting the original non-convex problem into a
generalized trust region sub-problem framework, which can be solved exactly by a bisection
procedure. However, using numerical algorithms to solve this problem always results in
approximation errors. In addition, the parameters in RSS and TOA measurement models
are affected differently in different environments.

Some researchers applied deep learning models to ranging error estimation with the
help of channel indicators such as RSS, received azimuth and elevation. Krapevz et al. [13]
proposed a neural network to estimate the distance by ToF-measured distances, azimuth
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and elevation. Shalihan et al. [14] use a neural network to estimate the probability of rang-
ing measurements being in the LOS, which were then used as the weights in the weighted
least square localization method. Deep learning models were also applied to ranging error
estimation exploiting channel impulse response (CIR) data as the input for deep networks
to acquire the NLOS condition in the environment [15,16]. In these works, deep neural
networks are designed to mitigate the NLOS ranging error. CNN-DE [17] was proposed
using a sequence of CIR measures selected as the input to estimate the corrected distances.
Simone et al. [15] proposed an efficient representation learning methodology, exploiting
the latest advancements in deep learning and graph optimization techniques to achieve
effective ranging error mitigation at the edge. CIR signals were directly exploited to ex-
tract high semantic features to estimate corrections in either NLOS or LOS conditions.
Chengzhi et al. [18] introduced a probabilistic learning approach to mitigate the ranging
error and yield uncertainties using the CIR feature. Kim et al. [16] considered the NLOS
problem as a 10-class classification problem. For each anchor, a classification result cor-
responded to an average error and an error variance according to the statistics. These
characteristics were used in an extended Kalman filter (EKF) to predict coordinates. The
above methods chose the ranging error as the optimizing target. The drawbacks include
isolating the ranging errors and ignoring the correlation among the distances from different
anchors. In addition, the CIR has some disadvantages: (1) CIR is not available for some
low-cost (<$100 each) UWB modules such as the LinkTrack-S UWB module used in [19].
(2) The distribution of CIR changes with the environment [20], which means the features
are unstable and not robust; therefore, CIR is not suitable for the KES scenario in which
the vehicle transfers from place to place with uncertainty. (2) Compared to other channel-
related indicators, eg. ToF and RSS, CIR is more sensitive to environmental changes because
it contains all the information of the detailed multi-path in the environment. Different
reflective surface compositions or any surface moving in the region result in changes in
CIR components, which happens very frequently in a vehicle, e.g., different parking lot or
pedestrian walking by. (3) CIR is high-dimensional (typically 100-dimensions), so the CIR
feature pattern is much more complex than ToF, and needs a large-scale neural network for
feature extraction, making it impossible to be used in the cheap MCUs.

To achieve end-to-end training in the localization task, some studies proposed meth-
ods based on deep neural networks (DNN) [19,21–23], which directly optimized the tag
coordinate error as the network output and final localization coordinate. For example,
Jie et al. [23], Li et al. [24] and Poulose et al. [25] proposed different neural networks to
estimate coordinates by ToF distances from every anchor to the tag. This type of work does
not work well in the vehicle environment because the NLOS is much worse. To increase
precision, Yang et al. [19] proposed an end-to-end deep neural network with both distance
and RSS measurements. The CNN module, LSTM module, and fully-connected layers
were presented to extract the local spatial and temporal features between consecutive
frames and estimate the 3D positions, respectively. Nguyen et al. [21] and Nosrati et al. [22]
used raw and manually extracted CIR features. CNN-LE [17] was proposed using a se-
quence of CIR measures selected as the input to estimate the corrected distances. These
studies tried to train the model to fit the localization task. However, the model’s huge
number of parameters resulted in low feasibility in practice, especially in vehicle scenarios
that required algorithms to run locally (offline) with low latency on low-power MCUs.
For example, Fontaine et al. [26] used an NVIDIA Jetson Nano GPU for edge inference.
Angarano et al. [15] tested their models in GPUs, edge TPUs and high-performance edge
CPUs, showing the minimal consumption using float16 needs 32.7 KB flash, and costs a
Cortex-A53 (four-core, floating point unit (FPU) inside, 800 MHz) 11.2 ms for network
forward inference. However, none of the multi-core, FPU or high frequency are accessible
in typical automotive-grade MCUs, e.g., Renesas RH850(@80 MHz max) used in our system,
so time consumption could be hundreds of times more.

Related studies are summarized in Table 1. Compared to the methods estimating
the ranging errors or NLOS conditions, the methods estimating localization error are the
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best end-to-end approach in the localization task [19]. The disadvantage of the neural
network methods estimating the localization error is the large number of parameters of
neural networks and are not suitable for use in embedded MCUs. Thus, we have to develop
a method that can reduce the size of parameters while maintaining a good localization
performance. In this work, we (1) use D+R pairs as the features which contain both distance
and signal strength information to yield features with a small dimension; (2) embed LSM in
the neural network model, because we think the linear layers used to estimate coordinates
in Yang et al. [19] and Poulose et al. [25] result in a large number of parameters.

Table 1. Comparison of the related methods.

Method Features Model Localization
Algorithm Parameters # Optimizing Target

Tomic et al. [10] D 1 + R 2 - Numerical - -
Tiwari et al. [12] D + R - Numerical - -
Kim et al. [16] CIR LSTM LSM and EKF 1 M NLOS condition

Classification
Li et al. [24] D NN NN/LSM 3 K NLOS condition

Classification
Shalihan et al. [14] D + R NN WLS 4 30–900 K Probability of LOS

Krapevz et al. [13] D, azimuth
and elevation

NN - 31 Ranging Error

Angarano et al. [15] CIR CNN - 6 K Ranging Error
Fontaine et al. [26] CIR CNN - 32 K Ranging Error
Chengzhi et al. [18] CIR CNN+NPN - 800 K Ranging Error

CNN-DE [17] CIR CNN - 24 K Ranging Error
CNN-LE [17] CIR CNN NN 1 M Localization Error

Nguyen et al. [21] CIR GRU NN 36 K Localization Error
Nosrati et al. [22] CIR-MF 3 CNN NN 300 K Localization Error
Poulose et al. [25] D LSTM NN 1 M Localization Error

Yang et al. [19] D + R CNN+LSTM NN 136 K Localization Error
NN-LCS (ours) D + R NN LSM 2 K Localization Error

1 D denotes ToF distance. 2 R denotes RSS. 3 CIR-MF denotes manual feature extracted from the CIR. 4 WLS is the
weighted least square localization method [12].

3. Method

Concerning the existing deep learning methods, fitting the ranging error and the
localization coordinates both need a massive number of parameters; thus, we propose a
method that could make use of a linear coordinate solver for the localization to address
the existing problems. In this section, we overview the UWB localization task in the KES
(in Section 3.1) for the problem statement and symbols definition, then we present the
NN-LCS model (in Section 3.3), introducing the model’s architecture which is combined
with a distance correction network (DCNN) module for extracting the ToF measurement
and RSS measurements features to calculate a closer estimation of the actual distances
(corrected distances), and a LSM localization algorithm module to calculate the localization
coordinates from the corrected distances. The calculation process and backpropagation
feasibility of the LSM algorithm will also be covered.

3.1. Task Overview

The task of the keyfob localization in the KES needs accurate positioning and automat-
ically recognizes the mobile when the driver is approaching, unlocks the door within two
meters, or locks the door when the driver is leaving. Concerning the KES requirements,
a Cartesian coordinate system was selected with its x axis to the right of the car, its y axis
to the front of the car, and its z axis vertically up. The centre point of the circumscribed
rectangle of the car’s vertical projection to the ground was selected as the origin.
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The coordinates of anchors A are previously measured or calibrated manually.

A = [a1, a2, . . . , aN ]T =


ax

1 ay
1 az

1
ax

2 ay
2 az

2
...

...
...

ax
N ay

N az
N

, (1)

where N is the total amount of UWB anchors, and ai is the coordinate of anchor i.
In distance ranging and correction, we denote the ground true distance as d =

[d1, . . . , di, . . . , dN ]
T , the measured ToF distance as dt = [dt

1, . . . , dt
i , . . . , dt

N ]
T , and the cor-

rected ToF distance as d̂t = [d̂t
1, . . . , d̂t

i , . . . , d̂t
N ]

T where i ∈ {1, 2, . . . , N} is the index of an
anchor and N is the total amount of UWB anchors.

In localization computation, we denote the estimated coordinates of the keyfob
as p̂ = [x̂, ŷ, ẑ]T and the ground true coordinates as p = [x, y, z]T . Therefore the local-
ization error (LE) ∆p is defined as,

∆p = LE(p, p̂) = ‖p− p̂‖, (2)

where ‖·‖ is the Euclidean distance.
For a localization dataset, the mean localization error (MLE) metric, which is defined as

the mean value of LE ∆p over M testing points, is used to evaluate the overall performance
of the localization. The central goal of the localization task is to minimize the MLE metric.

MLE =
1
M
·

M

∑
i=1

∆p[i], (3)

where ∆p[i] is the LE of testing point i.

3.2. ToF Ranging Method

The distances between keyfob–anchor pairs are obtained using alternative double-
sided two-way ranging (ADS-TWR) as described in [27]. The main advantage of ADS-TWR
is the measurement of the time of flight (ToF) between two UWB devices without the need
for additional clock synchronization. However, compared to other ranging methods, such
as TOA or TDOA-based approaches, more communication between the UWB devices is
required, leading to a higher bandwidth utilization which decreases the measurement
rate [28].

Figure 2 summarizes the communication workflow for a single keyfob–anchor pair.
The ADS-TWR is initiated by a poll message sent from the keyfob addressing an anchor with
a specific anchor ID. After receiving the replied response message, the keyfob transmits the
final message. The round time between transmitting the poll and receiving the response trd1
is logged in the keyfob. On the anchor side, the reply time between receiving the poll and
transmitting the response trp1 is logged on the anchor. The round time between transmitting
the response and receiving the final trd2, and the reply time between receiving the response
and transmitting the final trp2 are logged in the anchor and keyfob, respectively. In the final
message, the keyfob transmits trd1 and trp2 to the anchor. On anchor side, supposing the
anchor’s ID is i, the MCU computes the time of flight tt

i for the keyfob and ToF distance by:

tt
i =

(trd1 × trd2)−
(
trp1 × trp2

)(
trd1 + trd2 + trp1 + trp2

) ,

dt
i = c · tt

i ,

(4)

where c is the speed of light.
Then a message containing anchor ID i, ToF distance dt

i and RSS of the final
message rt

i is transmitted on the CAN bus. A central MCU node, termed the host, will
parse the frames for the localization task.
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time

Keyfob
ResponsePoll Final

Anchor
Response PollFinal

time

Tx

Tx

Tx

Rx

Rx

Rx

Figure 2. Illustration of the ADS-TWR ranging workflow [29].

3.3. NN-LCS Model

As shown in Figure 3, the NN-LCS model contains a distance correction neural network
(DCNN) and an LSM algorithm module. DCNN extracts the features and estimates the
actual distances. The LSM algorithm module calculates the coordinates of the keyfob from
the estimated distances.

LSM
Algorithm

ToF
Measurements

RSS
Measurements Corrected

Distances

Localization result
MLPDistance Feature Extraction

RSS Feature Extraction

Distance Estimation 

Loss Function

DCNN

Figure 3. The architecture of the NN-LCS model.

3.3.1. DCNN

Suppose the number of anchors is N, two N-dimensional vectors, ToF ranging results
dt and RSS measurements rt are selected as the input of the DCNN model. A fully-
connected (FC) layer FC1 is used to extract the distance feature f1 from the ToF distances
dt. Note that in all FCs below, LeakyRELU (slope = 0.1) [30] is chosen as the activation
function,

f1 = LeakyRELU(FC1(dt)). (5)

FC2 is used to extract the RSS features f2 from the RSS measurements rt . The So f tmax
function is performed on rt to convert the RSS (db) to power and normalize to [0, 1] which
is denoted by rt

sm and used as the input of FC2. We add the RSS features to the neural
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network because the RSS value can also imply the topological relationship between the
keyfob and the anchors,

rt
sm = So f tmax(rt),

f2 = LeakyRELU(FC2(rt
sm)).

(6)

Then a feature concatenation is performed between f1 and f2 as the input of the next
neural layer,

f = f1 ⊕ f2. (7)

The feature f is then put into a multi-layer perceptron MLP for distance estimation
to obtain the corrected ToF distances d̂t, and d̂t is the input into the LSM localization
algorithm to calculate the localization results p̂.

d̂t = MLP( f ) (8)

p̂ = LSM(d̂t). (9)

Finally, the errors of the localization coordinate p̂ and corrected distances d̂t are
calculated and backpropagated to optimize the parameters of the DCNN.

3.3.2. LSM Localization Algorithm

LSM is a well-known algorithm in localization tasks. The detailed 2D and 3D LSM
derivation can be found in [31] and [23]. In LSM derivation, a matrix equation is constructed
C for solving p,

C · p̂ = b(d̂t)

C = −2 ·
[
a2 − a1, a3 − a1, . . . , aN − a1

]T (10)

b(d̂t) = m(d̂t) ◦m(d̂t)− n(d̂t) ◦ n(d̂t)− s

m(d̂t) =
[

0(N−1)×1 I(N−1)×(N−1)
]
· d̂t

n(d̂t) =
[

1(N−1)×1 0(N−1)×(N−1)
]
· d̂t

s =
[
‖a2‖2 − ‖a1‖2, ‖a3‖2 − ‖a1‖2, . . . , ‖aN‖2 − ‖a1‖2

]T
,

(11)

where the estimated coordinate p̂ is the solution and ◦ indicates the Hadamard product
(element-wise multiplication). Thus, the coordinates of the keyfob can be calculated as

p̂ = LSM(d̂t) = P · b(d̂t)

P = (CT · C)−1 · CT ,
(12)

the estimated coordinate p̂ is the solution.
Because the LSM, a linear solver for quadratic optimization problems with well-

known convergence properties, is embedded in the NN-LCS, we have to confirm that it is
possible to train a neural network combined with the LSM algorithm. Duong et al. [32]
proved that the cascade of a NN (that converges by hypothesis) and an LSM converge as
well. Therefore, we only need to make sure that the conversion from d̂t to b, as shown
in Equation (11), also supports error backpropagation, which is easy as the derivative is
calculated in Equation (13).

∂bi

∂d̂t
j
=


= −2d̂t

i , j = 1

= 2d̂t
i , j ∈ {2, 3, ..., N}, i = j− 1

= 0, j ∈ {2, 3, ..., N}, i 6= j− 1

. (13)
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where i ∈ {1, 2, ..., N − 1}, j ∈ {1, 2, ..., N},

3.3.3. Loss Function

If we only use the localization error L1(p̂), the model will overfit the training set and
generate unreasonable corrected distances, such as higher than 4 m. Therefore, we design a
combined loss function with localization error and distance error to train the model and
use the TDMAE as described in Equation (17) in the loss function. Distance weight α is
introduced to balance the influence of localization error and distance error,

L1(p̂) = LE(p, p̂) (14)

L2(d̂T) = TDAE(d, d̂T) (15)

L(p̂, d̂T) = (1− α) · L1(p̂) + α · L2(d̂T). (16)

3.4. Metrics

As described in Section 3.1, MLE is used as a metric to evaluate the overall localization
error. Furthermore, to evaluate the overall ranging error, ToF distance absolute error
(TDAE) is defined in Equation (17). TDMAE is defined as the mean value of TDAE over
the testing points.

∆d = TDAE(d, dt) =
1
N
·

N

∑
i=0
|dt

i − di|,

TDMAE =
1
M
·

M

∑
i=1

∆d[i],

(17)

(18)

where ∆d[i] is the TDAE of testing record i, M denotes the number of testing records, N
denotes the number of anchors, and d and dt denote the actual and estimated distances,
respectively.

4. Experimental Settings
4.1. System Overview

For evaluation, we built an on-vehicle localization system, in which the anchors were
configured as shown in Figure 1 and the workflow is shown in Figure 4. In the system,
the UWB ranging was based on Decawave DW1000 chipset with a data rate of 110 Kbps,
channel 2, indicating a bandwidth of 3774.0–4243.2 Mhz, and a preamble code frequency
of 64 MHz and length 2048. The collecting system was built on Renesas RH850, which
is a single-core chip with no float point unit (FPU) and a main frequency of 80 MHz. No
extra memory or storage chip was used except the integrated internal 512 KB flash and
32 KB RAM. The anchors and keyfob hardware are shown in Figure 5. The Anchors were
connected by a wire for power and CAN communication, on which the ranging results and
RSS were uploaded to the host MCU and then transmitted to a PC.
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output the      and     .

Keyfob Anchor 1 Anchor 2 Host MCU

, 

, 

Anchor 5

ADS-TWR Ranging

ADS-TWR Ranging

ADS-TWR Ranging

, 

PC

Save the records

UWB Signal CAN Bus Serial Port

Figure 4. The flow chart of the localization procedure in our KES system.

UWB Chipset: DW1000 

MCU Chip: Renesas RH850
UWB Signal

Figure 5. Illustration of the UWB anchors and the keyfob hardware.

4.2. Dataset

We drew rounded rectangles on the ground around the testing car for positioning
evaluation, where contour 1 was 2 m from the bounding rectangle of the car, contour 2 was
4 m, and contour 3 was 6 m, as shown in Figure 6. 12 points on each contour were used as the
collecting points. On each point, the data were collected within 6 s, i.e., 60 records. It took
three students one day to collect the dataset on a prototype vehicle. Finally, we collected
2160 records in total. Note that we performed a moving average filter (window = 10) on
the ToF ranging measurements to filter noise. Ground true localization coordinates were
manually measured by a tape.
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Figure 6. Data collecting points. The collecting points are labelled as purple dots. Contour 1 was 2 m
from the car’s bounding rectangle, contour 2 was 4 m from the car’s bounding rectangle, and contour
3 was 6 m from the car’s bounding rectangle.

For dataset splitting, we applied k-fold evaluation (k = 6). We split the dataset
according to the collecting points, helping prevent overfitting. Out of N collecting points
p1, p2, . . . , pN , (N = 36), we randomly divided them into k different subsets, each of which
consists of data from N/k = 6 out of the N points, as shown in Table 2. For each fold, one
subset is used for testing and the others for training. All the k testing predict errors are
stored and merged as the k-fold result of a method. The results of all methods shown in
Section 5 were obtained in this way.

Table 2. Dataset subset split for 6-fold evaluation.

Subset Id Collecting Points

1 1-3, 1-5, 1-6, 2-2, 2-5, 3-3,
2 1-12, 2-9, 2-11, 3-7, 3-8, 3-9,
3 1-4, 2-3, 3-2, 3-6, 3-11, 3-12,
4 1-1, 1-9, 2-4, 2-6, 2-10, 3-1,
5 1-10, 1-11, 2-7, 2-8, 2-12, 3-5,
6 1-2, 1-7, 1-8, 2-1, 3-4, 3-10,

4.3. Model Training

We used a 3D coordinate as the model’s output only in the training process. However,
according to the actual requirements, the height of the keyfob did not need to be considered,
since the KES works once the user approaches the car no matter if the keyfob is held over
head or lying in a bag. Therefore, we only considered the first two dimensions p̂′ = [x̂, ŷ]T

in the testing process, which means all the localization errors in Section 5 are 2D errors. An
Adam optimizer [33] was utilized for training owing to its high effectiveness in handling
stochastic objective functions [19].

Hyperparameters and settings for the NN-LCS and comparative methods are listed
in Table 3. We carried out parameter adjustment experiments reported by Yang et al. [19]
for most of the hyperparameters including the network layer and neuron numbers. The
adjustment did not improve the performance significantly, so we used the original settings
from the article. From Tomic et al. [10], we carried parameter fitting experiments for γ
values and selected a LOS sequence to acquire the d0 and P0 pair.
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Table 3. Hyperparameters and settings for the NN-LCS and comparative methods. The parameters
for the comparative methods listed here are the ones that we modified for the best performance on
our dataset.

Parameter Type Parameter Name Value

NN-LCS network parameters

FC1 size 5× 30
FC2 size 5× 30

MLP size 60× 30× 5
distance loss weight α 0.9

LeakyRELU slope 0.1

Training settings (both NN-LCS and Yang et al. [19])

Adam betas (0.9, 0.999)
Adam eps 1× 10−8

Adam weight decay 0
batch size 4
max epoch 300

random seed 37

Training settings (for NN-LCS only) learning rate 3× 10−3

Training settings (Yang et al. [19] only) learning rate 1× 10−3

dropout 0.3

Parameter settings (Tomic et al. [10] only)
γ 0.959
d0 4.25 m
P0 −78.38 dB

5. Results
5.1. Performance of Localization Error

We compare our NN-LCS with the numerical methods of Tomic et al. [10], and the
spatial–temporal deep neural network proposed by Yang et al. [19]. Among the two compar-
ative studies, the method proposed by Tomic et al. is a state-of-the-art numerical approach
involving both RSS and distance measurements. In addition, Yang et al. is a state-of-the-art
deep learning-based scheme with both RSS and distance measurements.

We use a boxplot to show the performance of the localization at the three contours,
shown in Figure 7. We find that: (1) The Yang et al. method shows the biggest localization
error on our dataset. This could be because of too much overfitting on the points in the
training set. (2) Both of the two competing methods show significant rising trends as
the distance between the keyfob and the vehicle increases. As shown in Figure 8, the
original absolute NLOS error (TDMAE) at the three contours is similar. This means that the
comparative methods become more sensitive to the NLOS error at further testing points.
(3) The proposed NN-LCS method shows minimum localization error on all three contours.
Furthermore, the localization error does not change significantly at the different contours.

Figure 7. Boxplot of the localization error comparison (m). The test points are contour 1 (1-1,1-2. . . ,1-
12), contour 2 (2-1,2-2. . . ,2-12), and contour 3 (3-1,3-2. . . ,3-12).
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Figure 8. Comparison of the cumulative distribution function (CDF) between the original ranging
results and the corrected results by our model in TDAE. The chain and solid lines represent the
original ranging errors and corrected distance errors, respectively. Original refers to the error of the
raw ToF distances in the dataset, denoted as d in Figure 3, and Corrected refers to the errors of the
respective corrected distances calculated by DCNN, denoted as dt in Figure 3.

5.2. Performance of the Ranging Error Correction

The cumulative distribution function (CDF) in Figure 8 shows the comparison between
the original ranging results and the corrected results by our model in TDAE. In the original
raw distance data, as the chain lines show, more than 40% of the error on each contour could
exceed 0.5 m and more than 20% of the error on contour 1 could exceed 1 m which is a
big threat to accurate decimetre localization. However, as the solid lines show in Figure 8,
after the process of the DCNN in our model, the corrected distances show much less error
in TDAE with at least 80% of the error on each contour less than 0.25 m. This proves the
effectiveness of the DCNN and explains why the NN-LCS could work properly.

Compared to the existing methods that estimate the ranging errors, the NN-LCS also
shows the ability to correct the ToF distances. The TDMAE of the original ToF distance in
our dataset is 0.7437 m and the corrected distances by the DCNN obtain much less error
TDMAE = 0.1804 m, i.e., 75% lower than that of the original distances. We also evaluated our
method in the RMSE (root-mean-square-error) metric to compare it with the performance
of the research published by Chengzhi et al. [18], which used CIR signals and collected the
data in an indoor environment. The RMSE results of our NN-LCS and Chengzhi et al. [18]
are 0.18 m and 0.26 m, respectively. Moreover, the NLOS condition in the car is much worse
outdoor than indoors.



Sensors 2023, 23, 2694 13 of 16

5.3. Ablation Results

In order to investigate the effects of distance and RSS in the proposed method, we
designed two network architectures with only distance for the input (or RSS only) as the
ablation experimental groups. The results of the ablation experiment are shown in Table 4.

Table 4. Comparison between models with different features in the MLE(m) metric. Here, D denotes
ToF distance and R denotes the RSS.

Input Contour 1 Contour 2 Contour 3 All

D + R 0.30 0.23 0.34 0.29
D 0.28 0.25 0.39 0.31
R 1.38 0.78 1.97 1.38

In general, the RSS information does not contain the information needed for local-
ization, as the ranging error could reach more than 1 m. For contours 2 and 3, as well
as the whole dataset, the model with distance and RSS performs the best with the fusion
of the RSS information, which proves that the feature extraction reduces the localization
error. However, for contour 1, the model with distance only performs better than that with
distance and RSS. Regarding the user manual of the DW1000 chipset, the RSS level esti-
mation shows obvious non-linearity and instability because of saturation, so the overtake
of the model with distance only on contour 1 is very likely to be because of measurement
saturation of DW1000’s receiver.

5.4. Analysis of Distance Loss Weight

We carry out the experiment on distance loss weight α described in the loss function
Equation (16). As shown in Figure 9, with the increase in α, the TDMAE decreases rapidly,
and overall the MLE also decreases.

Figure 9. The MLE and TDMAE with the change in distance weight α.

An extreme circumstance when α is set to be 1.0 and the model is actually set to fit the
ranging error only, results in an MLE error bigger than the setting with α set to 0.9, which
disapproves the assumptions made by studies minimizing distance errors [15,26]. When α
is set to be 0 and the model is actually set to fit the localization error only, the model does
not show the best performance on both MLE and TDMAE. Moreover, this setting leads
the biggest TDMAE error of more than 4 m, which is even bigger than the TDMAE of the
original data, thus bringing unreasonable localization results.

The best MLE performance of the model is when α is set to be 0.9, with MLE = 0.29 m
and TDMAE = 0.12 m. This infers that the correlation between the ranging error and the
localization error is not as simple as it seems to be, and suggests that neither minimizing
the ranging error nor minimizing the localization error is the best way for localization tasks.
The best training methodology is to minimize a combination of these two errors.
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In addition, this experiment proves that the proposed model is robust in the α hyper-
parameter setting, because no matter what α is set to, the model could perform better than
the comparative methods on the MLE metric.

6. Conclusions and Future Works

In order to solve the localization task in the car KES, this paper proposed a novel end-to-
end learning architecture. The NN-LCS model uses a DCNN which extracts the localization
information from the ToF distances and RSS measurements to estimate the corrected
distances and then, by a linear coordinate solver, calculates the coordinates of the keyfob as
the output. This study demonstrates the possibility to embed a localization algorithm in
a neural network. The results show that it is better to train the model by minimizing the
weighted sum of the ranging error and localization error than by minimizing either the
ranging error only or the localization error only. Furthermore, the number of parameters of
the proposed method is extremely small. Hence, it is edge-affordable both spatially and
temporally and can be deployed in cheap MCUs with low computing ability.

According to the experiments in Section 5, state-of-the-art NN-LCS localization ac-
curacy is achieved in the KES scenario. Its accuracy in distance correction proves the
effectiveness of the DCNN module in the model and explains why NN-LCS could work
well. Moreover, the ablation results show the validity of fusion between distances and RSS.
Finally, the analysis of distance loss weight reveals the fact that compared to training the
NLOS error mitigation model by minimizing the distance error only or localization error
only, it is better to train by minimizing the combined loss function with the localization
error and distance error.

However, our current work collected isolated point data for model training and testing,
which is low in collecting efficiency and needs to be verified in other scenarios. In the future,
we will collect trajectory data based on LiDAR-SLAM [34] or VSLAM [35,36] to enable
low-cost and large-scale sample collection. In addition, we will introduce more improved
algorithms instead of LSM into the NN-LCS to achieve better accuracy and robustness.
Further more, although the CIR signals show low stability and high dimensionality at
present, we will try to build specific neural networks that can remove the uncertainty and
extract the CIR features with minimal cost.
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