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Abstract: Anthropometric measurements of the human body are an important problem that affects
many aspects of human life. However, anthropometric measurement often requires the applica-
tion of an appropriate measurement procedure and the use of specialized, sometimes expensive
measurement tools. Sometimes the measurement procedure is complicated, time-consuming, and
requires properly trained personnel. This study aimed to develop a system for estimating human
anthropometric parameters based on a three-dimensional scan of the complete body made with an
inexpensive depth camera in the form of the Kinect v2 sensor. The research included 129 men aged
18 to 28. The developed system consists of a rotating platform, a depth sensor (Kinect v2), and a PC
computer that was used to record 3D data, and to estimate individual anthropometric parameters.
Experimental studies have shown that the precision of the proposed system for a significant part of
the parameters is satisfactory. The largest error was found in the waist circumference parameter. The
results obtained confirm that this method can be used in anthropometric measurements.

Keywords: 3D human model; 3D model; human anthropometric parameters; Kinect v2; depth sensor

1. Introduction

Anthropometric measurements of the human body are applicable to many aspects of
human life [1]. Anthropometry is used in scientific research, clinical examinations, and
medicine [2–4], in dietetics [5], biomechanics [6–8], and in the clothing industry [9]. The ba-
sis of anthropometry is an anthropometric measurement that requires the application of
an appropriate measurement procedure and the use of specialized, sometimes expensive,
measuring tools (e.g., anthropometer, measuring tapes, and caliper). In addition, the mea-
surement process is usually complicated, uncomfortable, time-consuming, and requires
properly trained personnel [1,2,10,11].

In view of the above, it became reasonable to look for other measurement methods
that could support or partially replace the existing techniques or tools. An alternative to
classical anthropometry became imaging methods commonly used in medicine (DXA, CT,
MRI) [1], as well as estimation of anthropometric parameters using computer vision [11]
and a 3D laser body scanner [12]. According to Jaeschke et al. [2], in order to improve the
measurement of human body parameters (length, circumference of the trunk, hips, or other
body parts), scanners visualizing a three-dimensional human model may prove useful.
Liu et al. [13] stated that 3D scanners have fundamentally changed the approach to this
type of anthropometric measurement in recent years. In [14], a synthetic data set of human
body shapes was used to develop a method for estimating anthropometric parameters
using deep learning and neural networks.

In the literature, there can be found some studies in which images from digital cam-
eras [11,15,16], Kinect sensor [17–20], MoCap systems [21], or professional 3D scanners [2,4]
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were applied to estimate the individual types of human anthropometric parameters. Most
of the mentioned solutions are complex optical systems consisting of multiple cameras,
emitters of structured light, or laser beams [2,4,16,21]. They are characterized among oth-
ers by the ability to perform a relatively quick and three-dimensional scan of the object,
high resolution, and high accuracy. Unfortunately, they are expensive to purchase, their
application is sometimes complicated, and due to their architecture, they are mainly used
in laboratory conditions [22,23].

In the group of systems and tools used to estimate the anthropometric parameters of
the human body, the Kinect sensor has found a wide application. The device, characterized
by a low price, and equipped with an RGB camera, an infrared camera, and an infrared
emitter, has become a significant element of scientific research worldwide [6,24,25].

Among the publications describing the varied application of the Kinect sensor, there
are studies in which the authors characterized the sensor in terms of hardware [6], software,
as well as procedures for calibration and synthesis of cameras, or methods aimed at im-
proving and smoothing the image obtained by means of the sensor [24,26,27]. Cai et al. [25]
described examples in which the device was used in various support systems for indus-
try, detection, recognition and tracking of objects, tracking people and analyzing human
activity. The Kinect sensor has also found applications in medicine [28–31], sport [32–38],
and biomechanics [6], where IMU and EMG sensors have recently become popular methods
for improving the accuracy of human movement pattern recognition [39].

It was also used as a tool supporting the process of estimating the anthropometric
parameters of the human body. Some studies concerning this issue described the results
obtained in systems based on one [9,17,20,40,41], three [42], four [43], and even 16 Kinect
sensors [19]. Taking into account the solution with a single depth camera, the estimation
of elementary human anthropometric measures was usually made based on the analysis
of several images recorded by the sensor [17,41], as well as a three-dimensional model
obtained from a partial or complete scan of the human body [9,20].

He et al. [20] developed a system performing anthropometric measurements based on
a 3D model of the human body obtained from images captured by the Kinect sensor. The de-
veloped system has made it possible to measure the volume of the human body and the
circumference of the chest, waist, and hips. The obtained results were compared with the re-
sults achieved by other methods for the construction of 3D human scans. The complete body
scan was also performed by Kudzia [44], who applied a point cloud to calculate the volume
and mass of individual body parts. However, the proposed method has a number of limita-
tions, the most serious being the need for manual segmentation of the human body and the
long time needed to perform this procedure. In another study in this field, the results of the
application of the Kinect sensor to perform a 3D scan and anthropometric measurements of
people wearing clothes and in various body positions were presented [9]. Naufal et al. [41]
used in turn the Kinect sensor to calculate the height and surface area of the human body for
weight estimation. In the estimation process, linear regression and polynomial regression
were applied.

The review of the literature shows that the application of depth sensors as a tool
supporting anthropometric measurements of the human body may be justified, but there
is a lack of comprehensive solutions that enable the measurement of many anthropo-
metric parameters and are thoroughly tested on many objects. This study aimed to
develop a system for estimating human anthropometric parameters based on a three-
dimensional scan of the complete body made with an inexpensive depth camera in the
form of the Kinect v2 sensor. The developed system builds a 3D human model based on
the data obtained from the depth sensor, then performs the segmentation of this model
and estimates seven anthropometric parameters featuring the human build. It should be
noted that the Kinect v2 Sensor is used only to acquire depth data and can be replaced
with another sensor (e.g., Intel RealSense D455, Azure Kinect) that makes it possible
to obtain this type of data. Summarizing, the main contributions of this paper can be
stated as:
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• To develop a system for the estimation of human anthropometric parameters based
on the data from a depth camera;

• To develop a method for estimating anthropometric parameters from 3D scans;
• Using and verifying the possibility to estimate anthropometric parameters by the

Kinect v2 sensor.

2. Materials and Methods
2.1. Data Collection

The research included 129 men aged 18 to 28. The men featured a weight at a level of
79.4 ± 11.7 kg and a body height of 180.2 ± 6.5 cm. All participants of the research gave
their written consent to the anthropometric examination and consent to perform the 3D
body scan.

All anthropometric parameters were measured according to the International Stan-
dards for Anthropometric Assessment (ISAK) procedures [45] and included direct mea-
surement of seven anthropometric parameters (see Figure 1):

• Body height (BH)—the body height was measured with a stadiometer (SECA 213
Hamburg, Germany) with an accuracy of up to 1 mm.

• Arm span (AS)—the subject stood with his back to the wall so that his back, but-
tocks, and heels touched the wall. The subject then raised both hands horizontally
and the fingers of both hands were straightened. Then the left hand with straight
fingers touched the corner of the room. The arm span was measured with tape from
the corner of the room to a mark on the wall that corresponded to the end of the
right hand.

• Waist girth (WC)—measurements of the waist circumference were carried out with
anthropometric tape, an approximate midpoint between the lower margin of the last
palpable rib and the top of the iliac crest.

• Hip girth (HC)—the hip circumference measured around the widest portion of
the buttocks.

• Arm girth (AC)—the subject was in a relaxed standing position with the arms hanging
by the sides. The girth of the arm is measured by the anthropometric tape positioned
perpendicular to the long axis of the arm at the level of the midpoint between the
corner of the acromion and the proximal radial head. The tape should be positioned
perpendicular to the long axis of the arm.

• Thigh girth (TC)—the subject stands with his legs slightly apart and his body weight
evenly distributed on both feet. The measurement was carried out using anthropo-
metric tape in mid-thigh in a perpendicular plane to the long axis of the thigh so that
the flexible tape does not indent the skin excessively.

• Calf girth (CC)—the subject stood with feet slightly apart and body weight evenly
distributed. Measurement was made in place of the maximum circumference of the
calf in the plane perpendicular to the vertical axis of the leg. The measuring tape has
been wrapped so that it does not indent the skin excessively.

2.2. System for Estimation of Human Somatic Parameters

The system for estimating human somatic parameters (Figure 2) consists of a rotating
platform on which the measured person stands, a depth sensor that allows recording a 3D
scan, and a PC computer that is used to record 3D data, as well as carrying out calculations
related to the estimation of individual parameters. In the proposed solution, Kinect v2 was
used as the depth sensor. The 3D scan of the measured person is recorded using a rotating
platform (the platform rotates by 360◦ with a constant speed), which allows a full 3D scan
of the human body. The scanned person should stance in a T-pose and his clothing should
be limited to a minimum (e.g., tight-fitting underwear). During scanning the sensor records
multiple 3D scans that present the human body from different sides. These scans are
analyzed to find correspondence and merge into one 3D scan. This operation is performed
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on the basis of methods known from the literature and available in point cloud processing
libraries [46].

CC

BH

AS

AC

WC
HC

TC

BH - body height
AS - arm span
AC - arm girth
WC - waist girth
HC - hip girth
TC - thigh girth
CC - calf girth

Figure 1. A 3D scan with marked places of estimation of parameters.

Rotating platform 
Depth sensor

A computer recording 3D scans 
and performing calculations 

Figure 2. System for scanning human anthropometric parameters.

2.3. Segmentation of a 3D Scan of the Human Body

In order to determine somatic parameters from a 3D scan (point cloud), it is necessary
to perform segmentation in order to separate individual body segments. The 3D scan of
the human figure is divided into 9 parts (Figure 3): head, upper torso, lower torso, right
arm, left arm, right thigh, left thigh, right lower leg, and left lower leg. Segmentation is
based on the proportions of individual parts of the body and finding the characteristic
features of the human figure. The necessary aspect ratios for individual parts of the body
were determined on the basis of measurements carried out on the test group. In the
segmentation process, the location of the scan in the coordinate system is important (see
Figure 3). To perform the calculations correctly, the scan should be positioned so that the
z-axis corresponds to the sagittal axis of the human body, the y-axis corresponds to the
vertical axis, and the x-axis corresponds to the transversal axis. First, the geometric center
of the point cloud is calculated, which determines the approximate position of the scanned
character’s hips. Then the point cloud is filtered so that only points belonging to the hips
remain. Among these points, the point (PH) with the smallest value of the z coordinate is
searched. The y coordinate of the PH point corresponds to the height for which the hip
circumference (HC) is calculated. This height also defines the dividing line for the lower
and upper body parts so that the scan can be divided into two parts corresponding to the
humans’ upper and lower body. Then, for the points whose value for the y-axis is in the
range (PH .y − thH , PH .y + thH), the algorithm determines points with the smallest (PH minx)
and largest (PH maxx) value of the x coordinate. The x coordinates of these points allow
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us to calculate xH = (PH minx.x + PH minx.x)/2, and then determine the points that belong
to the right (points with the value of the coordinate x less than xH) and left (points with
the coordinate value x greater than xH) side of the scanned human. Then, based on the
proportions of the body, for the right lower part of the body (right leg) and the left lower
part of the body (left leg), the coordinates y of the scanned character’s knees are determined,
which allows for determining the points belonging to the right thigh, right lower leg, left
thigh, and left lower leg. In order to isolate the arms, the points corresponding to the
upper body are projected onto the XY plane and processed by the Concave Hull method
to determine the points that define the outline of the 2D projection of the upper body
(see Figure 4). Then, the contour points obtained in this way are filtered to isolate the
points belonging to the right (points with the coordinate value x less than xH) and the left
(points with the coordinate value x greater than xH) part of the human figure. In the next
step, an analysis is performed to determine the points defining the beginning of the right
(PRA down and PRA up in Figure 4) and left (PLA down and PLA up in Figure 4) of the arm. First,
points PRA down and PLA down are determined, which define the lower beginning of the arms.
These points are determined on the basis of the analysis of the directions of normalized
vectors, the beginning, and end of which are determined by successive contour points.
PRA down is defined as the origin of the first normalized vector for which the x coordinate is
greater than the thdir parameter, with the assumption that the analysis proceeds from the
lowest points. Having PRA down, subsequent points are analyzed in order to find a point
(PRA up) whose coordinate x is close to the x coordinate of the point PRA down. Determination
of PLA down and PLA up is performed in a similar way, except that the points belonging to
the outline of the left side of the human are analyzed. With the points PRA down, PRA up,
PLA down and PLA up the points belonging to the torso, right arm, left arm, and head can be
determined. The torso is then split in half to make an upper and lower torso (Figure 3). The
calculations were carried out using the PCL library [46].

x
z

y

Figure 3. Segmented 3D scan of the human body.

PRAup

PRAup PLAup

PLAdown

Figure 4. The contour points of the upper body determined using the Concave Hull method projected
onto the XY plane.
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2.4. Estimation of Human Somatic Parameters

With a segmented 3D scan, somatic features can be determined. The height (H)
of the human figure is calculated on the basis of the coordinates of the points with the
maximum and minimum value for the y axis, while the arm span (AS) is calculated on the
basis of the coordinates of the points with the maximum and minimum value for the x
axis. The procedure for determining the remaining somatic features from the 3D scan is
as follows:

1. In order to calculate given perimeters, fragments of point clouds are separated from
individual segments. These points are determined as follows:

(a) Arm girth (AC)—the place (point PAC) where the circumference is calculated
is halfway between the beginning of the arm (defined by points PRA down and
PRA up—right arm, PLA down and PLA up—left arm) and elbow (approximate
position of the elbow is calculated on the basis of the proportion of the length
of the arm to the forearm; this proportion was determined on the basis of
the measurements of the test group). Then the points of the arm whose coor-
dinate x is in the range (PAC.x − thcut, PAC.x + thcut) are projected onto the
YZ plane.

(b) Waist girth (WC)—the place (point PWC) where the waist circumference is
calculated is estimated based on the measurements of the test group, dur-
ing which measured the distances between the beginning of the torso (place
of hip circumference measurement) and the waist and between waist and
the end of the body (beginning of the neck). Torso points whose coordi-
nate y is in the range (PWC.y − thcut, PWC.y + thcut) are projected onto the
plane XZ.

(c) Hip girth (HC)—the value of the y coordinate corresponding to the location of
the hip circumference measurement (PH .y) is determined during segmentation.
Points for which the y coordinate is in the range (PH .y − thcut, PH .y + thcut)
are projected onto the XZ plane.

(d) Thigh girth (TC) is calculated for points located in the middle of the thigh
segment. The yTC coordinate is derived from the points at the beginning
and end of the thigh. Points for which the yTC coordinate is in the range
(yTC − thcut, yTC + thcut) are projected onto the XZ plane.

(e) Calf girth (CC)—at the beginning, the approximate place of circumference
measurement is determined, for this purpose, based on the measurements of
the test group, during which the distances between the knee and the calf girth
measurement place and the calf girth measurement place and the foot, the yCC
coordinate was determined. Among the filtered points, the point (PCC) with the
smallest value of the z coordinate is searched. The y coordinate of the PCC point
corresponds to the height for which the calf has the greatest circumference.
Points for which the y coordinate is in the range (PCC.y − thcut, PCC.y + thcut)
are projected onto the XZ plane.

2. Using the Convex Hull method, an ordered list of points is determined from the points
projected onto the plane;

3. The perimeter is calculated from the equation:

L =
n

∑
k=1

d(Pk, Pk+1), (1)

where Pn+1 = P1 and d(P1, P2) is the Euclidean distance between the points P1 and P2.
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2.5. Statistical Analysis

The study used basic statistical measures, i.e., the arithmetic mean, standard deviation,
median, and first and third quartiles. In addition, two indices of absolute difference (d) and
relative difference (∆) were determined:

d =
1
n

n

∑
i=1

(GSi − DCi) (2)

∆ =
d

1
n ∑n

i=1(GSi)
, (3)

where: n—total number of patterns, GS—gold standard value, and DC—estimated value.
Statistical evaluation of the significance of the differences was performed using the

U Mann–Whitney test, taking p < 0.05 as significant. In addition, for a detailed comparison
of the obtained results with the gold standard, analysis was performed using Bland–Altman
plots. The coefficient of repeatability (CR), defined as the two standard deviations of the
differences of the paired parameters, and the coefficient of variance (CV), expressed in
percentage as the quotient of the standard deviation of the differences of the individual
paired parameters by the mean, were determined. Additionally, Pearson correlations
between measured and estimated values were calculated. Statistical analysis was performed
in the GNU R software [47].

3. Results and Discussion

The experimental study consisted of verifying the accuracy of estimating selected
anthropometric parameters calculated using the presented algorithm. The values of the
obtained parameters were compared to direct measurement, which was considered as a
gold standard (GS). The estimated results, along with the errors, are presented in Table 1.

Table 1. Characteristics of the anthropometric parameters for GS and DC methods (N = 129).

Parameter
GS—Gold Standard DC—Depth Camera Estimation

d ∆ p
x̄ sd Me Q1 Q3 x̄ sd Me Q1 Q3

arm span (m) 1.84 0.07 1.84 1.80 1.89 1.83 0.08 1.83 1.78 1.89 −0.012 −0.7% 0.001 *
body height (m) 1.80 0.07 1.80 1.76 1.85 1.80 0.07 1.80 1.76 1.84 −0.002 −0.1% 0.224

arm girth (m) 0.35 0.03 0.34 0.33 0.36 0.33 0.03 0.33 0.31 0.35 −0.017 −5.9% 0.001 *
calf girth (m) 0.39 0.03 0.39 0.38 0.41 0.38 0.03 0.38 0.36 0.40 −0.013 −3.4% 0.001 *
hip girth (m) 1.06 0.06 1.05 1.02 1.09 0.99 0.06 0.98 0.95 1.02 −0.063 −6.4% 0.001 *

thigh girth (m) 0.59 0.04 0.59 0.56 0.61 0.55 0.04 0.55 0.53 0.58 −0.036 −6.6% 0.001 *
waist girth (m) 0.89 0.08 0.88 0.84 0.92 0.81 0.07 0.80 0.77 0.84 −0.074 −9.2% 0.001 *

x̄—mean; sd—standard deviation; Me—median; Q1—first quartile; Q3—third quartile; d—index of absolute
difference; ∆—index of relative difference %; p—statistical probability; *—statistical significance.

The study shows that the most accurately estimated parameter was the body height
parameter for which d = 0.002 m while ∆ = 0.1%. It should also be noted that the difference
with regard to GS did not show statistical significance. Analyzing the median values, it
is noted that the estimated values are close to the GS values. The situation is similar for
quartiles Q1 and Q3. Analyzing dispersion, it is noted that an identical standard deviation
was achieved for 5 of the 7 parameters. Different standard deviations were noted for arm
span and waist girth. The remaining differences show statistical significance. The largest
difference was observed for waist circumference d = −0.074 m and ∆ = −9.2%. Correlation
analysis of the two measurements showed a very strong positive relationship (Table 2).
Correlation coefficients ranged from r = 0.61 for arm girth to r = 0.97 for body height.
For four parameters, a full correlation of the measurement results are found (r > 0.9).
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Table 2. Results of correlation and Bland–Altman analysis.

Parameter x̄GS+DC r sdGS−DC CR CV

arm span (m) 1.84 0.94 0.03 0.06 1.6%
body height (m) 1.8 0.97 0.02 0.04 1.1%

arm girth (m) 0.34 0.61 0.03 0.06 8.8%
calf girth (m) 0.39 0.84 0.02 0.04 5.1%
hip girth (m) 1.03 0.93 0.02 0.04 1.9%

thigh girth (m) 0.57 0.87 0.02 0.04 3.5%
waist girth (m) 0.85 0.94 0.03 0.06 3.5%

x̄GS+DC—mean of GS and DC values; r—correlation coefficient; sdGS−DC—standard deviation of differences
between GS and DC values; CR—coefficient of repeatability; CV—coefficient of variance

Analysis using the Bland–Altman method (Table 2) showed that as many as five
parameters had a recurrence rate of less than CV< 5%. For calf girth, a CV = 5.1% was
recorded, while the highest for arm girth was CV = 8.8%. The best precision is characterized
by the estimation of the body height parameter CV = 1.1%. The coefficient of repeatability
was very small and its value was equal to 0.04 for four parameters (body height, calf
girth, hip girth, and thigh girth) and 0.06 for three parameters (arm span, arm girth, and
waist girth).

In order to visualize in detail the differences between the calculated values from the
3D scan and the measured values (gold standard), analysis using Bland–Altman charts was
used (Figure 5). The vast majority of measurements fall within the CV range, with only
isolated cases deviating from the gold standard.

The comparative analysis carried out showed that the estimation of selected anthropo-
metric parameters using the depth sensor generates acceptable errors. The main quality
criterion adopted in the presented solution was the comparison with direct measurements
of anthropometric parameters. Comparison of the obtained errors with errors generated by
models presented by other researchers is not obvious due to the use of different criteria
for evaluating methods. An interesting study was presented by Kahelin et al. (2020) [8],
where they also used a 3D scan model from the reconstruction of 2.5D information capture
from Kinect. The errors they obtained for hip girth (0.019 m) and thigh girth (0.013 m)
were smaller than the errors presented in this paper: hip girth (0.063 m) and thigh girth
(0.036 m) (Table 1).

Another paper that allows a direct comparison with the proposed method is that
of [2], which presents a laser-based body surface scanner (Virtual smart XXL). This scanner
was also compared to manual measurements and the differences and correlation were
evaluated. The results for men were also more accurate than the results presented in
this paper. The correlation coefficients of the estimated measurements with the manual
measurements were 0.97 for waist girth and 0.97 for hip girth, whereas, for the method
presented in this paper, the correlation results were 0.94 for waist girth and 0.93 for hip
girth (Table 2). However, it should be noted that the laser scanner used in [2] is a more
accurate measurement device relative to the Kinect camera-based scanner (Table 1).

A paper that also used a Kinect camera as a tool to determine a 3D scan of the human
silhouette was by Tong et al. 2012 [42]. Tong and co-authors used two Kinects to capture
the upper part and the lower part of a human body, respectively, and a third Kinect, placed
on the opposite side, is used to capture the middle part of the human body. It is worth
noting that the scanned subjects were wearing clothes. The results obtained for waist girth
(0.062 m) and for hip girth (0.038 m), were also smaller than the errors presented in this
work (Table 1).
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Figure 5. Bland–Altman plots for anthropometric parameters.

The Kinect sensor is very often used as a tool to scan either the entire figure or selected
body segments [22,28,29,40,41,43]. However, the direct comparison of errors is complicated
by the use of different quality criteria. For example, in the work [22], the TEM criterion
(the relative technical error of measurement) was defined, whose value was calculated
at 0.88%. In the work of [28], where a 3D foot scanner based on a Kinect camera was
presented, the RMSE (Root mean squared error) criterion was used. The RMSE error was
calculated against a high-resolution laser scanner and was 2.8 mm. In another paper [40],
where Kinect v2 was also used to estimate selected anthropometric parameters, the authors
inferred that the differences between the estimated values and the traditional measure-
ments show statistical significance, which confirms the results we obtained, presented in
Table 1. Naufal et al. [41] studied a total of 147 subjects. The results measured manually
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were compared with the automatic estimation realized with the Kinect camera. The differ-
ence between the estimation and the manual measurement ranked at 1.04% and showed
statistical significance.

4. Conclusions

This paper presents and tests a method for measuring selected anthropometric pa-
rameters using an inexpensive depth camera in the form of the Kinect v2 sensor. In order
to evaluate the method, a statistical analysis was carried out in the form of a U Mann–
Whitney test and Bland–Altman charts. Experimental studies have shown that the accuracy
of the proposed system for a significant part of the parameters is satisfactory (∆ < 7%).
The largest error was in the waist circumference parameter. The results obtained confirm
that the method can find application in anthropometric measurements. The use of newer
devices, such as Azure Kinect, should allow for more accurate parameter estimates.

Limitations of the work are related to the validation of the method. The proposed
method is tested only for selected anthropometric parameters. Another limitation is the
research group. Parameter estimation was performed for the male gender. The method was
not tested in a group of women. The research also did not take into account non-standard
cases, such as body deformities, missing or shorter limbs, etc. In such cases, the system
may give incorrect results.

Future work will be related to the development of new functionalities of the algorithm
and the use of machine learning methods to classify body composition components and
somatotype components. It is also planned to test the proposed method with other depth
sensors, e.g., Azure Kinect. In addition to using a more accurate sensor, we will also work
on improving the accuracy of the method itself, for this purpose various filtration and
smoothing algorithms will be tested. Another important element of future work will be the
inclusion of the female gender in the study.

5. Patents

T. Krzeszowski, K. Przednowek: “Method for estimating somatic features, somatic
indicators, somatotype components, somatotype and body composition components with
the use of depth sensor”, Polish patent publication PL240075B1, 2022.
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