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Abstract: This study proposes a three-spacecraft formation reconfiguration strategy of minimum
fuel for space gravitational wave detection missions in the high Earth orbit (105 km). For solving
the limitations of measurement and communication in long baseline formations, a control strategy
of a virtual formation is applied. The virtual reference spacecraft provides a desired relative state
between the satellites, which is then used to control the motion of the physical spacecraft to maintain
the desired formation. A linear dynamics model based on relative orbit elements’ parameterization
is used to describe the relative motion in the virtual formation, which facilitates the inclusion of J2,
SRP, and lunisolar third-body gravity effects and provides a direct insight into the relative motion
geometry. Considering the actual flight scenarios of gravitational wave formations, a formation
reconfiguration strategy based on continuous low thrust is investigated to achieve the desired
state at a given time while minimizing interference to the satellite platform. The reconfiguration
problem is considered a constrained nonlinear programming problem, and an improved particle
swarm algorithm is developed to solve this problem. Finally, the simulation results demonstrate
the performance of the proposed method in improving the maneuver sequence distribution and
optimizing maneuver consumption.

Keywords: relative orbit elements; formation reconfiguration; maneuver planning; gravitational
waves; particle swarm optimization

1. Introduction

Gravitational wave detection from space has been an active research area for decades.
The Laser Interferometer Space Antenna (LISA) [1] was the first space-based gravitational
wave detection project to be studied and evaluated. Since then, several innovative proposals
have been put forward, including the ASTROD [2], DECIGO [3], OMEGA [4], TIANQIN [5],
and TAIJI [6] projects. In these projects, three or more spacecraft are arranged in an
equilateral triangle, and lasers are employed to measure the minute distance variations
driven by gravitational waves. Compared with the ground detector, the space-based
gravitational wave detector has the characteristics of a long baseline distance, fewer noise
and interference sources, and the ability to detect gravitational waves from all directions,
which make it especially suitable for capturing weaker gravitational wave signals in
medium- and low-frequency bands [7]. However, space gravitational wave detectors
present various challenges in their design and operation, among which the configuration
maintenance and control of the precision formation flying is the most fundamental and
urgent difficulty [1,8,9].
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The primary obstacle is the extremely lengthy baseline distance, making communi-
cation and measurement difficult. For sufficient detection sensitivity, gravitational wave
detectors in space need baseline distances of a few dozen kilometers or possibly millions of
kilometers [10,11]. Nevertheless, such lengths would make it challenging to implement
formation control methods that depend on relative state measurements. Some alternatives
need to be considered, one option is to employ a mix of onboard sensors and external
measurements to estimate the relative states of the spacecraft, and the other is to use model-
based control methods [12]. Both strategies are effective at certain times, but the former
will make the system more complex and expensive, and the latter will use up a lot of the
onboard computational resources. Some academics have recently suggested a workable
control method based on virtual formation. Lippe [13] offers a novel approach to minimiz-
ing delta-v for spacecraft swarm reconfiguration through refinement of the real or virtual
chief spacecraft orbit, which is a closed orbit of arbitrary eccentricity. Sherrill [14] presents
a simple method for roughly applying the HCW equations to the chiefs in an elliptic orbit;
a virtual chief is described as a circularized version of the actual chief in the approach.
Caruso [15] refines and extends a multiple impulse trajectory transfer method, which is
based on the linearized CW equation and is solved in an optimal framework by minimizing
the total velocity variation; in the study, a massless point covering a circular orbit around a
certain celestial body was created as the formation’s (virtual) chief. Huang [16] proposed
a spacecraft orbit correction method based on a virtual formation configuration design,
and the correction was realized by four-pulse control. In view of the previous work, the
virtual reference spacecraft provides a desired relative state between the satellites, which
can significantly reduce the communication and measurement requirements between the
spacecraft and make it easier to decouple the spacecraft’s motion in the formation, and in
this study, we adopt this strategy.

An additional difficulty in a close-range decentralized control architecture based on
virtual formations is formation reconfiguration under complicated constraints. Recon-
figuration or modification is defined as transforming a spacecraft’s formation from an
initial configuration to another desired configuration while also taking into account its
capabilities, constraints, and objectives during the process [17]. It is commonly carried out
utilizing optimization algorithms that evaluate different thrust scenarios and determine
the most efficient and effective solution for a given mission. There is already a wealth of
research on close formation reconfiguration control, ranging from continuous thrust to
impulsive strategies, from analytical to numerical forms, and from using the relative Carte-
sian state to orbital element descriptions [18]. A typical class of research focuses on using
impulsive thrust strategies. Vaddi [19] proposed an analytic, two-pulse control scheme for
formation reconstruction and establishment. Michelle [20] presented a closed-form method
for the fuel-optimal guidance and control of relative motion in the formation flying and
rendezvous of spacecraft using impulsive maneuvers. Gaias [18] described an impulsive
maneuvers planner for onboard autonomous optimal formation flying reconfigurations
in a near-circular orbit. The impulse control strategy is an applicable and flexible control
method; however, it is challenging to realize the relative velocity’s instantaneous change in
practical engineering for a gravitational wave detection satellite equipped with µN-class
thrusters. Continuous control is becoming popular in new space missions thanks to the
advancement of microelectronic propulsion. Ben [21] derives a control concept for for-
mation flight applications using analytical finite-duration approaches. Di Mauro [22–24]
presents a solution to the minimum-fuel spacecraft formation reconfiguration maneuver
in J2 perturbed near-circular orbits and subsequently investigates several flight scenarios
by analytical and numerical methods. Zhang [25] proposes a control parameter direct
optimization method for the optimal short-range elliptic orbit rendezvous problem using
on–off constant thrust; during the study, the optimal control problem is transformed into
a nonlinear programming problem with bound constraints on the optimization variables
and terminal equality constraints. The aforementioned continuous control strategies can
provide a reference for the reconfiguration control of a gravitational wave formation, but
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the current research mostly concentrates on near-ground scenarios; therefore, related re-
search still needs to be refined and improved in order to be adaptable to the high Earth
orbit environment while meeting the limitations of poor maneuverability, a long mission
period, and high accuracy requirements in gravitational wave missions.

In this paper, a geocentric space gravitational wave detection mission is selected as
a candidate for analysis. Compared with the heliocentric scheme, the geocentric scheme
faces a more complex space environment and dynamics [9], thus posing a more pressing
demand for the maintenance and control of the formation configuration. Figure 1 depicts
the mission’s operational mode: Scientific gravitational wave detection will operate when
the direction of the Sun is sufficiently angled with the orbital plane; when the direction
of the Sun is almost parallel to the orbital plane, scientific observations will be put off
for maintenance.
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are scientific detection stages (represented by purple lines), and M2–M3 and M4–M1 are maintenance
and adjustment stages (represented by cyan lines).

The main objective of this study is to develop a minimum-fuel spacecraft formation
reconfiguration strategy for future space missions, such as space gravitational wave detec-
tors, a distributed remote sensing cluster or solar satellite systems, etc. [5,8,26–28]. Firstly,
a configuration reconfiguration scheme suitable for space gravitational wave detection
formation is proposed, which is based on the concept of virtual formation. Virtual forma-
tion involves using a reference trajectory, or “virtual” formation, to guide the motion of
the spacecraft in the formation; this approach can enable precise control of the formation
configuration, even in the presence of uncertainty and perturbations. Secondly, the rela-
tive motion is described using a linear dynamics model based on the parameterization of
relative orbit elements; compared with the commonly used Cartesian relative states, this
description method can not only effectively reduce the error caused by linearization and
facilitate the inclusion of perturbation effects, but it can also offer direct visualization of the
effects of maneuvers on the relative orbit [22]. In addition, the model is built from a set of
mean elements that slowly vary in time, which is beneficial for formation control since no
additional fuel needs to be wasted to counteract short- and long-period effects caused by
osculating elements [29]. Thirdly, a piecewise constant thrust formation reconfiguration
mechanism is described. Simultaneous in-plane and out-plane controls are adopted to
improve the reconfiguration efficiency; in order to avoid the long duration or frequent
orbital maneuvers adding difficulty to the control of the test masses, the whole task interval
is discretized. Finally, an improved particle swarm optimization algorithm is proposed
to solve the multi-constrained maneuvers planning. The improved algorithm introduces
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measures such as adaptive factors, dynamic penalty functions, and updated rules for better
global search performance. The innovation of this paper can be summarized as:

(1) A minimum-fuel reconfiguration strategy applicable to gravitational wave formations
is proposed. The strategy can flexibly respond to different complex scenarios during
gravitational wave missions with less interference to the satellite platform.

(2) Several measures are employed to improve the performance of the particle swarm
algorithm. The improved particle swarm algorithm has better stability and superior
global search capability when dealing with problems with complex constraints.

The outline of the paper is as follows. In Section 2, the concept of virtual formation,
the relative motion model, and the reconfiguration control strategy are given; Section 3 in-
troduces the maneuver planning process based on the improved particle swarm algorithm;
the numerical simulation of the proposed control scheme is presented in Section 4; and
finally, Section 5 draws the conclusion.

2. Formation Reconfiguration Control Strategy Based on Continuous Low Thrust

This part introduces the concept of virtual formation and the dynamic model describ-
ing the relative motion of the physical spacecraft relative to the virtual reference point.

2.1. Definition of the Coordinate System and Introduction of the Virtual Formation

In order to facilitate the description of the spacecraft’s absolute motion and relative
motion, the following coordinate system is defined in this paper, as shown in Figure 2.
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Figure 2. The illustration of the virtual formation. (a) Definition of the coordinate system; (b) ge-
ometric relationship between physical spacecraft in virtual formation. The bright red dotted lines
and the red lines represent the nominal and real arm lengths between spacecraft, respectively. (Each
satellite corresponds to an optimized nominal orbit. In order to express clearly, only one is drawn in
the figure, as shown by the blue dotted line).

(1) The Earth-centered inertial (ECI) reference frame: the origin O is located at the center
of the earth, the OX axis points towards the vernal equinox, the OZ axis points
towards the north celestial pole, and the OY axis is perpendicular to the XOZ plane
and follows the right-hand rule.

(2) The Radial–Transversal–Normal (RTN) orbital frame: the OcR axis is aligned with the
radial direction, pointing outward, the OcN axis is aligned with the orbit momentum
vector, and the OcT axis completes the triad.
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The illustration of the virtual formation is depicted in Figure 2a. The reference point
operating on the nominal orbit is defined as the virtual chief spacecraft. The spacecraft
traveling on the actual trajectory with errors is defined as the deputy spacecraft. As a result,
the original long baseline formation is split into three close-proximity virtual formations,
each comprising a physical spacecraft and its corresponding virtual reference point. As
shown in the figure, Sc1, Sc2, and Sc3 represent virtual reference points, Sr1, Sr2, and Sr3
are physical spacecraft; Lij(i, j = 1, 2, 3) is the arm length between spacecraft Sri and Srj;
Ai(i = 1, 2, 3) represents the breathing angle corresponding to spacecraft Sri; and ∆r is the
envelope radius of the virtual formation configuration.

As discussed in reference [16], the maximum allowable envelope radius of the virtual
formation can be calculated using direct planar geometry relationships when the difference
in orbital elements between the physical spacecraft and the virtual reference point is small
enough. The spatial geometric relationship between physical spacecraft is depicted in
Figure 2b. In the figure, L0, Lmin, and Lmax, respectively, represent the nominal arm length,
the minimum arm length, and the maximum arm length; similarly, A0, Amin, and Amax,
respectively, represent the nominal breathing angle, the minimum breathing angle, and the
maximum breathing angle.

The envelope radius of the virtual formation’s constraint conditions can be computed
using the equilateral triangle configuration index and the geometric relationship depicted
in Figure 2b: 

2∆r 6 ∆L
Amax − 60

◦
6 ∆A

60
◦ − Amin 6 ∆A

(1)

In Equation (1), ∆L and ∆A are the arm length variation index and the breathing angle
variation index, respectively, and the maximum breathing angle Amax and the minimum
breathing angle Amin can be expressed as

Amax = 2arctan

 √
3

2 L0−∆r+2∆r
√

1−
√

3∆r
L0

3
2 L0−2

√
3∆r


Amin = 2arctan

 √
3

2 L0+∆r−2∆r
√

1+
√

3∆r
L0

3
2 L0+2

√
3∆r


With ∆L� L0, the terms containing ∆L

L0
can be ignored to simplify the formula further:

∆r 6 ∆L
2

∆r 6
(3 tan(30

◦
+ ∆A

2 )−
√

3)L0

2+4
√

3 tan(30◦+ ∆A
2 )

∆r 6
(
√

3−3 tan(30
◦− ∆A

2 ))L0

2+4
√

3 tan(30◦− ∆A
2 )

(2)

By solving the system of inequality equations in Equation (2), the envelope boundary
satisfying the gravitational wave detection requirement can be obtained.

2.2. Relative Motion Equation Modeling Based on Quasi-Nonsingular Relative Orbit Elements

In each virtual formation, the relative motion of the physical spacecraft relative to the
virtual reference point can be described by a set of dimensionless relative orbital elements
defined by D’Amico [30].

In the ECI reference frame, let αc = [ac, ec, ic, ωc, Ωc, Mc]
T , αr = [ar, er, ir, ωr, Ωr, Mr]

T

denote the classical Keplerian orbital elements (OE) of the virtual reference point and the
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physical spacecraft, respectively. The quasi-nonsingular relative orbital elements (ROEs)
are defined as

δα =



δa
δλ
δex
δey
δix
δiy

 =



δa
δλ

δe cos(ϕ)
δe sin(ϕ)
δi cos(θ)
δi sin(θ)

 =



(ar − ac)/ac
ur − uc + (Ωr −Ωc) cos(ic)

er cos(ωr)− ec cos(ωc)
er sin(ωr)− ec sin(ωc)

ir − ic
(Ωr −Ωc) sin(ic)

 (3)

where δa is the semi-major axis difference, which has been normalized by the chief semi-
major axis, δλ is the relative mean argument of longitude, δe = [δex, δey]

T is the relative
eccentricity vector, and δi = [δix, δiy]

T is the relative inclination vector. Additionally,
u = ω + M is the mean argument of latitude, the phase angles of ϕ and θ are termed the
relative perigee and relative ascending node, respectively.

Assuming that the reference orbits in a near-circular reference orbit and the distance
between the physical satellite and the virtual point is much smaller than the orbital radius
of the virtual point, the ROEs can be written as functions of the integration constants of the
HCW equations, The linear map [31,32] can be described as

δx = T(uc)acδα (4)

where

T(uc) =



1 0 − cos(uc) − sin(uc) 0 0
0 1 2 sin(uc) −2 cos(uc) 0 0
0 0 0 0 sin(uc) − cos(uc)
0 0 nc sin(uc) −nc cos(uc) 0 0
− 3

2 nc 0 2nc cos(uc) 2nc sin(uc) 0 0
0 0 0 0 nc cos(uc) nc sin(uc)


Accordingly, the inverse transformation can be easily realized by

acδα = T−1(uc)δx (5)

where uc is the latitude argument of the chief orbit at the instant tc, which is interchangeable
with time tc through the relation uc = u0 + Wc(t − t0), Wc is the mean motion of the
virtual reference point. δx = [δrR, δrT , δrN , δrR, δvT , δvN ]

T represents the relative position
and velocity in the RTN reference frame. According to Equation (4), The ROEs will be
decomposed into periodic motion in the RT plane and harmonic oscillations in the RN plane.
In particular, the amplitudes of relative motion in R, T, and N directions are aδe, 2aδe,
and aδi, respectively, offsets in T and R direction are given by aδλ and aδa, respectively.
Moreover, the instantaneous phases of in-plane and out-of-plane motion are, respectively,
represented by angle uc − ϕ and uc − θ, while relative phase angle θ − ϕ governs the
orientation and shape of relative motion in the RN plane. The geometric insight provided
by Equation (4) is illustrated in Figure 3.

2.3. Linearized Equations of Relative Motion with Perturbation

Consider a general absolute state αc and relative state δα, a linear relative dynamic
equation including perturbations and continuous thrust acceleration can be derived by
using the relevant theory of Taylor expansion and Gaussian variational equation [20,33],
which is given as

δ
.
α(t) = A(αc(t))·[δα(t), ∆Bsrp]

T + [B(αc(t)); 01×3
]
·u(t) (6)
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The term A(αc(t)) = Akep +AJ2(t) +A3rd(t) +Asrp(t) is complete plant matrix, which
is the superposition of Kepler motion and perturbation contributions such as the Earth’s
oblateness effect J2, SRP, and lunisolar third body (T3rdb). The term B(t) represents the
control input matrix and u(t) = [ur, ut, un]

T is the vector of constant control accelerations
in the RTN orbital frame. ∆Bsrp = Br,srp − Bc,srp is the difference between the physical
satellite and the chief SRP ballistic coefficient.
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When the reference orbit is nearly circular, a simpler form can be derived by ignoring
all terms that depend on eccentricity. These simplified plant matrices are given by

AJ2,nc = k J2



0 0 0 0 0 0 0
− 7

2 EcPc 0 0 0 −FcSc 0 0
0 0 0 −Qc 0 0 0
0 0 Qc 0 0 0 0
0 0 0 0 0 0 0

7Sc
2 0 0 0 2Tc 0 0
0 0 0 0 0 0 0


(7)

The items of J2 plant matrix are as follows:

γJ2
= 3

4 J2R2
E
√

µ, κJ2 =
γJ2

ac(7/2)η4 , Ec = 1 + η, Fc = 4 + 3η, Gc =
1

η2 ,

Qc = 5 cos (ic)
2 − 1, Pc = 3 cos (ic)

2 − 1, Sc = sin(2ic), Tc = sin (ic)
2, η =

√
1− e2

c

where RE = 6378.137× 103 (m), µ = 3.986004415× 1014 (m 3/s2
)

, J2 = 1.08264× 10−3.

Asrp,nc = κsrp·



0 0 0 0 0 0 0
0 0 −2Ts1 2Ts2 0 0 0

η
2Ts2 0 0 0 −ηTs3 η cot(ic)Ts1

η
Bsrp
Ts2

η
2Ts1 0 0 0 0 − η

sin (ic)
2 Ts4

η
Bsrp
Ts1

0 0 1
ηTs3 0 0 0 0

0 0 0 1
ηTs3 0 0 0

0 0 0 0 0 0 0


(8)
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The items of SRP plant matrix are as follows:

γsrp =
3Fsrp
2
√

µ , κsrp = γsrpBsrp
√

ac, ys = sin(λs) cos(ic), zs = sin(λs) sin(ic)

Xs1 = cos(Ωc − λs), Ys1 = sin(Ωc − λs) cos(ic), Zs1 = sin(Ωc − λs) sin(ic)
Xs2 = cos(Ωc + λs), Ys2 = sin(Ωc + λs) cos(ic), Zs2 = sin(Ωc + λs) sin(ic)

T s1 = cos ( ε
2 )

2Xs1 + sin ( ε
2 )

2Xs2 , Ts2 = cos ( ε
2 )

2Ys1 + sin ( ε
2 )

2Ys2 − sin(ε)zs

Ts3 = cos ( ε
2 )

2Zs1 + sin ( ε
2 )

2Zs2 + sin(ε)ys, Ts4 = cos ( ε
2 )

2Zs1 + sin ( ε
2 )

2Zs2

where Fsrp = − Psun
c ( asun

rsun
)2, with Psun = 1367 (W ·m−2) being the solar flux at 1 AU from

the Sun, c = 3 × 108 (m/s) the light speed, asun
rsun
≈ 1; Bsrp =

Cr Asrp
m is the spacecraft

ballistic coefficient, with Cr being the reflectivity coefficient, Asrp the cross-sectional area
perpendicular to the Sun’s direction, and m the satellite mass; ε = 23.44◦ is the ecliptic
obliquity, λs = λ0 + nst is the value of the ecliptic longitude of the Sun at the instant t,
ns = 2π/year.

A3rdb,nc = κ3rdb.



0 0 0 0 0 0 0
0 0 0 0 2Td2 −2Td1 0

0 0 0
2Td2

tan(ic)
0 0 0

0 0 − 2Td2
tan(ic)

0 0 0 0
3Td1 0 0 0 Td5 Td7 0
3Td2 0 0 0 2(Td6 − Td4) 2Td8 + Td3 0

0 0 0 0 0 0 0


(9)

The items of T3rdb plant matrix are as follows:

γ3rdb = 3µ3
4r3

3
√

µ
, κ3rdb =

γ3rdb

√
ac3

η

A3rdb = cos(Ωc −Ω3) cos(u3) + cos(i3) sin(u3) sin(Ωc −Ω3)
B3rdb = cos(ic)[− sin(Ωc −Ω3) cos(u3) + cos(i3) sin(u3) cos(Ωc −Ω3)] + sin(ic) sin(i3) sin(u3)
C3rdb = sin(ic)[cos(u3) sin(Ωc −Ω3)− cos(i3) sin(u3) cos(Ωc −Ω3)] + cos(ic) sin(i3) sin(u3)

Bδix = ∂B3rdb
∂δix

= − sin(ic)[− sin(Ωc −Ω3) cos(u3) + cos(i3) sin(u3) cos(Ωc −Ω3)] + cos(ic) sin(i3) sin(u3)

Cδix = ∂C3rdb
∂δix

= cos(ic)[cos(u3) sin(Ωc −Ω3)− cos(i3) sin(u3) cos(Ωc −Ω3)]− sin(ic) sin(i3) sin(u3)

Aδiy = ∂A3rdb
∂δiy

= − sin(Ωc−Ω3)
sin(ic)

cos(u3) + cos(i3) sin(u3)
cos(Ωc−Ω3)

sin(ic)

Bδiy = ∂B3rdb
∂δiy

= cos(ic)
[
− cos(Ωc−Ω3)

sin(ic)
cos(u3)− cos(i3) sin(u3)

sin(Ωc−Ω3)
sin(ic)

]
Cδiy = ∂C3rdb

∂δiy
= sin(ic)

[
cos(u3)

cos(Ωc−Ω3)
sin(ic)

+ cos(i3) sin(u3)
sin(Ωc−Ω3)

sin(ic)

]
Td1 = C3rdb A3rdb, Td2 = C3rdbB3rdb, Td3 = Td1

tan(ic)
, Td4 = Td2

tan(ic)
, Td5 = Cδix A3rdb

Td6 = Cδix B3rdb + C3rdbBδix , Td7 = Cδiy A3rdb + C3rdb Aδiy , Td8 = Cδiy B3rdb + C3rdbBδiy

In the Sun third body perturbation, we have

µ3 = 1.327124× 1020 (m3/s2), rs = 149597870× 103 (m), i3 = ε, Ω3 = 0◦, u3 = λs

In the Moon third body perturbation, parameters can be given as follows

µ3 = 4.90280058× 1012 (m3/s2), r3 = 384403× 103 (m), α = 5.145◦

Ωm = Ω0 − 0.05295(t/86400), T = (JD− 2451545)/36525,
λm = 218.31617 + 481267.88088× T − 4.06× T2/3600
i3 = arccos(cos(ε) cos(α)− sin(ε) sin(α) cos(Ωm))

Ω3 = arc sin( sin(α) sin(Ωm)
sin(i3)

), u3 = λm −Ωm + arcsin( sin(ε) sin(Ωm)
sin(i3)

)
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with Ω0 being the longitude of the mean ascending node of the lunar at the initial moment,
JD is the Julian date at the instant tc.

Bnc =
1

acnc



0 2 0
−2 0 0

sin(uc) 2 cos(uc) 0
− cos(uc) 2 sin(uc) 0

0 0 cos(uc)
0 0 sin(uc)

 (10)

where the parameters ac, nc, and uc are defined as above.
Notably, each plant matrix in A(αc(t)) is independent and can be uniformly formalized

into a [7 × 7] matrix, with the upper left [6 × 6] block containing the terms that relate the
ROE with their variations (both conservative and nonconservative perturbing effects), and
the upper right [6 × 1] column contains the linear relations that exist in-between the ROE
variations and the ballistic coefficient difference (only nonconservative perturbing effects).
Through examination of the rows of null matrices, it is possible to identify the ROE (regions
of influence) that are not impacted by a particular perturbation. For detailed information
on the plant matrix for the above items, we recommend that the reader read the literature’s
appendixes [34]. Similarly, in the control matrix Bnc, in-plane and out-of-plane control are
decoupled, which can be described as the radial (R) and tangential (T) direction maneuvers,
represented by the first two columns, affecting only the in-plane ROE ([δα, δλ, δex, δey]

T),
and the normal (N) direction maneuvers, represented by the third column, which affect
only the out-of-plane ROE ([δix, δiy]

T). Meanwhile, the model has neglected factors such as
eclipses effects, planetary gravity, and higher-order geopotential terms.

2.4. Converting from Osculating to Mean Elements

As mentioned above, the linear dynamic equations are based on the average state
space, while the actual measurement information of the satellite is osculating states; there-
fore, the algorithm converting the osculating elements to the mean elements is necessary.
Due to closed-form conversions between osculating to mean states under the variety of per-
turbations considered not being available in the literature, a numerical method of moving
average filtering was applied.

The basic idea of the moving average filter algorithm is to set a fixed-width sliding
window, which slides along the time series while taking the arithmetic mean of the data
in the window as the output value. As shown in Figure 4, assuming that each orbital
period has 2k + 1 data, the average element corresponding to the nth osculating element is
calculated by the following formula:

αm(n) =
1

2k + 1
·

i=k

∑
i=−k

α(n + i) (11)
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Figure 4. Schematic diagram of moving average filter algorithm. t0, t f are the task beginning and
end times, respectively, and dt is the interval time between each data.

This is a convenient and accurate method for the scenarios studied in this paper where
the reference orbit is known.



Sensors 2023, 23, 3154 10 of 35

3. Continuous Low-Thrust Maneuver Planning via Improved Particle
Swarm Optimization

In this section, a general solution for formation reconfiguration using piecewise con-
stant thrust is introduced. The problem is described as a nonlinear programming problem
(NLP) with complex constraints, and then the maneuvering parameters are optimized and
solved by an improved particle swarm optimization algorithm.

3.1. Reconfiguration Control Based on Piecewise Constant Thrust

In references [22,25], a tangential maneuvering strategy is used to obtain the mini-
mum fuel consumption, which is an optimal strategy for the case where the eccentricity
dominates the conformational divergence. In contrast to the studies described, δλ is the
main divergence element in the study, which is caused by the geometrical differences of
the orbits; for this reason, in-plane control simultaneously in the radial and tangential
directions is a more efficient option. In addition, since the spacecraft contains two test
masses, executing long-duration or short-term high-frequency maneuvers will make it
more difficult to control the test masses and may even cause a collision with the satellite
platform. Hence, a reasonable distribution of the thrust sequence is necessary.

As illustrated in Figure 5, it is assumed that after ki in-plane maneuvers and ko out-of-
plane maneuvers, the formation reaches the desired state at the given time. The maximum
amplitudes of the in-plane and out-of-plane thrusters are ui and uo, respectively; each
maneuver’s magnitude is expressed as uj,k (j = r, t, n and k = 1, 2, . . . , ki or ko) and the
maneuver duration is ∆tj = tj,2k − tj,2k−1 (k = 1, 2, . . . , ki or ko). The whole task interval
is discretized into ki and ko parts in terms of in-plane and out-of-plane according to the
number of maneuvers and constraint limits, denoted as [tk−1, tk] (k = 1, 2, . . . , ki or ko).
Then the process of converting the relative state δα(t0) at the time t0 to the state δα(t f ) at
the time t f using the linear dynamic equation described in Section 2.3 can be specifically
described as:
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Figure 5. Piecewise constant acceleration profile of RTN reference frame. The red dotted line, the
solid blue line, and the solid green line represent the thrust acceleration along the R-, T-, and N-axes,
respectively, and the part filled with a gray slash indicates that orbital maneuver is prohibited during
this period of time. The gray dashed line shows the dispersion to the task time.
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In the period [t0, to,1], there is no maneuver acceleration, then the relative state δα(to,1)
at to,1 can be obtained by

δ
.
α(t) = A(αc(t0))·[δα(t0), ∆Bsrp]

T (12)

In the period [to,1, ti,1], the constant thrust acceleration is [0, 0, un,1]
T , then the relative

state δα(ti,1) at ti,1 can be obtained by

δ
.
α(t) = A(αc(to,1))·[δα(to,1), ∆Bsrp]

T + [B(αc(t)); 01×3
]
·[0, 0, un,1]

T (13)

Next, in-plane thrusters start working, the constant maneuver acceleration becomes
[ur,1, ut,1, un,1]

T in the period [ti,1, to,2], then the relative state δα(to,2) at to,2 can be ob-
tained by

δ
.
α(t) = A(αc(ti,1))·[δα(ti,1), ∆Bsrp]

T + [B(αc(t)); 01×3
]
·[ur,1, ut,1, un,1]

T (14)

Following this, in the interval [to,2, ti,2], the constant thrust acceleration is [ur,1, ut,1, 0]T ,
then the relative state δα(ti,2) at ti,2 can be obtained by

δ
.
α(t) = A(αc(to,2))·[δα(to,2), ∆Bsrp]

T + [B(αc(t)); 01×3
]
·[ur,1, ut,1, 0]T (15)

Then again, all thrusters stop working in the interval [ti,2, ti,3], and the relative state
δα(ti,3) at ti,3 can be obtained by

δ
.
α(t) = A(αc(ti,2))·[δα(ti,2), ∆Bsrp]

T (16)

Similarly, by following the above rules in turn, the relative state δα(t f ) at the end of
the mission t f will be obtained, and the relative state satisfies

δα(t f ) = δαdes (17)

The term ffiαdes is the desired mean ROE at the end of the maneuvering interval.
It has been demonstrated that fuel consumption saving is particularly important in

practical space operations. In general, fuel consumption can be minimized by optimizing
maneuvering parameters, which are handled in the following form:

Find: u(tc) ⊂ R3, tc ∈ [t0, t f ]

Minimizing: J = ∑i
ki=1 (

∣∣ur,ki

∣∣+ ∣∣ut,ki

∣∣)·(ti,2ki
− ti,2ki−1)+∑o

ko=1
∣∣un,ko

∣∣(to,2ko − to,2ko−1)

Dynamics constraints: δ
.
α(t) = A(αc(t))·[δα(t), ∆Bsrp]

T + [B(αc(t)); 01×3
]
·u(t)

Boundary constraints: δα(t f ) = δαdes
Maneuver magnitude constraint: −uj ≤ uj(t) ≤ uj (j = i, o)
Maneuver time constraint: t0 ≤ t1 ≤ t2 ≤ . . . ≤ t2k−1 ≤ t2k ≤ t f (k = 1, 2 . . . ki or ko)
Other constraints: all kinds of sudden or planned maintenance work.
The problem above is known as a constrained nonlinear programming problem, where

the optimization variables are the maneuver parameters u(tc) and tc, J is the objective
function, and the remaining terms are the constraints.

3.2. Improved Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is a population intelligence-based optimization
algorithm. It simulates the search process of multiple candidate solutions in the form of
particles and obtains the global optimal solution by continuously updating the velocity
and position of the particles. However, when dealing with complex constraints or a
large number of optimization variables, the algorithm often shows weaknesses of poor
convergence and tends to fall into partial optimality. Considering the complexity of the
problem in this paper, an improved particle swarm optimization algorithm is proposed.
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The first part is to process the constraints. When applying particle swarm algorithms
to solve optimization problems with constraints, the most generally used method is to
add penalty terms to the objective function using the Lagrange multiplier method. The
selection of penalty factors has been a difficult problem. If the penalty factor is too large,
the algorithm tends to converge to a partial optimal; when the penalty factor is smaller, the
algorithm may converge to an infeasible solution. In response to this question, a segmented
penalty function that can be dynamically updated is introduced. The generalized objective
function constructed by adding the penalty term is

F(x) = f (x) + h(ic)p(x) (18)

In the formula, f (x) = J = ∑i
ki=1 (

∣∣ur,ki

∣∣+ ∣∣ut,ki

∣∣)·(ti,2ki
− ti,2ki−1) +∑o

ko=1
∣∣un,ko

∣∣(to,2ko −
to,2ko−1) represents the sum of the in-plane and out-of-plane maneuver costs, h(ic) = ic

√
ic is

the penalty factor that updates dynamically with the number of iterations, ic is the current
generation, and P(x) is the penalty term of the constraint, with

P(x) =
m

∑
n=1

V(Sn(x))Sn(x)

Sn(x) = max(0, Sn(x))

V(Sn(x)) =


c1 Sn(x) < q1
c2 q1 ≤ Sn(x) < q2
. . . . . .

ci−1 qi−2 ≤ Sn(x) < qi−1
ci Sn(x) ≥ qi−1

where Sn(x) is the relative constraint penalty function, V(Sn(x)) is a segment function,
[c1, c2, . . . ci] and [q1, q2, . . . qi−1] are penalty values and tolerances, respectively, whose
amounts are set based on the specific problem.

Furthermore, in order to balance the conflict between minimizing the value of the
generalized objective function and satisfying the constraints, by referring to Deb’s work [35],
rules for evaluating the particle superiority are developed as follows:

(1) If both particles are feasible solutions, the particle with the smaller objective function
is superior;

(2) If both particles are infeasible solutions, the particle with the more minor violation of
the constraint is superior;

(3) When one of the two particles is a feasible solution, the particle that is feasible is
chosen as the superior.

The other part is an improved update strategy for particles. The standard particle
swarm optimization algorithm adopts constant inertia coefficients and learning factors;
such a setup will lead to slow convergence of the algorithm at the end of evolution, and
it will easily fall into partial optimality. Considering the above limitations, an adaptive
variation mechanism is employed in this paper to improve the performance of the algorithm.
The particle update formulas of the adaptive particle swarm optimization algorithm can be
expressed as

x(ic + 1) = x(ic) + v(ic + 1) (19)

v(ic + 1) = Wv(t) + C1r1(pbest − x(ic)) + C2r2(gbest − x(ic)) (20)

where ic denotes the current generation; x and v are the position and velocity of the particle,
respectively; W is the inertia coefficient; C1 and C2 are the learning factors; r1 and r2 are
the random numbers distributed between [0, 1]; pbest is the optimal solution of the particle
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itself; and gbest is the global optimal solution. W, C1, and C2 will dynamically adjust
according to the following mechanism:

W = (ωmax −ωmin)× exp
(
−ς×

(
ic

Imax

))2
(21)

C1 = c1,max−
(c1,max−c1,min)× ic

Imax
(22)

C2 = c2,min +
(c2,max−c2,min)× ic

Imax
(23)

where ωmax and ωmin denote the maximum and minimum inertia coefficients, respectively;
c1,max , c2,max and c1,min , c2,min are the maximum and minimum learning factors, respec-
tively; Imax is the maximum iteration number; and ς(ς ∈ [25, 55]) is an empirical parameter.

Using the update strategy described in Equations (21)–(23), the inertia coefficient
W and the self-learning factor C1 will decrease with increasing iterations, and the group
learning factor C2 will increase with increasing iterations. This adjustment mechanism will
give the algorithm a strong global search capability in the early stage and a robust local
search capability in the later phase.

Additionally, we introduce a random mutation factor after the update of particles in
each generation to avoid the algorithm from falling into premature convergence, whose
basic idea is to generate a random number rd(rd ∈ [0, 1]) for each generation and compare
it with a set mutation probability φc(φc ∈ [0, 1]), which is set to 0.85 in this study. If the
random number is larger than the probability, then:

i = int(dim× rd) (24)

x(i, j) = xmin(i) + (xmax(i)− xmin(i))rd (25)

where, dim is the dimension of the optimization variable, i is the ith variable, j is the jth
particle, and xmin, xmax are the boundary values of the ith variable.

In this way, each iteration has a certain possibility to randomly change the value of a
certain individual, which will improve the whole particle swarm’s performance.

The complete flow of the improved particle swarm algorithm is shown in Figure 6,
and the details are as follows:

Step 1: Initialize the position and velocity of each particle in the search space randomly;
Step 2: Calculate the objective function for each particle’s current position and compare

it to its personal best solution;
Step 3: Update the personal and global best according to defined internal penalty

function rules;
Step 4: Update the velocity and position of each particle;
Step 5: Perform random mutation operations for particles;
Step 6: Repeat steps 2–5 until a maximum number of iterations Nd (in this paper

Nd = 800) is met;
Step 7: Record the global best solution as the optimization result.

3.3. PSO Formula for Minimum Fuel Reconfiguration Control

In order to apply the improved particle swarm optimization algorithm to solve the
nonlinear programming problem described in Section 3.2, the setting of the algorithm
formulation is necessary.

The PSO particle can be defined as

Xpso = [ti,1, . . . ti,2ki
, Fr,1, Ft,1, . . . , Fr,ki

, Ft,ki
, to,1 . . . to,2ko , Fn,1 . . . , Fn,ko ]

T (26)

where ki and ko are the numbers of in-plane and out-of-plane maneuvers, respectively;
ti,k(k = 1, 2, . . . , ki) are the moments of in-plane maneuvering, [Fr,k, Ft,k](k = 1, 2, . . . , ki)
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are the thrust amplitudes of the in-plane maneuvers; to,k(k = 1, 2, . . . , ko) are the moments
of out-plane maneuvering, and Fn,k(k = 1, 2, . . . , ko) are the thrust amplitudes of the in-
plane maneuvers.
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Figure 6. Flow chart of improved particle swarm optimization.

Since each variable in the orbital dynamics equations presents a large variation in
the magnitude of units and physical quantities, the variables were normalized in order to
avoid negative effects on the convergence of the problem, expressed as

xpso = [τi,1, . . . τi,2ki
, ξr,1, ξt,1, . . . , ξr,ki

, ξt,ki
, τo,1 . . . τo,2ko , ξn,1 . . . , ξn,ko ]

T (27)

The relationship between the normalized variables and the actual physical variables
can be expressed as

ti,2k−1 = ti,k−1 + dti,kτi,2k−1, ti,2k = ti,2k−1 + (dti,k − ti,2k−1)τi,2k (k = 1, 2, . . . , ki)

ur,k = −
Fr,k

m
+

2Fr,k

m
ξr,k, ut,k = −

Ft ,k

m
+

2Ft,k

m
ξt,k (k = 1, 2, . . . , ki)

to,2k−1 = to,k−1 + dto,kτo,2k−1, to,2k = to,2k−1 + (dto,k − to,2k−1)τo,2k (k = 1, 2, . . . , ko)

un,k = −
Fn ,k

m
+

2Fn ,k

m
ξn,k (k = 1, 2, . . . , ko)

In the formula, τ, ξ ∈ [0, 1], and m is the mass of the spacecraft. It needs to be noted
that the linear inequality constraints on the maneuver times are transformed into only the
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bound constraints on the normalized optimization variables. In addition, for consistency
with Section 3.1, the thrust amplitude is expressed as acceleration form in the new variables.

The dynamics constraint is added to the objective function as a penalty term, de-
noted as:

Jpso = J + hpso(ic)Ppso(x) (28)

Ppso(x) =
6

∑
n=1

V(∆δαt f (x))∆δαt f (x) (29)

∆δαt f (x) = max(0,
∣∣∣δαt f (x)− δαdes

∣∣∣− ∆d) (30)

where δαt f (x) is the relative state at the end of the task, δαdes is the desired state, and ∆d is
the constraint tolerance.

The other basic settings are not described in detail here.

4. Numerical Simulations

This section presents the maneuver planning obtained using the improved particle
swarm optimization algorithm, demonstrating the maneuvering performance in terms of
delta-v, accuracy, etc.

4.1. Initial Values and Settings

In a selected space gravitational wave mission, the initial values of reference orbits
and the errors for the three spacecraft are shown in Tables 1 and 2, and the parameters
of the satellites are shown in Table 3. The detector operates in a “3 + 3” mode, meaning
that the detector conducts scientific observations for the first three months and conducts
the formation reconfiguration and equipment maintenance in the following three months.
During the scientific exploration, the configuration performance index of the formation
should meet: the variation in arm length is less than 1732.1 km, the variation in breathing
angle is less than 0.2◦, and the variation in relative velocity is less than 10 m/s.

Table 1. Initial values of the reference orbits [36] (In the Earth J2000 ECI frame) at the epoch 22 May,
2034 12:00:00 UTC.

x (km) y (km) z (km) vx (km/s) vy (km/s) vz (km/s)

Sc1 −46,746.087307 −51,973.844583 71,473.835818 1.448401 0.471646 1.291321
Sc2 86,220.582041 46,448.360669 20,269.217366 0.085035 0.663048 −1.881140
Sc3 −39,378.654985 5547.379475 −91,728.424823 −1.533416 −1.134792 0.590239

Table 2. Initial errors of each satellite. (In the Earth J2000 ECI frame).

dx (m) dy (m) dz (m) dvx (m/s) dvy (m/s) dvz (m/s)

Sc1 5 1 1 0.002 0.008 0.002
Sc2 −8 2 −4 0.004 −0.006 0.002
Sc3 −6 −3 −2 −0.002 −0.003 −0.003

Table 3. Parameters of the satellite.

Mass (kg) Cross-Section Area (m2) Reflectance Coefficient

500 1 1.15

The control method proposed in this paper is based on the mean states, whereas the
measurements available to us are all osculating. Therefore, it is necessary to process the
results of the numerical orbit propagation. The process is shown in Figure 7 and is briefly
described as follows [37].
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In the first step, the initial osculating position velocity of the real satellite is obtained
from the initial reference orbit and the error is denoted as [rr,i(ts,0), vr,i(ts,0)]. In the second
step, a high-precision numerical propagation of the reference and true orbits is carried
out to obtain orbital data for three months. In the third step, the orbital data obtained
in the previous step is converted into osculating orbital elements. In the fourth step, the
osculating relative orbital elements are calculated by Equation (3). Finally, the mean relative
orbital elements and the mean orbital elements of the reference orbit through the moving
average filter defined in Section 2.4 are denoted as δαc,i,m(ts,0 : ts, f ) and αc,i,m(ts,0 : ts, f ).

The results of the mean states obtained by the moving average filter are shown in
Figure 8. As demonstrated, the blue curves denote the osculating states and the red curves
represent the mean states, which shows visually that the use of the filtering algorithm
works well in removing short-term effects for both the absolute and relative orbital param-
eters. Furthermore, it can be deduced that if osculating ROE is used for control, excess
control effort will be wasted to counter temporary effects, wasting fuel and reducing
mission lifetime.

Furthermore, by projecting the motion of the physical spacecraft onto the RTN coordi-
nate system of the reference point, the divergence of each virtual formation configuration
can be obtained, as shown in Figure 9. In subfigure (a), it can be seen that the dispersion
of the virtual formation is mainly in the tangential direction and no satellite exceeds the
maximum permissible boundary of 116.16 km (calculated by Equation (2)) during the
whole mission period. The divergence of each physical spacecraft with respect to the
virtual reference point can be seen in subfigure (b), with maximum offsets of 108.02 km,
90.65 km, and 57.98 km for the three satellites, respectively. Judging from the dispersion,
satellites 1 and 2 are close to the maximum allowable boundary of the virtual formation, so
the formation reconfiguration control needs to be implemented as soon as possible after
the end of the scientific observation mission.

Finally, the average relative orbital elements and the average absolute orbital elements
of the reference orbit at the end of the scientific exploration phase are recorded as shown in
Tables 4 and 5, which are used as initial values for the formation reconfiguration control.

4.2. Validation of Linear Relative Dynamics Models

The relative dynamics model used in this paper has not yet been applied to a 100,000 km
geocentric orbit, so its applicability and performance need to be discussed. It is accom-
plished by comparing the output of the linear model with the numerical results.

Assuming no drag-free control during the maintenance phase, in this case, the physical
satellite is mainly affected by J2, SRP, and T3rdb perturbations, while the virtual reference
point is only affected by conservative forces such as J2 and T3rdb since it has no physical
entity. The Sc1 data in Tables 4 and 5 were selected as initial values for the simulation, and
simulation results are shown in Figure 10.
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(a) Relative position of the satellite in the RTN coordinate system of the virtual reference point (for the
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Table 4. Initial mean relative orbit elements in the formation control stage (In the Earth J2000 ECI
frame) at the epoch 22 August, 2034 12:00:00 UTC.

aδa (m) aδλ (m) aδex (m) aδey (m) aδix (m) aδiy (m)

Sc1 463.040013 −109.045018 × 103 229.276224 463.022508 198.974764 237.667251
Sc2 −382.492916 91.458799 × 103 391.707168 1.872138 319.425055 −51.944995
Sc3 243.597393 −58.381609 × 103 −122.665065 −276.252985 −36.235340 105.330778

Table 5. Initial mean orbit elements of virtual reference points in the formation control stage (In the
Earth J2000 ECI frame) at the epoch 22 August, 2034 12:00:00 UTC.

a (km) u (rad) ex ey i (rad) Ω (rad)

Sc1 100,002.493442 2.487123 2.952623 × 10−4 −8.979140 × 10−4 1.298356 3.694982
Sc2 99,998.851263 4.581601 3.767485 × 10−4 4.5754951 × 10−5 1.298381 3.694975
Sc3 99,999.388761 0.392801 2.1307589 × 10−4 2.040820 × 10−4 1.298378 3.694990

In the figure, the black line indicates the results obtained by numerical methods, the
red line is the result of the linear model used in this paper, the cyan line is the result of
the nonlinear model [38], and the blue line is the result of the Keplerian model; the three
subplots from top to bottom indicate the curves of the relative orbital elements, the absolute
error curve of each model with respect to the numerical results, and the relative error curve
of each model with respect to the numerical results, respectively. The comparison with the
Keplerian model shows that the two-body assumption does not accurately describe the
orbital dynamics at 105 km (mainly reflected in ex and ey) and the perturbation effects are
not negligible. The comparison with the nonlinear model shows that the two have almost
comparable accuracy (the maximum error is less than 3 m in 92 days), which indicates
that the simplification operations carried out by the linear model are valid. Furthermore,
a comparison with the numerical results provides an assessment of the accuracy of the
model. The statistics in Table 6 show that the maximum absolute error of the linear model
is only in the order of a hundred meters over a 30-day period, and the relative errors are
less than 7%; even at 60- and 90-day periods, the model still has a high level of accuracy.
The largest error term occurs at δex, which is primarily due to the unmodeled terms (e.g.,
eclipses effects, planetary gravity, or higher-order geopotential terms), and the error can



Sensors 2023, 23, 3154 19 of 35

be reduced by updating the orbital elements of the reference spacecraft and the physical
spacecraft within a certain time interval.
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Table 6. Error statistics for the linear model.

aδa aδλ aδex aδey aδix aδiy
Time

(d)
εmax
(m)

σεmax
(%)

εmax
(m)

σεmax
(%)

εmax
(m)

σεmax
(%)

εmax
(m)

σεmax
(%)

εmax
(m)

σεmax
(%)

εmax
(m) σεmax(%)

10 9.220 2.093 41.515 0.035 7.166 2.565 50.262 6.325 8.726 4.463 7.552 3.134
30 10.061 2.289 151.846 0.102 18.280 4.253 116.797 6.990 8.726 4.463 7.552 3.134
60 18.185 4.215 253.463 0.139 111.762 12.418 184.143 7.018 13.955 7.354 7.552 3.134
90 22.935 5.375 470.805 0.217 293.552 19.318 228.539 7.018 14.045 7.354 12.624 5.539

In summary, the linear model is an advantageous choice for the study of 100,000 km
formation dynamics.

4.3. Performance Evaluation of Improved Particle Swarm Optimization Algorithms

To evaluate the performance of the improved particle swarm optimization algorithm in
the paper, 20 repeated experiments were carried out with the same initial values and settings.

Assuming that the amplitudes of the three axes of the thruster were [400, 400, 200]
µN, six in-plane maneuvers and four out-of-plane maneuvers were performed during
the whole control process, and the given mission time was 14 days, the desired relative
orbital elements are [0,0,0,0,0,0]T m. The parameter settings of the algorithm include: the
population scale was 1000, maximum iterations were 800; the inertia factor W decreased
from 0.9 to 0.4, the self-learning factor C1 decreased from 1.5 to 0.5, the group learning
factor C2 increased from 0.5 to 1.5, random mutation probability factor φc was set to 0.85,
and ς was set to 35; the tolerances for dynamics constraints were [1,1,1,1,1,1]T m, and the
penalty factor was set as in Equation (31). The traditional particle swarm algorithm uses
the same basic setup.

V(Sn(x)) =


0 Sn(x) < 0.01
2 0.01 ≤ Sn(x) < 0.05
5 0.05 ≤ Sn(x) < 0.2

10 0.2 ≤ Sn(x) < 0.5
100 0.5 ≤ Sn(x) < 1

(31)

In the experimental test of the algorithm, the terminal error, maneuver cost, and
convergence rate of each experiment are recorded and shown in the form of a box plot,
as shown in Figure 11. A box plot is used to observe the overall distribution of the data,
which is a type of chart that displays the summary of a set of statistical values with a five
number summary “minimum”, first quartile (Q1), median (Q2), third quartile (Q3), and
“maximum”. The “box” part of the box plot represents the interquartile range (IQR), which
is the range of the middle 50% of the data, and the “whiskers” represent the minimum
and maximum values, excluding outliers. The median is shown as a line inside the box
and some points outside the box are anomalies. Subplot (a) shows the total errors between
the terminal and desired values of the six parameters, subplot (b) shows the total cost of
maneuvers during the control process, and subplot (c) shows the time consumption of
the whole convergence process; the above three indicators are commonly used to describe
algorithm performance.

As illustrated in subplots (a) and (b), the box representing the traditional PSO is rather
long and has a high number of outliers, which indicates that traditional PSO algorithms
have poor convergence and high volatility. In contrast, all boxes corresponding to the
improved particle swarm algorithm are narrow and have smaller values, proving that
the improved algorithm performs better and the solutions obtained are more credible. It
should be noted that the advantage of subgraph (c) is not as obvious as that of subgraphs
(a) and (b), mainly because the convergence rate is mainly dominated by the properties of
the objective function when the solved problem is too complex.

Overall, our proposed improved PSO algorithm outperforms the traditional PSO in
terms of both convergence precision and convergence rate.
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4.4. Fuel-Minimum Reconfiguration Maneuver Planning via IPSO

Assuming that the amplitude of the three axes of the thruster is [400, 400, 200] µN, six
in-plane maneuvers, and four out-of-plane maneuvers are performed during the whole
reconfiguration process, the given mission time is 14 days, the desired relative orbital
elements are [0,0,0,0,0,0]T m, and the tolerances of the six relative orbital elements are
[1,1,1,1,1,1]T m. In addition, set [3.1, 3.5] d, [11.5, 11.9] d as the maintenance phase of the
instruments, during which the satellites are not available for formation control.

Firstly, as a comparison term to the strategy proposed in this paper, the near-Earth
formation reconstruction strategy of the literature [23] is directly transposed to the space
gravitational wave mission, without discretization of the mission space and without nor-
malization of the optimization variables. Simulation results are shown in Figures 12–14,
where subplot (a) is the optimized maneuver sequence, subplot (b) is the curves of the
relative orbital elements throughout the control process, subplot (c) is the relative trajectory
in the RTN coordinate system of the virtual reference spacecraft, and subplot (d) is the
relative position and relative velocity curve in the virtual reference spacecraft RTN coordi-
nate system. Subplots (c) and (d) are transformed by substituting the relative orbit element
data into Equation (5), whose end states reflect the accuracy of the spacecraft tracking the
reference trajectory.

The results for virtual formation 1 are shown in Figure 12. For in-plane motion, the
maneuvers’ times are [2.951, 6.914, 9.532, 12.824, 13.224, 13.478, 13.628, 13.912, 13.951,
13.978, 13.989, 13.997] d, the maneuvers’ magnitudes along the R-axis are [161.368, 118.499,
155.670, 150.948, 4.266, −48.326] µN, and the maneuvers’ magnitudes along the T-axis are
[−131.078, 159.712,−63.487,−22.802,−322.770,−198.324] µN. For out-of-plane motion, the
maneuvers’ times are [9.073, 12.946, 13.414, 13.831, 13.831, 13.920, 13.964, 13.966] d, and the
magnitudes of the maneuvers along the N-axis are [7.101, −78.100, −34.080, −89.897] µN.
Correspondingly, the total maneuvers’ cost is 0.3895 m/s, and the relative orbital elements
converge to [0.981, −0.508, −0.671, −0.984, −0.999, 0.996]. The terminal relative position
error is [2.008,−1.725,−1.064] m, and the terminal relative velocity error is [−0.667,−3.390,
1.024] mm/s.

The results for virtual formation 2 are shown in Figure 13. For in-plane motion, the
maneuvers’ times are [4.082, 8.504, 10.492, 13.548, 13.847, 13.922, 13.970, 13.987, 13.993,
13.996, 13.999, 13.999] d, the maneuvers’ magnitudes along the R-axis are [54.630, −45.172,
163.718, 114.186, 16.520, 65.087] µN, and the maneuvers’ magnitudes along the T-axis
are [90.019, −126.130, 128.242, 78.819, −399.198, −36.733] µN. For out-of-plane motion,
the maneuvers’ times are [5.900, 10.913, 12.594, 13.018, 13.255, 13.466, 13.616, 13.891] d,
and the magnitudes of the maneuvers along the N-axis are [0, 5.697, 36.544, 120.304] µN.
Correspondingly, the total maneuvers’ cost is 0.2130 m/s, and the relative orbital elements
converge to [0.977, −0.830, 0.995, −0.973, 0.990, −0.980]. The terminal relative position
error is [1.441,−3.454,−1.315] m, and the terminal relative velocity error is [−1.459,−2.647,
0.506] mm/s.
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The results for virtual formation 3 are shown in Figure 14. For in-plane motion, the
maneuvers’ times are [1.544, 3.564, 12.564, 13.365, 13.810, 13.891, 13.976, 13.982, 13.988, 13.988,
13.992, 14] d, the maneuvers’ magnitudes along the R-axis are [−104.884, −91.683, −184.478,
167.947, 141.187, 160.740] µN, and the maneuvers’ magnitudes along the T-axis are [−65.187,
146.413, −1.056, 158.838, −400.000, −67.483] µN. For out-of-plane motion, the maneuvers’
times are [13.628, 13.694, 13.880, 13.970, 13.990, 13.993, 13.994, 13.997] d, and the magnitudes of
the maneuvers along the N-axis are [200.000, 1.824, −15.123, −45.862] µN. Correspondingly,
the total maneuvers’ cost is 0.0979 m/s, and the relative orbital elements converge to [0.964,
−0.278, 0.705, 0.472, 0.879, 0.0979]. The terminal relative position error is [−0.641, −1.847,
−1.268] m, and the terminal relative velocity error is [−0.867, −0.847, 2.290] mm/s.

Secondly, applying the method proposed in Section 3.1 to the discrete entire task
interval, each subinterval of the in-plane is [0, 3.10] d, [3.50, 4.67] d, [4.67, 7.00] d, [7.00,
9.33] d, [9.33, 11.50] d, [11.90, 14] d; each subinterval of the out-of-plane is [0, 3.10] d, [3.50,
7.00] d, [7.0, 11.50] d, [11.90, 14.00] d, and only one maneuver is allowed in each interval.
Figures 15–17 demonstrate the simulation results.

The results for virtual formation 1 are shown in Figure 16. For in-plane motion, the
maneuvers’ times are [1.037, 1.665, 4.494, 4.589, 5.977, 6.743, 7.931, 8.596, 11.246, 11.452,
12.414, 13.400] d, the maneuvers’ magnitudes along the R-axis are [−48.437, −81.167,
−102.014, 68.190, 30.341, 400.000] µN, and the maneuvers’ magnitudes along the T-axis
are [−352.682, −63.399, −93.112, 41.924, 131.971, 220.195] µN. For out-of-plane motion,
the maneuvers’ times are [2.409, 3.047, 7.000, 7.000, 7.972, 7.972, 12.081, 12.081] d, and the
magnitudes of the maneuvers along the N-axis are [−57.567, 6.132, −4.178, −16.619] µN.
Correspondingly, the total maneuvers’ cost is 0.2023 m/s, and the relative orbital elements
converge to [−0.383, −0.920, −0.954, −0.909, 0.999, 0.998] m. The terminal relative position
error is [0.588, −2.702, 0.931] m, and the terminal relative velocity error is [−0.985, −1.512,
1.176] mm/s.

The results for virtual formation 2 are shown in Figure 17. For in-plane motion, the
maneuvers’ times are [1.507, 2.011, 3.568, 4.056, 5.732, 6.167, 8.091, 8.804, 10.925, 10.925,
12.056, 13.040] d, the maneuvers’ magnitudes along the R-axis are [−104.884, −91.683,
−184.478, 167.947, 141.187, 160.740] µN, and the maneuvers’ magnitudes along the T-axis
are [400.000, 15.861, −140.128, 188.800, −141.672, −265.133] µN. For out-of-plane motion,
the maneuvers’ times are [2.499, 2.747, 6.241, 6.242, 9.016, 9.450, 12.196, 12.541] d, and the
magnitudes of the maneuvers along the N-axis are [155.973, −211.180, −9.594, −7.557] µN.
Correspondingly, the total maneuvers’ cost is 0.1806 m/s, and the relative orbital elements
converge to [−0.997, 0.328, 0.999, −0.733, 0.970, 0.935]. The terminal relative position
error is [−0.423, −1.868, 0.411] m, and the terminal relative velocity error is [−1.214, 0.385,
−1.418] mm/s.

The results for virtual formation 3 are shown in Figure 17. For in-plane motion, the
maneuvers’ times are [1.229, 1.929, 3.581, 4.125, 5.847, 6.241, 8.469, 6.241, 8.469, 9.077, 11.091,
11.290, 12.661, 13.246] d, the maneuvers’ magnitudes along the R-axis are [−39.302, 58.738,
180.544, −1.430, −17.756, 130.166] µN, and the maneuvers’ magnitudes along the T-axis
are [−199.369, −50.448, −76.154, 110.663, 55.742, 141.606] µN. For out-of-plane motion,
the maneuvers’ times are [1.585, 2.390, 5.554, 6.074, 8.988, 9.892, 12.915, 13.096] d, and the
magnitudes of the maneuvers along the N-axis are [−49.114, 18.886, 44.440, −18.813] µN.
Correspondingly, the total maneuvers’ cost is 0.1100 m/s, and the relative orbital elements
converge to [0.768, −0.622, 0.349, 1.000, −0.995, −0.435]. The terminal relative position
error is [1.036, −2.671, 0.916] m, and the terminal relative velocity error is [−1.133, −1.865,
−0.646] mm/s.
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Comparing the results of the two approaches, it can be seen that both methods can
obtain maneuver solutions that satisfy the dynamical constraints; however, there are
some differences in the maneuver cost and maneuver distribution. Firstly, in terms of the
maneuver cost, theoretically analyzed, the conventional method does not constrain the
complete solution space and is supposed to obtain a relatively better solution, but from the
actual results, the delta-v consumptions of the three satellites obtained by the two methods
are [0.3895, 0.2130, 0.0979] m/s and [0.2030, 0.1806, 0.1100] m/s, respectively. The proposed
method performs better instead. This phenomenon may be caused by two reasons: one
because the algorithm easily falls into local optimum due to a large number of variables
and complex constraints of the problem under study; another is that the conventional
method does not normalize the variables, which is not beneficial to the convergence of the
solution. Second, in terms of the distribution of maneuver profiles, the maneuver profiles
obtained using the conventional method tend to impose two maneuvers of longer duration
followed by a series of short-duration maneuvers for quick adjustment in the final stage. In
contrast, the maneuver solutions obtained by the method proposed in this paper are more
uniform regarding the location and duration of each maneuver due to the discretization of
the mission time. Finally, in terms of accuracy, both methods have comparable accuracy,
and the maximum relative position error is no more than 4 m and the maximum relative
velocity error is no more than 4 mm/s. It should be noted that some factors in the paper
(e.g., random variation probability, inertia factor, learning factor, penalty factor, etc.) are set
empirically, which will affect the performance of the algorithm to some extent; in addition,
the discretization method of the whole task interval will also affect the acquisition of the
optimal solution.

To verify the universality of the proposed method, Tables 7 and 8 are obtained by
applying the method to different thruster schemes and different given mission times. In
different thruster schemes, the mission time is limited to 14 d; in different given mission
time schemes, the thruster amplitude is given as [400, 400, 200] µN. The simulation results
show that the proposed method is well-suited and flexible enough to meet the possible
formation reconfiguration requirements in space gravitational wave missions. In addition,
the data in Table 7 show that the total delta-v does not present a clear regularity as the
thruster amplitude changes. The data in Table 8 show that the total delta-v generally tends
to decrease and then increases with the gradual increase in the given mission time, which
is because part of the offset of δλ can be corrected by the natural dynamics established by
δa, the divergence dominating again with the prolongation of the task time. It should be
noted that the above analysis is limited to the phenomenon presented in this study and
cannot be taken as a general rule.

Table 7. Maneuver consumption for different thruster schemes.

Thrust Magnitude
(µN)

Formation 1 Formation 2 Formation 3

εtol (m) ∆V (m/s) εtol (m) ∆V (m/s) εtol (m) ∆V (m/s)

[100,100,100] 5.3416 0.1913 4.9592 0.1449 4.3922 0.1125
[200,200,100] 4.5372 0.1828 4.3195 0.1570 5.4405 0.0976
[200,200,200] 4.4133 0.2115 4.8920 0.1740 3.2860 0.1069
[400,400,100] 4.7147 0.2182 5.2438 0.1457 3.6645 0.1258
[400,400,200] 5.1630 0.2023 4.9620 0.1806 4.1690 0.1100
[400,400,400] 3.7862 0.2319 5.6897 0.1692 5.8692 0.0863
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Table 8. Maneuver consumption for different task periods.

Task Period
(d)

Formation 1 Formation 2 Formation 3

εtol (m) ∆V (m/s) εtol (m) ∆V (m/s) εtol (m) ∆V (m/s)

5 4.4205 0.4604 5.9173 0.4340 5.4229 0.2214
8 4.7063 0.2963 3.9127 0.2480 3.3193 0.1388
14 5.1630 0.2023 4.9620 0.1806 4.1690 0.1100
20 4.9569 0.1786 5.7545 0.1612 4.5672 0.0876
26 5.7286 0.1620 5.3368 0.1654 5.6815 0.1035
32 3.5114 0.2261 3.9431 0.1785 5.9684 0.0923

5. Conclusions

This paper addressed the design of the fuel-minimum maneuvering strategy for the
formation reconfiguration in the high earth orbit (105 km). In this study, a control strategy
utilizing virtual formation is employed to address the issue of measurement-limited forma-
tion. The relative motion of real satellites relative to a virtual reference point is described
by a linear dynamic model, which encompasses J2, SRP, and the third-body gravitational
effects of the Sun and Moon. A piecewise continuous control strategy is chosen and the
entire mission interval is discretized in the reconfiguration process to avoid persistent or
high-frequency orbital maneuver disturbances to the satellite platform. The minimum fuel
reconfiguration problem is transformed into a constrained nonlinear optimization problem,
and an improved particle swarm algorithm is proposed for maneuver planning solutions.

Simulation results indicate that the improved particle swarm optimization algorithm
has better stability and superior global search capability, and the proposed reconfiguration
control strategy can flexibly respond to different complex scenarios during gravitational
wave missions with less interference to the satellite platform. In addition, the maximum
relative position error is only 3.454 m and the maximum relative velocity error is only
3.390 mm/s, which can satisfy the precision requirements of space gravitational wave
formation maintenance and reconfiguration.

Future work will include developing more efficient optimization algorithms, and
improving the dynamical models used to derive multi-objective optimization strategies, as
well as extending the continuous scheme to orbits of arbitrary eccentricity and to various
space missions.
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Nomenclature

Sci, Sri Virtual reference spacecraft and physical spacecraft
Lij Arm length between spacecraft Sri and Srj
Ai Breathing angle corresponding to spacecraft Sri
∆r Envelope radius of the virtual formation
∆L Arm length variation index
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∆A Breathing angle variation index
L0, Lmin, Lmax Nominal, minimum, maximum arm length, respectively
A0, Amin, Amax Nominal, minimum, maximum breathing angle, respectively
α Classical Keplerian orbital elements
δα Quasi-nonsingular relative orbital elements
u Mean argument of latitude
ϕ Relative argument of the apogee angle
θ Relative ascending node
δx Relative position and velocity
Wc Mean motion of the reference orbit
Akep, AJ2 , Asrp, A3rdb Plant matrix of Kepler, J2, SRP, and lunisolar third-body
B Control input matrix
ur, ut, un Control acceleration component
Bsrp Ballistic coefficient
RE Earth radius
Psun Solar flux at 1 AU from the Sun
c Light speed
Cr Reflectivity coefficient
Asrp Cross-sectional area perpendicular to the Sun’s direction
m Satellite mass
ε Ecliptic obliquity
α Inclination of the lunar orbit to the ecliptic
λs Mean ecliptic longitude of the Sun
λm Mean longitude of the Moon
J Total maneuver cost
F(x) Generalized objective function
h Penalty factor
ic Current generation
P(x) Penalty term of the constraint
c1, c2, . . . ci Penalty values
q1, q2, . . . qi−1 Tolerances
W Inertia coefficient
C1 Self-learning factor
C2 Group learning factor
dim Dimension of the optimization variable
x, Position and velocity of the particle
pbest Optimal solution of the particle itself
gbest Global optimal solution
ς Empirical parameter
rd Random number distributed between 0 and 1
φc Mutation probability
t Maneuver time
F Maneuver magnitude
τ and ξ Normalized variables
δαdes Desired relative state
∆d Dynamics constraint tolerance
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