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Abstract: The inspection of railway fasteners to assess their clamping force can be used to evaluate
the looseness of the fasteners and improve railway safety. Although there are various methods for
inspecting railway fasteners, there is still a need for non-contact, fast inspection without installing
additional devices on fasteners. In this study, a system that uses digital fringe projection technology
to measure the 3D topography of the fastener was developed. This system inspects the looseness
through a series of algorithms, including point cloud denoising, coarse registration based on fast
point feature histograms (FPFH) features, fine registration based on the iterative closest point (ICP)
algorithm, specific region selection, kernel density estimation, and ridge regression. Unlike the
previous inspection technology, which can only measure the geometric parameters of fasteners
to characterize the tightness, this system can directly estimate the tightening torque and the bolt
clamping force. Experiments on WJ-8 fasteners showed a root mean square error of 9.272 N·m and
1.94 kN for the tightening torque and clamping force, demonstrating that the system is sufficiently
precise to replace manual measurement and can substantially improve inspection efficiency while
evaluating railway fastener looseness.

Keywords: fastener looseness detection; non-contact methods; point cloud processing; kernel density
estimation; rail fastener, railway safety inspection; ridge regression

1. Introduction

A rail fastener connects the rail to a sleeper and plays an important role in maintaining
rail stability and railway safety. However, it may come loose because of environmental
interference during installation or the high-frequency impacts and vibration as a long-term
effect of high-speed trains, thus affecting the stability of the railway. Common failures of
elastic railway clips include spring bar breakage and loose or missing fastening bolts [1].
The railway industry has continued developing each year, as evidenced by increases in the
number of routes and higher mileage. Thus, there is an increasing demand for automated
batch inspection to assess large numbers of railway fasteners for loosening. Simultaneously,
in the overhead system [2] and the railroad bridge [3], measurement of clamping forces is
necessary for a variety of infrastructure in railway engineering. At present, such inspection
is performed mainly by using (1) vibration signal analysis, (2) image acquisition and
recognition analysis, or (3) optical scanning to create a three-dimensional topography and
apply feature recognition techniques.

Wei et al. [4] proposed a vibration signal analysis method, using an automatic remote
sensing measurement system to detect the state of rail fasteners through wavelet analysis on
acceleration signals. However, this method is not suitable for batch inspection of fasteners
because it requires prior sensor installation.

For the method of image acquisition and recognition analysis, non-contact detection
can be carried out by using this method, to avoid the time and economic cost caused by the
installation of many sensors. Gibert et al. [5] proposed an analysis model that combines
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a histogram of oriented gradient features with a linear support vector machine (SVM)
classifier; it can detect whether fasteners are absent or defective, with a detection probability
of 98% and a false-alarm rate of 1.23%. Bai et al. [6] proposed an improved classification
model based on the faster region-based convolutional neural network (Faster R-CNN)
combined with support vector data description (SVDD). This algorithm can detect whether
fasteners are complete, broken, or missing. At the same time, it can also check whether the
fastener is installed at a deflection angle. Dong et al. [7] customized and improved the
R-CNN network, using a lightweight backbone network to replace the complex network
and incorporating a mixed loss function to solve the small-sample problem of fastener
status inspection. Wang et al. [8] used the improved ResNet deep network, which is based
on spatial pyramid pooling (SPP), to inspect fastener status. In their study, in order to
overcome the imbalance in the number of samples of different types of fasteners, virtual
image technology was used to simulate the defect state of fasteners, thus expanding the
data set and increasing the accuracy rate of state recognition by 2.4%. The above visual
methods all use machine learning methods to detect fasteners, which can effectively detect
obvious missing and broken fasteners, but cannot detect complete fasteners in a loose state.
To address this looseness detection problem, Pan et al. [9] proposed a vision-based bolt
looseness detection system with the Internet of Things (IoT).The system realized high-
precision bolt angle change detection by visual decoding of a special bar code marker,
and the detection accuracy of the system could reach 0.1◦. However, additional equipment
still needed to be installed to carry out the test. Wang et al. [10] designed a method that
can obtain bolt images at any position around the bolt and conduct loosening detection.
The method includes perspective transformation of the original image, recognition of
numbers by convolutional neural network to locate bolts, and detection of bolt rotation
angle by Hough transform. However, this method also has some shortcomings. It can only
detect the angle change of a single circle, and it also needs to manually engrave the number
on the bolt to realize positioning.

In the third type of method, optical scanning is used to create a three-dimensional
topography, and then feature recognition is performed. Mao et al. [1] used a commercial
structured-light sensor to obtain the point cloud of the fastener and then used a decision
tree to classify the fastener’s defects. At the same time, the centerline of the fastener’s spring
bar was extracted and used to evaluate the looseness of the fastener. Dai et al. [11] obtained
three-dimensional topography of railway fasteners by linear laser scanning and then used
the height gradient oriented histogram and two classifiers to detect defective fasteners.
Cui et al. [12] proposed a coupler geometric parameter measurement system based on a
two-dimensional laser profiler, which can measure various geometric parameters of the
coupler in real time and with high precision; the root mean square error of measurement
is 0.3 mm. Zhan et al. [13] developed a railway detection system using a laser, which
was based on RailNet (an efficient convolutional neural network) to identify defective
fastenings. All these methods use line laser scanning to obtain the 3D topography of the
fastener. However, although the line laser is highly accurate, the scanning speed is slow.
In contrast, binocular vision methods are much faster. Thus, Sun et al. [14] proposed a fast
inspection method based on binocular vision, which can detect the loosening of key bolt
components in railway systems and evaluate whether bolts are loose by calculating the
distance between bolt caps and mounting surfaces. However, the binocular vision method
has relatively high requirements on the shooting objects. In this study, Sun et al. proposed
that the test method can only be used for bolts with a clean surface, and it is not suitable
for the relatively complex shape of the spring bar fastener [14].

In summary, for the loosening detection of railway fasteners, a method is still needed
that can not only quickly carry out non-contact scanning and detection, but also avoid the
above binocular vision problems without installing additional devices on the fasteners.
In this paper, the 3D reconstruction technology of digital fringe projection is proposed to
detect the looseness of railway fasteners. This method is a non-contact optical scanning
method [15], which can obtain high precision 3D topography quickly by shooting several
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projection images and processing the algorithm [16]. Compared with the traditional image
method, this method is more suitable for the detection of the railway fastener, which is
a complex shape that is not easy to distinguish. Moreover, the geometric information
obtained by three-dimensional scanning is more comprehensive and not limited to the
features of a certain visual angle. The shooting angle requirement is much lower than
the image method, which is more robust in the actual detection process. At the same
time, the above looseness detection methods are limited to measuring only the geometric
parameters and relative positions of bolts and nuts at present [1,5,11,13], while in the actual
evaluation of the tightness of railway fasteners, the tightening torque and buckle pressure
of bolts are measured [17,18]. In this paper, based on the three-dimensional topography of
railway fasteners obtained by scanning, a clamping force estimation algorithm is designed.
The algorithm can effectively predict the fastening pressure and tightening torque of railway
fasteners and estimate the loosening situation of railway fasteners.

The rest of this paper is organized as follows: Section 2 introduce the overall design
structure of the system. Section 3 introduces the 3D reconstruction system constructed
in this paper and the principle of railway fastener clamping force estimation algorithm.
Section 4 evaluates the 3D reconstruction system and gives the overall experimental process
of buckle pressure prediction and related results analysis. The conclusions are drawn in
Section 5.

2. System Overview

Based on the 3D measurement technology of digital fringe projection, the railway
fastener pressure prediction system is designed as shown in Figure 1. The system includes
a projector, a camera, and a gimbal to hold them. In this system, the internal and external
parameters of the projector and camera are calibrated in advance, and then the phase shift
and gray stripes are projected to the railway couplers through the projector on the left of the
figure. Then, the system unwraps the phase after capturing the phase-shift pattern by the
camera and obtains the phase order by decoding the Gray code pattern. A reconstruction
algorithm based on trigonometry is used to obtain the three-dimensional morphology of
railway fasteners from the global phase.

 3D reconstruction system based on digital fringe projection

Projecting phase-shifting  Gray 

code fringes and take photos
Projector Camera

Decoding and getting global phase

 in horizontal directions

Reconstructing point cloud 

based on triangulation method

System calibration

3D reconstruction system

Tripod

Figure 1. Structured-light reconstruction system.

Next, the system in Figure 2 preprocesses the point cloud through point cloud denois-
ing, point cloud coarse registration based on fast point feature histograms (FPFH) features
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of the point cloud, iterative closest point (ICP) fine registration, and the selection of specific
areas of the point cloud so that the point cloud always maintains the same position and
attitude before comparison and only processes the spring bar part of the fastener. Then,
the system makes a horizontal comparison between the model and the point clouds in
different clamping states and estimates the probability distribution within a certain interval
by kernel density estimation. Finally, through the established ridge regression model,
the actual clamping force is estimated.

In recent years, four types of fasteners have generally been used in China’s high-speed
rail: WJ-7, WJ-8, W300-1, and SFC [1]. WJ-8 was used as the experimental and test fastener
in this study.

Point cloud preprocessing Clamping Force Estimation

Point cloud denoising based on 

Statistical Outlier Removal

Coarse registration based on 

FPFH features

ICP fine registration

Point cloud comparison 

with fasteners at different 

clamping forces

Region of interest selection

for point clouds

Kernel Density Estimation for 

comparison distances

Ridge regression

  of fastener clamping force

Figure 2. Clamping force estimation algorithm.

3. Methodology
3.1. Structured-Light Reconstruction System

In the 3D reconstruction system, the fringe image is projected by the projector. When
the fringe pattern is projected on the railway fastener, the deformed pattern, which carries
the height information for the fastener, will be captured by the camera. Then, by means of
triangulation, the point cloud map of the 3D topography of the fastener can be obtained in
the world coordinate system.

In this system, the projected fringe images include four 90◦ phase-shift sinusoidal
fringe patterns, four Gray code patterns, one fully bright pattern, and one fully dark
pattern. The method uses the Gray code auxiliary phase-shifting technology to avoid the
discrete characteristics that occur when only Gray code projection is used, in order to
improve the resolution of the 3D reconstruction system [19,20]. In contrast to the traditional
line laser scanning method [13], this method only needs a few images to obtain the 3D
topography of the entire fastener, which makes it faster. Moreover, compared with the 2D
image photography and recognition method, it is stereoscopic and can obtain more subtle
differences for each fastener. It is not limited to obvious states such as missing fasteners or
damaged spring bars [5–7].

For Step N, the light intensity of the projection of the phase-shifting pattern can be
described as [21]:

In(x, y) = A(x, y) + B(x, y) cos
[

φ(x, y) +
2π(n− 1)

N

]
(1)

where n = 1, 2, . . . , N is the index of the phase-shifting pattern, A(x, y) denotes the back-
ground light intensity, and B(x, y) is the light intensity modulation. φ(x, y) is the truncated
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phase with height information, which can be calculated using the deformed fringes obtained
by projecting these N frames onto the object:

φ(x, y) = tan−1

[
∑N

n=1 In(x, y) sin
( 2πn

N
)

∑N
n=1 In(x, y) cos

( 2πn
N
)] (2)

Owing to the operation of the arctangent function, this phase is periodically distributed.
Therefore, the auxiliary projection Gray code can be used to obtain the level k where the
phase is located and thus to acquire the global phase Φ(x, y):

Φ(x, y) = φ(x, y) + 2πk(x, y) (3)

In the process of Gray code decoding, it is necessary to determine whether the current
fringe is in a dark fringe or a bright fringe. Here, the approaches of Moreno and Taubin [22]
and Nayar et al. [23] are adopted, and the direct and global light components formed
during the projection are considered to reduce the interference caused by diffuse reflection
from objects in ambient light.

After the global phase map is obtained, the method described by Feng et al. [24] can
be used to calibrate and perform 3D reconstruction for the camera-projector system. With-
out considering the distortion of the camera and projector, let the coordinates of a point P on
the railway fastener in the world coordinate system Ow − XwYwZw be Pw = (xw, yw, zw)T .
Therefore, the transformation of point P from the world coordinate system to the pixel plane
coordinate system Oc − XcYc of the camera can be described by the following equation:

sc

 xc
yc
1

 = Kc[Rc | tc]


xw
yw
zw
1

 (4)

where sc is a scalar factor; xc and yc are pixel coordinates in the horizontal and vertical
directions, respectively; Rc is the rotation matrix in the camera pixel coordinate system and
the projector pixel coordinate system; tc is the translation vector; and Kc is the internal pa-
rameter matrix, describing the transformation of the projection from the camera coordinate
system to the pixel plane coordinate system Oc − XcYc. As the external parameter matrix,
[Rc | tc] accomplishes the transformation from the world coordinate system to the camera
coordinate system.

Similarly, the projector can be used as a camera with a reverse optical path, and thus
an analogous model can be constructed in the same way:

sp

 xp
yp
1

 = Kp
[
Rp | tp

]
xw
yw
zw
1

 (5)

Let Ac = Kc[Rc | tc], Ap = Kp[Rp | tp]. Before the 3D reconstruction, internal and
external parameters can be obtained through the checkerboard calibration method [24]
to obtain the specific values of these matrices. Let Aij

c denote the element of the ith row
and jth column of Ac, and let Aij

p denote the element of the ith row and jth column of Ap.
By combining Equations (4) and (5), the 3D world coordinate point Pw can be calculated as: xw

yw
zw

 =

 A11
c − xcA31

c A12
c − xcA32

c A13
c − xcA33

c
A21

c − ycA31
c A22

c − ycA32
c A23

c − ycA33
c

A11
p − xpA31

p A12
p − xpA32

p A13
p − xpA33

p

−1 xcA34
c −A14

c
ycA34

c −A24
c

xpA34
p −A14

p

 (6)

With this equation, the global phase Φ(xc, yc) of the projection corresponding to a
pixel point (xc, yc)T acquired by the camera can be calculated through the projected fringe.
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Then, xp can be obtained by the following equation, in which W is the pixel width of the
fringe projected from the projector:

xp =
Φ(xc, yc)

2π
W (7)

The above steps can be summarized as follows. First, the system is used to generate
Gray code and sinusoidal phase-shifting fringes. The projection is performed and captured
by the camera, and from these images, the Gray code is decoded. Meanwhile, the truncated
phase φ(xc, yc) can be obtained by Equation (2), and the global phase Φ(xc, yc) can be
obtained by combining the Gray code and phase-shifting fringes (Equation (3)). Finally,
the dense 3D point cloud map of the railway fastener is obtained using Equations (6) and (7)
for subsequent point cloud processing and estimation of the clamping force.

3.2. Clamping Force Estimation Algorithm
3.2.1. Point Cloud Denoising

After the point cloud map is obtained by calculation, it is necessary to preprocess the
data to handle the noise points generated by hardware or software during the generation of
the point cloud. There are many methods to remove point cloud noise, including moving
least squares (MLS) methods, non-local methods, deep learning methods, and sparsity-
based methods [25,26]. In selecting the processing method, considerations should include
not only the denoising effects of the method but also two objectives: (1) that the amount of
calculation during processing should be kept low to facilitate batch detection operations
along the rail, and (2) that as the deformation of the railway fastener spring bar caused
by different clamping forces is quite small, the coordinates of each point should remain
unchanged to the extent possible during denoising, and outliers that could cause deviations
in the subsequent clamping force estimation should be removed. With these objectives in
mind, the statistical outlier removal algorithm [27] was adopted for the method developed
in this study. It calculates the average distance µi from each point Pi to the k adjacent points
by performing neighborhood statistics on each point. It then calculates the mean µall and
standard deviation σall of the average distance of all points. If the mean distance µi of a
point Pi is outside the range µall ± ασall , the point is considered an outlier and is removed.
Here, k and α are parameters that can be set by the user. After selection and observation
of different parameters, the values chosen in this study were k = 100, α = 0.5. In this
way, the spatial noise points caused by external interference (such as illumination and
acquisition) are filtered out, and the point cloud is complete.

3.2.2. Point Cloud Registration and Specific Region Selection

After denoising is applied, point cloud registration is used to align the position and
attitude of the point cloud map of the railway fastener with the railway fastener itself.
This operation is done to facilitate the subsequent horizontal comparisons with the point
cloud under various clamping states. Considering the need for batch detection, it should
be noted that because there are differences between different railway fasteners, the point
cloud registration algorithm needs to be highly robust. If the common ICP algorithm is
used directly, it can easily become trapped in local convergence, leading to matching failure.
Therefore, the point cloud registration algorithm is concerned only with the consistency of
the shape of the spring bars for the various kinds of railway fasteners. In the algorithm,
a typical spring bar part of the fastener is first selected as the reference point cloud. Then,
coarse registration of the fasteners is conducted according to the FPFH features of the
fasteners, followed by fine registration using the ICP algorithm. Finally, the irrelevant
parts of the fastener point cloud are removed for the calculation of the clamping force; only
the spring bar part is retained. The ROI of the fastener is selected by rectangular region
selection. For WJ-8 fasteners, the length, width, and height of the spring bar parts are
140.7, 86.1, and 20.4 mm, respectively. In the following two sections, the coarse and fine
registration algorithms are described separately.
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1. Coarse Registration Using FPFH
In the FPFH algorithm, the estimated normals of point clouds are used to calculate
the local features of the point clouds. It is an improved version of the point feature
histograms (PFH) algorithm [28]. FPFH feature descriptors are robust under different
sampling densities. In the method described in this study, the FPFH features of the
reference point cloud and those of the point cloud to be matched are calculated, then
the method proposed by Zhou et al. [28] is used to find the matching features between
the two. After this, the coarse registration of the point cloud is conducted. For the
calculation of FPFH features, three feature values of a pair of points in the point cloud
need to be calculated. Suppose that points Pi and Pj have normals ni and nj in their
neighborhoods. Then, a local coordinate system Pi −UVW can be established on one
of the points Pi, as shown in Figure 3. Based on the positions of the normals and the
two points, three angles can be obtained, and then the eigenvalues (α, φ, θ) used by
FPFH can be obtained as:

α = V · nj, φ = U ·
Pj − Pi∥∥Pj − Pi

∥∥ , θ = tan−1( W · nj, U · nj
)

(8)

 

Figure 3. Definitions of point pair eigenvalues of points Pi and Pj.

The feature descriptor is calculated as follows.
Step 1: Solve the surface normal ni for each point Pi in the point cloud.
Step 2: Calculate the point pair feature (α, φ, θ) for each point Pi and the k adjacent
points. Place the three values in a histogram by normalizing each eigenvalue and then
apportioning them into b intervals of the same size, thereby obtaining a histogram with
b3 intervals formed by the combinations of the three sets of intervals. The histogram
generated by these k point pair features can be used as a simplified point feature
histogram (SPFH) for point Pi.
Step 3: Generate the SPFH for each of the k points adjacent to Pi.
Step 4: Generate the final FPFH descriptor of Pi based on SPFH features with different
weights:

FPFH(Pi) = SPFH(Pi) +
1
k

k

∑
j=1

(
1

wj
SPFH(Pj)

)
(9)

where the weight wj is the distance between point Pi and the adjacent points.
2. Fine Registration Using ICP Algorithm: After FPFH
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After FPFH coarse registration has been performed, the two point clouds will or
should roughly coincide; then, the iterative closest point (ICP) algorithm is applied for
fine registration. This algorithm solves a rigid body transformation R, t to minimize
the following objective functions:

min
R,t

J =
1
2

n

∑
i=1
‖Pi − RQi − t‖2 (10)

where Pi and Qi are the set of matching points in the point cloud to be registered and
the reference point cloud. The singular value decomposition (SVD) method or the
nonlinear optimization method can be used to minimize this function. Details of the
algorithm are given in the paper by Besl and McKay [29].

3.2.3. Comparisons with Multiple Reference Point Clouds

After registration of the point cloud from which the clamping force is detected and
the spring bar region selected, a horizontal comparison can be performed between this
point cloud and the point cloud under different clamping states. The reason that horizontal
comparison was adopted is that an assumption is made that under the same or similar
clamping forces, the shapes of different railway fasteners of the same model are fairly
similar. Therefore, this distances resulting from the point cloud comparison can be used to
measure the similarities between the point cloud of the fastener to be detected and the point
cloud under different clamping force conditions. Then, the clamping force for the point
cloud of the fastener can be detected. In this study, the absolute distance for each point in
the point cloud comparison was obtained by horizontal comparison. The distribution of
the absolute distances can be shown in the form of a histogram, and its distribution law
can be used to establish a mathematical model for the estimated clamping force.

There are many methods available for estimating the distance between multiple point
clouds. Methods that calculate the distance between points include Hausdorff distance
estimation, multiscale model-to-model cloud comparison (M3C2) distance estimation,
Wasserstein distance estimation, and Chamfer distance estimation [30,31]. There are also
methods that estimate distances by fitting surface models such as planes, by Delaunay tri-
angulation, or using quadratic surfaces in local regions [32]. Jafari et al. [30] used a method
combining direct point-by-point distance measurement and statistical sampling to extract
structural deformation information and quantified the strain and stress of mechanical
deformation by comparing the results. They compared the advantages and disadvantages
of Hausdorff distance estimation and M3C2 distance estimation and found that the M3C2
method produced more accurate and robust results. Urbach et al. [31] studied a new deep
learning method for measuring the distance between point clouds, called the deep point
cloud distance (DPDist), which is a significant improvement over the Chamfer distance
estimation method for comparing similar objects. Ahmad Fuad et al. [32] applied point
cloud comparison to landslide monitoring. They comprehensively evaluated Hausdorff
distance estimation and the surface model-fitting method for estimating distance in local
areas. They found that the plane-fitting method of estimating point cloud distance showed
the lowest standard deviation when used in monitoring a landslide area. Because in an
actual batch inspection work environment it is necessary to make comparisons between
multiple fasteners within a short period of time, the method used in this study adopts the
method using a local-area plane-fitting model. This is simple and accurate in statistical
terms. Compared with quadric surface fitting, Delaunay triangulation, and other methods,
it requires less computation. This method operates as follows.

Step 1: Define a neighborhood with radius rc for point Pi in the point cloud to be
compared and obtain the point set Qc = {q1, q2, . . . , qn} of the reference point cloud in
that neighborhood.

Step 2: Use the points in Qc for plane fitting. The fitting can be performed by using
principal component analysis (PCA) or the random sample consensus method (RANSAC).
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In this study, PCA was used for the overall efficiency of the algorithm. Create the covariance
matrix Gc from Qc:

Gc =
1
n

n

∑
i=1

(qi − q̄)(qi − q̄)T, q̄ =
1
n

n

∑
i=1

qi (11)

where q̄ is the centroid of the local point cloud Qc. Gc is a 3× 3 real symmetric matrix.
The Jacobi method is used to analyze the eigenvalues and eigenvectors, thus obtaining
three eigenvalues and eigenvectors of Gc. If vmin is the eigenvector corresponding to the
smallest of the three eigenvalues, then vmin is the normal vector of the fitted plane

Let the equation of the fitting plane be Ax + By + Cz = D, the normal vector obtained
be vmin = (vx, vy, vz)T , and the centroid be

q̄ = (q̄x, q̄y, q̄z)
T.

Then

A =
vx

‖vmin‖
, B =

vy

‖vmin‖
, C =

vz

‖vmin‖
, D = Aq̄x + Bq̄y + Cq̄z (12)

Step 3: Obtain the distance di between the point Pi = (xi, yi, zi)
T in the point cloud to

be compared to the fitted plane by using the following equation:

di = Axi + Byi + Czi − D. (13)

Step 4: Repeat Steps 1–3 to obtain the comparison distances for all points in the point
cloud to be compared.

3.2.4. Estimation of Point Cloud Distance Distribution

The number of distance values obtained by the comparisons between multiple fasten-
ers is enormous; therefore, it is necessary to compress the data. As the comparison distance
values display a regular distribution in the histogram, the kernel density estimation method
is used to estimate the probability distribution values in a given interval. Then, a regres-
sion analysis is carried out with the probability distribution values. The kernel density
estimation method was adopted because, being a non-parametric estimation method, it
is well suited for fitting the distribution in the histogram of the comparison distances for
fasteners under various conditions. In contrast to methods that estimate parameters by
assuming a particular type of probability distribution, this method does not require any
prior knowledge, and it has better adaptability for working with actual distributions [33,34].

The kernel density estimator uses the following formula to estimate the probability
density function of the comparison distance:

f̂h(d) =
1

nh

n

∑
i=1

K
(

d− di
h

)
(14)

where d1, d2, . . . , dn are the comparison distance values for the point cloud of a given
fastener as calculated according to the local-area plane-fitting model. This is described in
Section 3.2.3, with the number of points in the fastener point cloud that participate in the
comparison being n, the kernel function K(·), and the bandwidth of the kernel function
window h.

The existence of the kernel function requires that the following conditions be satisfied:

K(u) ≥ 0,
∫

K(u)du = 1. (15)
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For this study, the kernel function selected was the Gaussian kernel function, which is
defined as:

K(u) =
1√
2π

e−
1
2 u2

. (16)

According to kernel density estimation theory [33], the bandwidth h of the window
will affect the accuracy of the kernel density estimation. If the value of h is too large, it will
lead to an f̂h(d) curve that is too smooth and a large estimation error. If the value of h is too
small, it will lead to large fluctuations in the f̂h(d) curve. To avoid these problems, various
methods have been proposed to adaptively select windows of different sizes according to
the characteristics of the sample. This study adopted the rule-of-thumb formula commonly
used for the selection of h [35]:

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5 (17)

where σ̂ is the standard deviation of the comparison distance values for the fastener
point cloud.

3.2.5. Regression Analysis

Using the method described in the previous section, the probability density function
of the comparison distance between the fastener to be tested and the reference fastener
under different clamping states is estimated. In order to perform the regression and
estimation, additional measures are required to measure the clamping force of the fastener.
The relationship between the tightening torque and the bolt clamping force is approximately
linear [36,37] and can be described by the following formula. The formula adopted for this
study was to use a torque wrench with a torque sensor to measure the tightening torque of
the screw and then calculate the clamping force of the fastener indirectly.

F =
2T

d2
cos α µs +

Pd
π + dwµw

(18)

The tightening torque of a bolt, denoted as T, is directly related to the clamping force,
F, that the bolt produces. The middle diameter of the bolt is denoted as d2, while the flank
angle of the thread is represented by α. The friction coefficient of the thread is denoted as
µs, and the pitch of the thread is represented by Pd. Additionally, the equivalent friction
diameter of the nut support surface is denoted as dw, and the friction coefficient between
the nut and the support surface is represented by µw.

Suppose the clamping force values F1, F2, . . . , Fm of m different fasteners are obtained
using the torque wrench, and the probability density function family f̂h(d)1

j , . . . , f̂h(d)k
j

of the comparison distance between a single force value Fj and the reference fastener
in k different states is calculated. Then, a ridge regression model can be established to
predict the clamping force of the fastener to be tested. First, it is necessary to discretize the
probability density function of the kernel density estimation, which can be evaluated at
equidistant points starting from 0. That is, the following matrix can be calculated as the
input variable for a single fastener to be tested:

Xj =



f̂h(0)1
j f̂h(c)1

j · · · f̂h[(N − 1)c)
]1

j

f̂h(0)2
j f̂h(c)2

j · · · f̂h[(N − 1)c)
]2

j
...

...
. . .

...

f̂h(0)k
j f̂h(c)k

j · · · f̂h[(N − 1)c)
]k

j


(19)
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where 0, c, 2c, . . . , (N − 1)c are a series of equidistant points, and c and N are constants.
Then, Xj is transformed into a row vector: Xj(k×N) → Xj(l×kN). At this point, the obser-
vation matrix X = [X1, X2, . . . , Xm]T and the response matrix Y = [F1, F2, . . . , Fm]T can be
constructed from the m observation samples Xj(l×kN), and then the regression model can
be constructed using the two matrices.

Based on the actual calculation of characteristic roots of the matrix XTX (described in
Section 4.4), it can be seen that the observation matrix X is ill-formed and that there is severe
multicollinearity among the variables. This leads to too high a variance in the regression
parameter estimates and poor estimation stability. In this situation, ridge regression,
principal component regression, or partial least squares regression can be used to eliminate
the collinearity. In the actual prediction of the clamping force, ridge regression was applied
as the regression and prediction method because in practice it achieves a small root mean
square error (RMSE) in most cases. The main concept of the ridge regression algorithm is
that, in the presence of multicollinearity in the independent variables,

∣∣XTX
∣∣ ≈ 0, and if

a matrix kridI (where ridge parameter krid > 0) is introduced at this time, the degree to
which the matrix XTX + kridI approaches singularity will be much smaller. The regression
parameters at this time are:

b(krid)
= (XTX + krid I)−1XTY. (20)

Then, if the observed variable for a scanned fastener point cloud is obtained as Xob
using this algorithm, the final estimated clamping force will be:

ŷ = b(krid)
Xob. (21)

The choice of value for the ridge parameter krid is not unique. The ridge trace method
and the variance expansion factor method can be used to select an appropriate value for
krid, enabling the algorithm to obtain the optimal estimation model [38,39].

In practice, because the clamping force is random, the shape of the fasteners is random
as well. Thus, we must consider the relationship between different forces and their shapes
in random situations. In the study by Zeng et al. [40], they found that the growth rate of
the longitudinal resistance of the fastener was independent of the vertical loading within
the normal working range of the fastener. The relationship between fastener displacement
and longitudinal load force is also linear for the same clamping torque. As a result, it can
be assumed that the shapes of the fasteners are similar for the same cases of tie pressure,
which will not have a large impact on the prediction of the algorithm. In order to verify the
reliability of the algorithm, a random clamping torque will be applied to the fasteners in
Section 4.5 for algorithm evaluation.

4. Testing, Results, and Analysis

In the experiments described in this section, multiple WJ-8 spring bar fasteners were
tested to build a test model and assess the performance of the algorithms. First, the mea-
surement accuracy of the 3D reconstruction system is evaluated. Next, the performance
of the point cloud denoising and point cloud registration is reported. Then, point clouds
are compared between multiple fasteners with the same fastener in different tightening
states, illustrating the feasibility of estimating the railway fastener clamping force. Finally,
the results obtained using different regression methods are compared.

4.1. Evaluation of the 3D Reconstruction System

Considering the fact that the elastic deformation of fasteners in different states of
tightness is extremely small, it is necessary to ensure that the measurements by the 3D
reconstruction system have an overall accuracy of a millimeter or better. A Canon EOS
800D camera with an image resolution of 1280 × 720, along with an Epson EF-10 projector
with a fringe resolution of 1920 × 1080, were used to support the measurement accuracy
desired for the 3D reconstruction system described in this paper. The fringe projection
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and acquisition software were written in C#, and the 3D reconstruction algorithm was run
using MATLAB R2022a.

A standard sphere with a radius of 10 mm was scanned to assess the measurement
accuracy of the 3D measurement system. Figure 4a shows the content captured by the
camera during the fringe projection. The white point cloud on the left is the standard
sphere scanned, and on the right is the checkerboard calibration plate used in the system,
each of whose squares has an edge length of 10 mm. The result after 3D scanning and
denoising is shown in Figure 4b. The white point cloud was manually segmented out
using CloudCompare software v2.12, and then a spherical fit was performed on it using
the RANSAC algorithm, with the results shown in Figure 4c. The coloration shows the
distribution of the absolute distances from the point cloud to the fitted sphere. The his-
togram showing the distribution of absolute distances is displayed in Figure 4d. From the
histogram, the absolute distance from most points to the sphere is mostly within 0–0.15
mm. Table 1 shows the accuracy of test results run 5 times based on the standard sphere.
This table lists the number of scanning points of the standard sphere, the radius of the
fitting sphere, the maximum error value, and the root mean square error (RMSE) of the
fitting. The result from this table satisfies the accuracy requirements of the measurement
and testing system. These results provide a solid grounding for estimating the railway
fastener clamping force.

(a) (b)

(c) (d)
Figure 4. Evaluation of accuracy using a standard sphere. (a) Digital grating projection. (b) Point
cloud obtained by system scanning. (c) Result of point cloud fitting to the standard sphere. (d) His-
togram of the distances from the standard sphere to the fitted sphere.
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Table 1. Accuracy test results based on a standard ball (radius 10 mm).

Scan No. No. of Scan
Points

Radius of Fitted
Sphere (mm)

Maximum Error
(mm)

RMSE ∗ of Fit
(mm)

1 2501 10.0863 0.3141 0.0566
2 2920 10.0175 0.4860 0.0824
3 3019 10.0991 0.5953 0.0585
4 2975 10.0252 0.3144 0.0584
5 3055 10.0357 0.3152 0.0532

* RMSE, root mean square error.

4.2. Point Cloud Preprocessing Experiment

In the method described in this paper, the system preprocesses the point cloud using
point cloud denoising, coarse registration using FPFH features, fine registration using the
ICP algorithm, and selection of the specific area of the point cloud. It does this to such a
degree that the point cloud consistently maintains a uniform position and attitude before
the comparison is performed. Only the spring bar of the fastener is processed. To obtain the
measurement data for various clamping states, a torque wrench with a tightening torque
sensor (Figure 5) was used to tighten 6 different fasteners 10 times each, with the tightening
torque varying from 20 to 110 N·m in increments of approximately 10 N·m. After each
tightening, the torque value displayed on the current sensor was recorded, and two 3D
measurements from two different angles were taken using the 3D reconstruction system
for evaluating system robustness. In addition, two 3D scans were performed on all the
fasteners in a fully loosened state. Thus, a total of 132 3D scans were performed, providing
sufficient data for subsequent point cloud data processing and regression. According
to Chinese railway industry standard TB/T 3065-2002, the bolt model for WJ-8 railway
fasteners is M24, and the tightening torque is required to be 100–140 N·m. The relevant
parameters for the formula given by Equation (18) are as follows: d2 = 22.052 mm, α = 30◦,
µs ≈ µw ≈ 0.14, dw = 36 mm, and Pd = 3 mm. From these values, the clamping force
corresponding to a tightening torque that ranges from 20 to 110 N·m was obtained as
4.18–23 kN.

Figure 5. Torque wrench used to tighten a railway fastener.

The point cloud preprocessing is illustrated in Figures 6 and 7. Figure 6a shows
the point cloud of the railway fastener obtained from the 3D reconstruction system, and
Figure 6b shows the point cloud after denoising, with 12,148 of the 121,917 points in the
point cloud filtered out. Figure 7a shows the FPFH feature points obtained by the system
from the matching between the point cloud to be measured and the reference point cloud.
Figure 7b shows the result after FPFH coarse registration, and Figure 7c shows the result
after ICP fine registration.
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(a) (b)
Figure 6. Denoising of the point cloud. (a) Original point cloud after the 3D reconstruction. (b) Result
after point cloud denoising.

(a)

(b) (c)
Figure 7. Registration of the point cloud. (a) Fast point feature histograms (FPFH) feature points
matching the reference point cloud. (b) FPFH coarse registration result. (c) Iterative closest point
(ICP) fine registration result.

In order to further evaluate the registration algorithm in the system, this paper uses
different registration methods to test separately, and the test results are shown in Table 2.
The registration methods of Table 2 include the direct ICP method, fast global registration
(FGR) [28], registration algorithm based on intrinsic shape signatures (ISS) [41], registration
algorithm based on FPFH features, and FGR, ISS, and FPFH, respectively, combined with
the ICP algorithm. Since the registration accuracy will significantly impact the following
point cloud comparison algorithm, this paper regards the registration result with an RMSE
greater than 1 mm as a registration failure. This paper counts the ratio of successful reg-
istration times in the 132 registrations. It can be seen from Table 2 that, for direct coarse
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registration methods, the FGR and ISS registration methods are faster than the ICP and
FPFH methods. However, the registration accuracy is lower than theirs. The methods of
coarse registration combined with fine registration have lower RMSE and higher registra-
tion success rates. The FPFH + ICP registration method has the highest registration success
rate and the lowest RMSE. In order to make the prediction of the overall system that has
higher accuracy, the system adopts the method of FPFH + ICP for registration.

For the accuracy registration algorithm ICP, it directly estimates the global attitude
based on all the points. As a result, it runs for longer and is prone to local convergence,
leading to poor agreement when more noise is present. For this reason, a combination of
coarse registration and precision registration is typically used to perform the algorithm.
In terms of three kinds of coarse registration algorithms, FGR, ISS, and FPFH, which all
have similar basic ideas, are computed for the points first. Then, the point pairs with
similar features to the two point clouds are calculated by certain methods, and finally the
estimation of the pose matrix by the similar point pairs is performed. However, the FPFH
algorithm retains more points than the ISS and FGR algorithms to then estimate the attitude
matrix. For example, when the ISS extracts features from a point cloud, it excludes points
that fall within a surface or lie on a line [41]. The FGR algorithm adopts dual verification
and the distance difference verification method to exclude pairs of points when matching
the feature points and prioritizes only the closest feature point when matching points are
found [28]. The pre-exclusion and processing of points for both FGR and ISS reduces the
computational load, leading to shorter run times than FPFH but also slightly reduced
registration accuracy. The registration algorithm can also be chosen based on the actual
accuracy and execution time requirements in the process of actually estimating the clamping
force of the fastener.

Table 2. Test results of different registration methods and their combinations.

Registration
Method No. of Tests No. of Registration

Failures
Successful

Registration Rate
Average Time Spent on

Registration (s)

Average
Registration RMSE

(mm)

ICP 132 7 94.70% 2.7121 0.4464
FGR 132 125 5.30% 0.5403 1.5622
ISS 132 65 49.24% 0.3558 1.3390

FPFH 132 2 98.48% 1.1528 0.5210
FGR + ICP 132 2 98.48% 1.7718 0.3587
ISS + ICP 132 1 99.24% 1.8444 0.3467

FPFH + ICP 132 0 100% 2.4011 0.3292

4.3. Point Cloud Comparison Experiment and Analysis

Multiple fasteners were selected and compared with one fastener in various states
of tightness to evaluate the feasibility of estimating clamping force by using horizontal
comparisons. The partial results of the horizontal comparison of the three fasteners with
tightening torques of 30.2, 49.8, and 99.8 N·m are shown in Figure 8, with different colors
representing different comparison distance values. The closer the tightening torque value
for the comparison fastener is to that of the reference fastener, the smaller the comparison
distance value overall (i.e., the color becomes bluer). This finding is also in accordance
with an intuitive understanding. This phenomenon is particularly obvious in the middle
part of the fastener spring bar. For example, for the spring bar of the fastener tightened at
99.8 N·m, its middle part has a distance value distributed in the range of approximately
0.6–1.0 mm when compared with that of the fastener tightened at 91.7 N·m. This is less than
the other comparison results in that column. Figure 9 shows the kernel density estimation
results from the horizontal comparison between the 49.8 N·m fastener and the reference
fastener. The values selected here are for c = 0.05 and N = 41, namely, equidistant values
from 0 to 2 mm (references from Section 3.2.5 and Equation (19)). In actual testing, this
range of values covers most of the comparison distance values under normal conditions. It
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can be seen from the figure that when the 49.8 N·m fastener is compared with the 49.5 N·m
fastener, a larger kernel density estimation is obtained at a smaller distance value, and its
distribution is more concentrated.

Figure 8. Horizontal comparison results for three railway fasteners.

Figure 9. Kernel density estimations of the horizontal comparisons for a fastener tightened at 49.8 N·m.

4.4. Analysis of Regression Effects

According to the analysis in the previous section, it can be seen that for the fasteners
with a tightening torque close to that of the reference, the distribution of the measured
comparison distance values is closer to 0 mm. therefore, it is suitable to perform the
regression analysis using the kernel density estimation. Before the regression analysis,
11 measurement results for one fastener were selected from the 132 measurement results
as the reference point cloud for horizontal comparison. Then, the 110 point clouds for
the other five fasteners were used as the point clouds to be compared. A program was
written to perform the horizontal comparison of the 110 point clouds and the kernel
density estimation. Then, according to Equation (19), equidistant values were taken from
the kernel density estimation function to obtain the input parameters X1, X2, . . . , X110 for
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the regression. When c = 0.05 and N = 41, there are 451 input variables, greater than
the number of observations. This regression problem is therefore a high-dimensionality
data prediction problem, and there may be multicollinearity among the input variables.
Considering this possibility, the characteristic roots of the matrix XTX were calculated to
estimate the number of variables with collinearity [42] (there are as many multicollinearity
relations in the observation matrix X as there are characteristic roots close to zero). After the
calculation, 389 characteristic roots smaller than 0.001 were obtained, indicating the need
to take extra measures to eliminate the collinearity.

To make full use of the test samples, the leave-one-out cross-validation method was
applied to the observation point cloud to establish a regression model and make the esti-
mation. To eliminate the multicollinearity among variables, four regression models were
applied: least squares regression (LSR) employing generalized inverse, support vector
regression (SVR), partial least squares regression (PLSR), and ridge regression. Figure 10
shows comparisons between the predicted and the measured clamping force results for
the test set constructed by the leave-one-out method under different tightness states. SVR,
PLSR, and ridge regression all achieved relatively good regression results in the regres-
sion prediction, demonstrating the effectiveness of these three algorithms in eliminating
collinearity. The results predicted by ridge regression came closer to the measured results
than those of the other algorithms. Table 3 shows the maximum prediction error and root
mean square error of the four prediction models. The algorithm in the ridge regression
model achieves good measurement accuracy. Considering that the tightening torque was
measured at intervals of approximately 10 N·m during data collection, the tightening
torque RMSE of 9.274 N·m and the clamping force RMSE of 1.940 kN demonstrate that the
prediction accuracy is sufficient to meet the requirements for actual application.

(a) (b)

(c) (d)
Figure 10. Comparison of predicted clamping force and actual measurement results. (a) Results
predicted by LSR. (b) Results predicted by SVR. (c) Results predicted by PLSR. (d) Results predicted
by ridge regression.
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Table 3. Maximum prediction error and root mean square error of four prediction models.

Regression Method Tightening Torque (N·m) Clamping Force (kN)
Maximum Error RMSE Maximum Error RMSE

LSR 72.504 19.505 15.169 4.080
SVR 49.664 11.923 10.390 2.494
PLSR 26.225 9.744 5.486 2.038

Ridge Regression 25.302 9.274 5.293 1.940

4.5. Evaluation of Algorithm

To further test and evaluate the reliability of the algorithm described in this paper, we
tested the algorithm using three different tightening test methods similar to those described
in Figure 5:

1. Tested by giving fasteners random stress. Because the elastic state of the rail fastener
is often random, a random clamping torque can be applied and recorded, and then
the algorithm can be predicted and evaluated. During the experiment, we applied a
random loop pressure from 0 to 120 N·m to the fastener.

2. Testing the fastener in two states: full tightening and loosening. In a batch work
environment, it is necessary to monitor whether the fasteners are in a tight or loose
state condition, so this method can be used to evaluate whether the algorithm has
a direct binary judgement. Tensile torque requirements for Type II fasteners range
between 100 and 140 N·m, in line with the TB/T 3065-2002 standard of the Chinese
rail industry mentioned above. In this paper, we use more than 100 N·m fasteners and
fasteners in or near a loose state (tightening torque less than 30 N·m) for the algorithm
prediction.

3. Test by gradually increasing the fastener stress. To compare the two methods, the fas-
teners are tightened in a step-by-step fashion. For each clamping torque, the torque
was changed from 20 N·m to 110 N·m, increasing by approximately 10 N·m each time,
with two 3D scans at different angles.

In this paper, the algorithm is evaluated by these three methods, each of which carries
out 22 3D reconstruction and algorithm prediction. The residual difference between the
actual measured and the predicted stress is shown in Figure 11, where the X-axis is the
actual measured clamping force and the Y-axis is the predicted residual. Table 4 shows the
computed RMSEs and average runtimes of the algorithms for predictions using the three
methods. As can be seen, the prediction errors for the three test processes are close to one
another, and the error of prediction is in a reasonable range of values. As for the second
test method, it can be seen from the figure that the algorithm completely distinguishes
the two states of fastener tightening and loosening conditions, indicating that there is no
misjudgment in the prediction process.

Table 4. Root mean square error and average prediction time of three test methods.

Test Method Tightening Torque
RMSE (N·m)

Clamping Force
RMSE (kN)

Average Time Spent
on Prediction (s)

Random Stress 13.530 2.831 24.53

Fully tightened and
loosened stress 11.887 2.487 23.16

Regularly increase stress 13.383 2.800 24.29
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(a)

(b)

(c)
Figure 11. Prediction residuals with three testing approaches. (a) Random stress. (b) Fully tightened
and loosened stress. (c) Regularly increase stress.

5. Conclusions

The detection of buckle pressure in a railway system is a challenging task. In order to
meet the demand of mass detection on a railway, a railway fastener pressure prediction
system is designed in this paper. The system uses digital raster projection technology
to measure the three-dimensional shape of the fastener. Then, the system predicts the
actual buckle pressure of the railway fastener by a series of algorithms, such as point cloud
denoising, point cloud rough registration based on FPFH characteristics of point cloud, ICP
fine registration, point cloud specific region selection, kernel density estimation, and ridge
regression. The actual test shows that the RMSE of the system is 1.94 kN for predicting
the clamping force, which can meet the requirement of the buckle pressure measurement
under normal circumstances. In order to evaluate the reliability of the algorithm, three
different tightening methods are tested in this paper. The results show that the predicted
results are within a reasonable range. Compared with the vibration signal detection, plane
vision detection, laser scanning detection, and other methods used in the past, this method
is more efficient and can describe the tightening state of railway fasteners more precisely,
rather than being limited to the more intuitive cases such as missing or damaged fasteners.

However, there are still limitations to this method, which will be solved in future
work. First, when the system performs 3D scanning, the projective light is non-linear,
which will affect the actual measurement effect. In the future, some active or passive
nonlinear correction methods are needed to compensate for the projected light. Secondly,
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the establishment of transverse comparison and regression models in the system requires a
large number of observed data under different tightening states. In the future, adopting a
direct method that can extract the shape curve of the spring bar from the 3D topography of
the fastener for predicting the clamping force should be considered.
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