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Abstract: Remote sensing images often have limited resolution, which can hinder their effectiveness
in various applications. Super-resolution techniques can enhance the resolution of remote sensing
images, and arbitrary resolution super-resolution techniques provide additional flexibility in choosing
appropriate image resolutions for different tasks. However, for subsequent processing, such as
detection and classification, the resolution of the input image may vary greatly for different methods.
In this paper, we propose a method for continuous remote sensing image super-resolution using
feature-enhanced implicit neural representation (SR-FEINR). Continuous remote sensing image super-
resolution means users can scale a low-resolution image into an image with arbitrary resolution. Our
algorithm is composed of three main components: a low-resolution image feature extraction module,
a positional encoding module, and a feature-enhanced multi-layer perceptron module. We are the
first to apply implicit neural representation in a continuous remote sensing image super-resolution
task. Through extensive experiments on two popular remote sensing image datasets, we have shown
that our SR-FEINR outperforms the state-of-the-art algorithms in terms of accuracy. Our algorithm
showed an average improvement of 0.05 dB over the existing method on ×30 across three datasets.

Keywords: remote sensing image super-resolution; implicit neural representation; position encoding

1. Introduction

With the development of satellite image processing technology, the application of
remote sensing has increased [1–5]. However, low spatial, spectral, radiometric, and
temporal resolutions of current image sensors and complicated atmospheric conditions
make it hard to use remote sensing. Consequently, extensive super-resolution (SR) methods
have been proposed to improve the low quality and low resolution of remote sensing
images.

SR reconstruction is a method used for generating high-resolution remote sensing
images, which combines a large number of images with similar content. Generally, remote
sensing image SR reconstruction algorithms can be classified into three categories: single
remote sensing image SR reconstruction [6–11], multiple remote sensing image SR recon-
struction [12,13], and multi/hyperspectral remote sensing image SR reconstruction [14].
Since the latter two approaches have poor SR effects, registration fusion, multi-source
information fusion, and other issues, more research studies have been focusing on single
remote sensing image SR reconstruction.

Single remote sensing image SR (SISR) methods can be divided into two categories
based on the generative adversarial network and the convolution neural network. Although
both GAN-based networks and CNN-based networks can achieve good results in SISR,
they can only scale the low-resolution (LR) image with an integer factor, which makes
the obtained high-resolution (HR) image inconvenient for downstream tasks. One way
to solve this problem is to represent a discrete image continuously with implicit neural
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representation. Continuous image representation allows recovering arbitrary resolution
imaging by modeling the image as a function defined in a continuous domain. For a
continuous domain, the best way to describe an image is to fit this image as a function of
continuous coordinates. Our method is motivated by recent advances in implicit neural
representation for 3D shape reconstruction [15]. The concept behind implicit functions
is to represent a signal as a function that maps coordinates to the corresponding signal
(e.g., signed distance to a 3D object surface). In remote sensing image super-resolution, the
signals can be the RGB values of an image. Multi-layer perceptron (MLP) is a common way
to implement implicit neural representation. Instead of fitting unique implicit functions
for each object, encoder-based approaches are suggested to predict a latent code for each
item in order to share information across instances. The implicit function is then shared by
all objects, and it accepts the latent code as an extra input. Although the encoder-based
implicit function method is effective in a 3D challenge, it can only successfully represent
simple images and is unable to accurately represent remote sensing images.

To solve the problem of the expression ability of encoder-based implicit neural repre-
sentations, this paper explores different positional encoding methods in image representa-
tion for the image SR task, and proposes a novel feature-enhanced MLP network to enhance
the approximation ability of the original MLP. Our main contributions are as follows:

1. We are the first to adopt the implicit neural representation into remote sensing image
SR tasks. With our method, one can obtain significant improvements in AID and UC
Merced datasets.

2. We propose a novel feature-enhanced MLP architecture to make use of the feature
information of the low-resolution image.

3. The performances of different positional encoding methods are investigated in implicit
neural representations for continuous remote sensing image SR tasks.

2. Related Works

In this section, we will briefly review the implicit neural representation and the related
methods, including positional encoding and continuous image SR.

2.1. Implicit Neural Representation

The implicit neural representation is essentially a continuously differentiable function
that maps the coordinates into the signals. It has been widely used in many fields, such as
shape parts [16,17], objects [18–21], or scenes [22–25]. The implicit neural representation is
a data-driven method. It is trained from some form of data as a signal distance function.
Many 3D-aware image generation methods use convolutional architectures. Park et al. [18]
proposed using neural networks to fit scalar functions for the representation of 3D scenes.
Mildenhall et al. [26] proposed a neural radiance field (Nerf) to implicitly represent a scene.
It takes images of the same scene taken from different viewpoints as inputs and uses a
neural network to learn a static 3D scene implicitly. Based on these images, the trained
neural network can render images from any perspective. However, the present work based
on implicit neural representation does not perform very well in the spatial and temporal
derivatives. In terms of image generation, Chen et al. [27] proposed a local implicit image
function (LIIF). It feeds the coordinates and the features corresponding to the MLP and
outputs a RGB signal for the coordinates. Since the coordinates of images with arbitrary
resolution are continuous, LIIF can represent images with arbitrary resolutions.

2.2. Positional Encoding

In order to capture the positional relationships, a method called positional encoding
is introduced in [28,29]. Positional encoding is essentially a map from a position space
to a high-dimensional vector space. For the continuous image SR task, 2D image coor-
dinates are mapped into high-dimensional vectors. The common method used in [29]
employs sinusoidal positional encoding by manually designing. The performance of the
hand-designed approach depends on the weights of the sinusoidal positional encoding,
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which lacks flexibility. In order to improve the flexibility of the positional encoding, Parmar
et al. [30] introduced a learnable embedding vector for each position for 1D cases. Although
the trainable embedding method has the potential to capture more complex positional
relationships, the learnable parameters are largely increased with the increasing dimen-
sionality of the positional input coordinates. For the purpose of capturing more complex
position relationships, for instance, the similarity of positions in an image, a novel learnable
positional encoding was proposed in [31]. In their proposed method, a function is learned
to map multi-dimensional positions into a vector space based on the Fourier transform.
The obtained vectors are fed into the MLP. In our work, we will also focus on the learnable
positional encoding method.

2.3. Continuous Image SR

Image SR is a reconstruction task that restores a realistic and more detailed high-
resolution image from a LR image. It is an important class of computer vision image
processing techniques. However, it is an ill-posed problem because a specific LR image
corresponds to a set of possible high-resolution images. Due to the powerful characteriza-
tion and extraction capabilities of deep learning in both low-resolution and high-resolution
spaces, deep learning-based image SR tasks have significantly improved in both qualitative
and quantitative terms. Dong et al. [32] were the first to research single natural image SR
based on deep learning, called SRCNN. It uses a bicubic interpolation to scale a LR image
to a target size. Then, these images are fed into a three-layer convolutional network to
fit a nonlinear map. The output is a HR image. In [33], a novel network, FSRCNN, was
proposed to improve the inference speed of SRCNN. However, the SRCNN model not
only learns how to generate high-frequency information, but it also needs to reconstruct
low-frequency information, which greatly reduces its efficiency. Kim et al. [34] proposed
VDSR to increase the depth of the network by employing the residual connect. Remote
sensing images are different from natural images, as they often have coupled objects and
environments, and the images span a wide range of scales. In order to make full use of
the environmental information, Lei et al. [35] proposed a VDSR-based network called a
local–global combined network (LGCNet).

It is evident that all the methods mentioned above upsample the input LR images
before feeding them into the model for learning, which slows down the convergence speed
of the model and also greatly increases the memory overhead. The ESPCN model [36]
proposed a sub-pixel convolution operation as an efficient, fast, and non-parametric pixel
rearrangement upsampling method, which significantly improved the training efficiency of
the network. To further improve the expressive power of the model, the SRResNet model
was proposed in [37], which utilized the residual module widely used in image classification
tasks. At the same time, the confrontational generation loss function was first adopted to
the image SR problem, which achieved satisfactory results. In [38], the EDSR model was
proposed to further optimize the above network structure. Additionally, the performance of
the EDSR model was further improved by removing the batch normalization layer and the
second activation layer from the residual module. Later, several models were proposed to
enhance the network’s performance, including the RDN model [39] and the RCAN model
[40]. To adaptively fuse the extracted multi-scale information, Wang et al. [41] proposed an
adaptive multiscale feature fusion network for SR of remote sensing images.

However, the above methods can only upsample an image to a specific scale. To
generate the HR image of arbitrary resolution, MetaSR, ref. [42] introduced a meta-upscale
module, which employs a single model to upsample the input image to arbitrary resolution
by dynamically predicting weights. However, it cannot achieve satisfactory results for the
resolutions outside of the training distribution. Therefore, Chen et al. [27] proposed a local
implicit image function (LIIF) by taking advantage of the neural implicit representation.
In their method, the coordinates and the features corresponding are fed to the MLP to
obtain a RGB signal. Since the coordinates are continuous, the HR image can be presented
in arbitrary resolution. However, LIIF ignores the influence of positional encoding on
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image generation. Therefore, in this work, the coordinate was encoded to obtain more
high-dimensional information about the coordinates, which can produce more realistic HR
images. Figure 1 shows the results of our method, which can scale the input image into an
arbitrary resolution.

96x96

x1.5

512x512

x8

64x64

LR image

2.5

160x160

Figure 1. An image in the continuous domain can be presented in arbitrary high resolution.

3. Method

Image SR is a common task in computer vision that outputs a high-resolution image
IH based on the input LR image IL. In other words, for each continuous coordinate p in the
high-resolution image IH, we need to calculate a signal at this coordinate, denoted as cp. In
the image SR task, the signal for a coordinate is the RGB value. In the following section, we
will introduce the details of our method.

3.1. Network Overview

The main part of the proposed network is illustrated in Figure 2. It is composed
of three major components: the feature extraction module (Eψ), the positional encoding
module (Eφ), and the feature-enhanced MLP module (Mθ).

For a given discrete image I ∈ RH×W×3, we define the coordinate bank BI as a subset
of [−1, 1]2:

BI = {(x, y)|x ∈ {−1 +
1
H

,−1 +
3
H

, · · · , 1− 1
H
},

y ∈ {−1 +
1

W
,−1 +

3
W

, · · · , 1− 1
W
}}

(1)

For a LR image IL, the feature extraction module Eψ is used to extract the features
F ∈ R(#BIL )×l of the LR image. For a coordinate p ∈ BIH in a HR image IH, the feature at p
can be set as the nearest point feature in BIL , which can be formulated as:

fp = Fq∗ , q∗ = arg min
q∈BIL

d(p, q). (2)

The positional encoding module Eφ is used to encode the coordinate p into a high-
dimensional space. The output encoding vector at this position is formulated as:

gp = concat(Eφ(p), p). (3)

We will discuss the performances of three commonly used positional encoding meth-
ods in Section 5.2.
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Figure 2. The architecture of the proposed model. The blue rectangles indicate the feature vectors
corresponding to the coordinates.

With the feature fp and the encoding vector gp, the feature-enhanced MLP module
Mθ is used to reconstruct the signal cp, which can be formulated as:

cp = Mθ( fp, gp). (4)

Consequently, for any coordinate p ∈ P , P is the set of coordinates p in the high-
resolution image IH, and the L1 loss is used as the reconstruction loss:

L = ∑
p∈P
||cp − cgt

p ||21, (5)

The complete training and inference processes are presented in Algorithm 1 and
Algorithm 2, respectively.

Algorithm 1: Training process of continuous super-resolution using SR-FEINR.
Input: A low-resolution image IL, a high-resolution image IH
Output: A trained model Mθ

1 Initialize the parameters of the model Mθ

2 Extract features F from IL using the feature extractor Eψ

3 Encode the coordinates of IH using the position encoder Eφ

4 for p ∈ BIH do
5 Find the nearest point q∗ in BIL to p using a distance metric d
6 Set the feature at p to fp = Fq∗

7 Set the encoding vector at p to gp = Eφ(p)

8 Update the parameters of the model Mθ using stochastic gradient descent with the
following loss function:

L =
1
|BIH |

∑
p∈BIH

||Mθ( fp, gp)− cgt
p ||21,

where cgt
p is the ground-truth signal value at coordinate p
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Algorithm 2: Inference process of continuous super-resolution using SR-FEINR
Input: A low-resolution image IL
Output: A reconstructed high-resolution image ÎH

1 Define coordinate bank BI for images IL and ÎH
2 Extract features F from IL using feature extractor Eψ

3 Encode the coordinates of ÎH, using position encoder Eφ

4 for p ∈ BÎH do
5 Find the nearest point q∗ in BIL to p using a distance metric d
6 Set the feature at p to fp = Fq∗

7 Set the encoding vector at p to gp = Eφ(p)
8 Reconstruct the signal at p using Mθ : cp = Mθ( fp, gp)

9 Construct a high-resolution image ÎH from signals cp

10 return ÎH

3.2. Feature Extraction Module and Positional Encoding Module
3.2.1. Feature Extraction

As mentioned in [27], we used EDSR and RDN to extract the features of the low-
resolution image. The feature extraction process in EDSR includes inputting a low-
resolution image, extracting high-level features through convolutional layers, enhancing
features through residual blocks, fusing features through feature fusion modules, and
outputting a feature map. The feature extraction process in RDN includes inputting a
low-resolution image, extracting feature maps through convolutional layers and residual
dense networks, expanding features through feature expansion modules, fusing features
through feature fusion modules, and finally upsampling and reconstructing the image.

For a low-resolution image IL ∈ RH×W×3, to enrich the information of each latent code
in the feature space, we update the features using the feature-unfolding method, which can
be formulated as:

F′i = concat({Fj}d(i,j)<ε). (6)

Afterward, we obtain the features of the low-resolution image F; the features of the
continuous coordinate fp can be calculated using Equation (2) and fed into the feature-
enhanced MLP module Mθ .

3.2.2. Positional Encoding

To encode the coordinate p, we use the following equation:

E(p) = (sin(ω0πp), cos(ω0πp), sin(ω1πp),

cos(ω1πp), · · · sin(ωnπp), cos(ωnπp)),
(7)

where ω0, ω1, . . . , and ωn are coefficients and n is related to the dimension of the encoding space.
As illustrated in Figure 3, the details of three common positional encoding methods

are described, which are the hand-craft approach, the random approach, and the learnable
approach. In the hand-craft approach, ωi is fixed as ω0 = b0, · · · , ωn = bL, where b and L
are hyperparameters. The difference between the random approach and the normal posi-
tional encoding is that the weights ωi are randomly selected and not specified. The weights
ωi are sampled from a normal distribution N (µ, Σ), where µ and Σ are hyperparameters.
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(a) Hand-craft approach

P

(b)Random approach

P

(c)Learnable approach

MLP

P

Figure 3. The structures of three positional encoding methods. The blue circle P represents the
coordinate. The green rectangles indicate the hyperparameters of the Fourier features. The red
rectangle indicates the learnable parameters.

For the learnable approach, the encoding vector of each position is represented as a
trainable code by a learnable mapping of the coordinate. A major advantage of this method
for multidimensional coordinates is that it is naturally inductive and can handle test
samples with arbitrary lengths. Another major advantage is that the number of parameters
does not increase with the sequence length. This method is composed of two components:
learnable Fourier and a MLP layer. To extract useful features, learnable Fourier features
map an M-dimensional position p into an F-dimensional Fourier feature vector called rp.
The definition of learnable Fourier features is roughly the same as Equation (7),

rp =
1√
F
(sin(ω0πp), cos(ω0πp), sin(ω1πp),

cos(ω1πp), · · · sin(ωnπp), cos(ωnπp)),
(8)

where ω0, · · · , ωn are trainable parameters, n = F
2 − 1 defines both the orientation and

wavelength of the Fourier features. The linear projection coefficients ω0, · · · , ωn are ini-
tialized with a normal distribution N (0, γ−2). The MLP layer is a simple neural network
architecture for implicit neural representation with a GELU activation function:

Eφ(p) = τ(rp, η), (9)

where τ(.) is the perceptron parameterized by η.
Since the weights are learnable, the expression power of the encoding vector is more

flexible. Therefore, in our work, we focus on learnable positional encoding.

3.3. Feature-Enhanced MLP for Reconstruction

In order to make use of the information in the LR image, we propose a feature-
enhanced MLP module Mθ to reuse the feature of the LR image. The latent code fp at the
coordinate p of the LR image and the encoded coordinate feature vector gp are fed into the
first hidden layer of the MLP. This process is defined as

c1
p = h1( fp, gp), (10)

where h1 is the first hidden layer of the MLP, c1
p is the output vector of the first hidden layer.

Then we concatenate the image feature vector fp with the output feature of the
previously hidden layer. At this point, Equation (10) is transformed into

c2
p = h2( fp, c1

p), (11)

where h2 is the second hidden layer of the MLP, c2
p is the output vector of the second

hidden layer.
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In our method, the MLP is constructed with five perceptron layers to obtain better
results compared to LIIF [27]. The MLP model can be written as:

cp = hN−1( fp, hN−2( fp, hN−3( fp, · · · , h1( fp, gp)))), (12)

where hi(.) is the ith hidden layer and cp is the predicted RGB value for coordinate p.

3.4. Implementation Details

Two feature extraction modules are considered in this work, which are EDSR and RDN.
In the three positional encoding approaches, we chose the learnable positional encoding
because it was more conducive to the learning of the network and it performed better in
our experiment. As for the MLP setting of the feature-enhanced MLP network Mθ , we
chose a five-layer 256-d multilayer perceptron (MLP) with the GELU activation function.

4. Experiments
4.1. Experimental Dataset and Settings

In our experiment, we used a common dataset DIV2K [43] for the ablation study and
two common remote sensing datasets: UC Merced [44] and AID [45]. In the field of remote
sensing SISR, these datasets have been heavily utilized [35,46,47].

• AID dataset [45]: This dataset contains 30 classes of remote sensing scenes, such as an
airport, railway station, square, and so on. Each class contains hundreds of images
with a resolution of 600× 600. In our experiment, we chose two types of scenes, an
airport and a railway station, to evaluate different methods. The images in each scene
were split into the train set and test set with a ratio of 8:2, and then we randomly
picked five images from the train set as the valid set for each scene.

• UC Merced Dataset [44]: This dataset contains 21 classes of remote sensing scenes,
such as an airport, baseball diamond, beach, and so on. Each class contains 100 images
with a resolution of 256× 256. We split the dataset into the train set, test set, and valid
set with a ratio of 4:5:1.

• DIV2K dataset[43] : This dataset contains 1000 high-resolution natural images and
corresponding LR images with scales ×2, ×3, and ×4. We used 800 images as the
training set and 100 images in the DIV2k validation set as the test set, which followed
prior work [27].

In our training process, the low-resolution image IL and the coordinate-RGB pairs
O = {(p, cp)}p∈A of the high-resolution image can be obtained by the following steps:
(1) the high-resolution image in the training dataset is cropped into a 48ri × 48ri patch
IP, where ri is sampled from a uniform distribution U(1, 4); (2) IP is downsampled with
the bicubic interpolation method to generate its LR image IL with a resolution of 48× 48;
(3) for an original 48ri × 48ri image patch IP, the coordinate bank is constructed BIP . For
each coordinate p ∈ BIP , its RGB value is denoted as cp. Then, the coordinate–RGB
pair set IP is constructed as Ofull = {(p, cp)}p∈BIP

; 4) the 48× 48 coordinate–RGB pairs
O = {(p, cp)}p∈A are randomly chosen from Ofull to evaluate the network.

We implemented SRCNN, VDSR, and LGCNet based on the settings given in [48]. For
other experiments, we adapted the same training settings given in [27]. Specifically, we
used the Adam optimizer [49] with an initial learning rate 1× 10−4. All of the experiments
were trained for 1000 epochs with a batch size of 16, and the learning rate decayed by a
factor of 0.5 every 200 epochs.

4.2. Evaluation Metrics

To evaluate the effectiveness of the proposed method, two commonly used evaluation
indicators were used in [50–53]. The most popular method for evaluating the quality of
outcomes is PSNR (the peak signal-to-noise ratio). For a RGB image, the PSNR can be
calculated as follows:



Sensors 2023, 23, 3573 9 of 16

PSNR = 10 log10

(
2552 × Np

MSE

)
. (13)

where Np is the total number of pixels in the image and MSE is the mean squared error,
which can be calculated as:

MSE =
1

3Np

Np

∑
i=1

3

∑
c=1

[I(i)c − K(i)c]
2

where I(i)c and K(i)c represent the intensity values of the ith pixel in the original and
reconstructed images in the cth color channel, respectively.

The structural similarity index (SSIM) can be used to measure the similarity between
two RGB images. The SSIM index can be calculated as follows:

SSIM(I, K) =
(2µIµK + c1)(2σIK + c2)(

µ2
I + µ2

K + c1
)(

σ2
I + σ2

K + c2
) (14)

where µI , µK, σI , σK, and σIK are the mean, standard deviation, and cross-covariance of
the intensity values of the original and reconstructed images in the three color channels,
respectively. The constants c1 and c2 are small positive constants to avoid instability when
the denominator is close to zero. Note that the above equations assume that the original
and reconstructed RGB images have the same resolution. If the images have different
resolutions, they need to be resampled before calculating PSNR and SSIM.

5. Results and Analysis

In this section, we compare our method with several state-of-the-art image super-
resolution methods, including the bicubic interpolation, SRCNN [32], VDSR [34], LGCNet
[35], EDSR[38], and two continuous image super-resolution methods, i.e., MetaSR [42] and
LIIF [27]. The bicubic interpolation, SRCNN [32], VDSR [34], LGCNet [35], EDSR [38],
and RDN [39] depend on the magnified scale. These methods require different models
for different upsampling scales during training, i.e., they cannot use the same model for
arbitrary SR scales. EDSR-MetaSR, EDSR-LIIF, and EDSR-ours use EDSR as the feature
extraction module. RDN-LIIF and RDN-ours use RDN as the feature extraction module.

5.1. Results on the Three Datasets
5.1.1. Comparison Results on the AID Dataset

Since the AID dataset has 30 scene categories, we only randomly selected 2 categories
to show the comparison results, which are the airport and the railway station. The results
are listed in Table 1 for upscale factors ×2, ×3, ×4, ×6, ×12, and ×18, where the bold
text represents the best results. It can be observed that our method obtains competitive
results for in-distribution scales compared to the previous methods. For out-of-distribution,
our method significantly outperforms the other methods in both the PSNR and SSIM. In
addition to the quantitative analysis, we also conducted qualitative comparisons, which are
shown in Figures 4 and 5. In Figure 4, the ×3 SR results of a railway station for different
methods are shown, where two regions are zoomed in to show the details (see the red and
green rectangles). The PSNR values are listed in the left-bottom corner of each image. In
Figure 5, we show the ×4 SR results of an airport for different methods. From these figures,
we can see that our method has the clearest details and the highest PSNR value.
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Table 1. Quantitative comparisons between the AID test set (PSNR (dB) and SSIM). (RS∗: railway
station, the bold in table is the highest value).

In-Distribution (SSIM↑/PSNR↑) Out-of-Distribution (SSIM↑/PSNR↑)Dataset Method ×2 ×3 ×4 ×6 ×12 ×18

Bicubic 0.8887/31.37 0.7949/28.39 0.7187/26.73 - - -
SRCNN [32] 0.8917/31.99 0.8049/28.95 0.7336/27.22 - - -
LGCNet [35] 0.8978/32.43 0.8127/29.19 0.7389/27.34 - - -

VDSR [34] 0.9025/32.72 0.8211/29.56 0.7515/27.70 - - -
EDSR [38] 0.9376/34.67 0.8246/29.08 0.7488/27.44 - - -

EDSR-MetaSR [42] 0.9375/34.71 0.8611/30.95 0.7885/28.83 0.6822/26.47 0.5452/23.57 0.5010/22.28
EDSR-LIIF [27] 0.9374/34.71 0.8617/30.97 0.7892/28.87 0.6849/26.54 0.5529/23.66 0.5082/22.35

Airport

EDSR-ours 0.9377/34.72 0.8617/31.00 0.7899/28.90 0.6860/26.58 0.5537/23.69 0.5091/22.39

Bicubic 0.8863/31.70 0.7753/28.39 0.6801/26.53 - - -
SRCNN [32] 0.8967/32.21 0.7992/29.03 0.7088/27.06 - - -
LGCNet [35] 0.9033/32.58 0.8045/29.18 0.7111/27.11 - - -

VDSR [34] 0.9088/32.88 0.8147/29.52 0.7270/27.50 - - -
EDSR [38] 0.9417/35.19 0.8127/29.04 0.7217/27.30 - - -

EDSR-MetaSR [42] 0.9412/35.18 0.8570/31.11 0.7690/28.76 0.6311/26.09 0.4562/22.93 0.4049/21.63
EDSR-LIIF [27] 0.9413/35.19 0.8575/31.13 0.7696/28.78 0.6330/26.13 0.4594/22.94 0.4063/21.62

RS∗

EDSR-ours 0.9414/35.20 0.8577/31.16 0.7711/28.83 0.6347/26.18 0.4610/23.01 0.4076/21.67

PSNR 23.56931 23.90753 24.23128

Reference SRCNN LGCNET VDSR

22.2144 24.20647 23.77635 24.32754 24.17867 24.45138

22.75862 25.38852 25.36949 25.37616

EDSR MetaSR LIIF Ours

19.86289 22.58802 26.82063 24.90831 26.61843 24.91071 27.04663 25.08946

Figure 4. Comparison results of the ×3 scale on the railwaystation_190 scene of the AID dataset. Two
local regions are zoomed in to show the detailed results. The PSNR values are listed in the bottom-left
corners.
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PSNR 27.31471 27.39008 27.74103

Reference SRCNN LGCNET VDSR

23.24411 27.80013 23.19251 28.50549 23.89744 29.75089

26.98619 28.81195 28.79446 28.90393

EDSR MetaSR LIIF Ours

23.89899 27.47631 26.91306 32.93378 26.90639 33.15246 27.36135 33.37435

Figure 5. Comparison results of ×4 scale on the Airport_240 scene of the AID dataset. Two local
regions are zoomed in to show the detailed results. The PSNR values are listed in the bottom-left
corners.

5.1.2. Comparison Results on UCMerced Dataset

Different from the AID dataset,UCMerced dataset has smaller number of images
and categories. Therefore, our model is trained and tested on the whole dataset. The
quantitative comparison results of these methods on the UCMerced dataset are listed in
Table 2. From this table we can see, our results are higher than LIIF at all magnification
scales. In addition, we also visualize the SR results for different methods in Figure 6. From
a visual point of view, both LIIF and our method outperform the other methods. Although
the visualization results of LIIF and our method are similar, the PSNR values of the whole
image and the local regions of our method are larger than LIIF, which means our method is
slightly better than LIIF.
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Table 2. Mean SSIM and PSNR (dB) of the UC Merced dataset(the bold in table is the highest value).

In-Distribution (SSIM↑/PSNR↑) Out-of-Distribution (SSIM↑/PSNR↑)Method ×2 ×3 ×4 ×6 ×12 ×18
Bicubic 0.8796/30.79 0.7636/27.47 0.6729/25.66 - - -

SRCNN [32] 0.9151/32.76 0.8095/28.83 0.7217/26.74 - - -
LGCNet [35] 0.9208/33.20 0.8180/29.09 0.7300/26.93 - - -

VDSR [34] 0.9262/33.66 0.8351/29.65 0.7486/27.43 - - -
EDSR [38] 0.9246/34.16 0.8158/29.86 0.6932/26.12 - - -

EDSR-MetaSR [42] 0.9262/34.43 0.8285/30.22 0.7454/27.91 0.6173/25.23 0.4477/22.13 0.3973/20.89
EDSR-LIIF [27] 0.9260/34.45 0.8285/30.20 0.7445/27.89 0.6185/25.23 0.4510/22.10 0.4005/20.85

EDSR-ours 0.9259/34.46 0.8287/30.26 0.7465/27.96 0.6202/25.31 0.4521/22.20 0.4013/20.94

PSNR 24.43241 24.65562 25.42434

Reference SRCNN LGCNET VDSR

26.03864 21.48025 26.2934 21.48999 27.08986 21.64182

24.47741 26.47024 26.43242 26.54713

EDSR MetaSR LIIF Ours

27.01215 20.86087 27.05631 21.90127 26.96846 21.71514 27.10536 22.01279

Figure 6. Comparison results of the ×4 scale on the dense residential_88 scene of the UC Merced
dataset. Two local regions are zoomed in to show the detailed results. The PSNR values are listed in
the bottom-left corners.

5.1.3. Comparison Results on the DIV2K Dataset

Unlike the above two datasets, the images in the DIV2K dataset are mainly natu-
ral. Since our method is proposed for remote sensing image SR, we only conducted the
quantitative comparisons on this dataset. In this dataset, we compare two versions of our
method with Bicubic, EDSR, EDSR-MetaSR, EDSR-LIIF, and RDN-LIIF. The EDSR-ours
and RDN-ours use EDSR and RDN to extract features, respectively. The comparison results
are listed in Table 3. From this table, we can see that for EDSR, our method has the best
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performance from the ×3 scale. For the ×2 scale, LIIF and EDSR-MeatSR are better than
our method as they are trained for this scale. Regarding the RDN, we only compare it with
LIIF. The comparison results demonstrate that our method can achieve the best results at
high scales.

Table 3. Quantitative comparison on the DIV2K validation set (PSNR (dB)), the bold in table is the
highest value.

In-Distribution (PSNR↑) Out-of-Distribution (PSNR↑)Method ×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

Bicubic 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59
EDSR [38] 34.55 30.90 28.94 - - - - -

EDSR-MetaSR [42] 34.64 30.93 28.92 26.61 23.55 22.03 21.06 20.37
EDSR-LIIF [27] 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48

EDSR-ours 34.60 30.97 29.02 26.78 23.75 22.22 21.23 20.53

RDN-LIIF [27] 34.99 31.26 29.27 26.99 23.89 22.34 21.31 20.59
RDN-ours 34.88 31.24 29.28 27.01 23.93 22.38 21.35 20.63

5.2. Ablation Study

In this section, we perform ablation studies to assess the effectiveness of each module,
where the EDSR is used as the feature encoder. Based on the baseline LIIF model, we progres-
sively add the positional encoding module and feature-enhanced MLP module to evaluate their
effectiveness. In order to further evaluate the effectiveness of the proposed feature-enhanced
MLP module, we replace the features with coordinates and embed them into the MLP. The
results of the ablation study are shown in Table 4. In this table, LIIF is our baseline. LIIF + PE is
the combination of LIIF and the positional encoding module. LIIF + PE + FE is the combination
of the positional encoding module and the feature-enhanced MLP module, which is our method.
Based on LIIF + PE + FE, the features in the feature-enhanced MLP module are replaced with
coordinates, and the resulting network is LIIF + PE + PF*. From this table, we can see that LIIF
+ PE + FE (our method) outperforms the LIIF at all scales except for the ×2 scale. This result
proves that the learning ability of the network can be effectively improved by embedding the
image features into the hidden layer of the MLP.

Table 4. Quantitative comparison of the ablation study (PSNR(dB)), the bold in table is the highest value.

In-Distribution (PSNR↑) Out-of-Distribution (PSNR↑)
×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

LIIF [27] 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48
LIIF + PE 34.53 30.91 28.97 26.73 23.72 22.20 21.21 20.51

LIIF + PE + FE 34.60 30.97 29.02 26.78 23.75 22.22 21.23 20.53
LIIF + PE + PF* 34.52 30.91 28.96 26.72 23.71 22.18 21.19 20.50

The positional encoding module is an important module in the proposed method.
As described in Section 3.2, there are three commonly used positional encoding methods,
which are the hand-craft approach, random approach, and learnable approach. Therefore,
in this section, we will discuss the effectiveness of these methods on the remote sensing
image SR task. The comparison results are listed in Table 5. In this table, LIIF + PE-hand
represents the network with the hand-craft positional encoding method, where b = 2 and
L = 10. i.e., ωi = 2i, i = 0, 1, · · · , 9. LIIF + PE-random shows that the weights are chosen
randomly from a normal distribution. In this network, the hyperparameters are set as
µ = 100 and Σ = 0. The LIIF + PE-learning is the network with the learnable positional
encoding method. Weights are learned through a MLP. The function τ(.) is a 2-layer MLP
with the GELU activation and hidden dimensions of 256. The dimensions of the Fourier
feature vector F are set to 768. γ is set to 10 in the normal distribution N (0, γ−2). From
Table 5, we can see that LIIF outperforms the other methods for in-distribution scales,
which are ×2, ×3, and ×4. However, after the ×6 scale, LIIF + PE + learnable achieves the



Sensors 2023, 23, 3573 14 of 16

best performance among all methods. Therefore, the learnable positional encoding method
is used in our network.

Table 5. Quantitative comparison of three different positional encoding approaches in Figure 3
(PSNR(dB)), the bold in table is the highest value.

In-Distribution (PSNR↑) Out-of-Distribution (PSNR↑)
×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

LIIF [27] 34.67 30.96 29.00 26.75 23.71 22.17 21.18 20.48
LIIF + PE-hand 31.65 28.47 26.98 25.07 22.46 21.18 20.35 19.75

LIIF + PE-random 34.56 30.86 28.94 26.70 23.70 22.17 21.19 20.49
LIIF + PE-learnable 34.53 30.91 28.97 26.73 23.72 22.20 21.21 20.51

6. Conclusions

In this paper, we propose a novel network structure for continuous remote sensing
image SR. By using the LIIF as our baseline, two important modules are introduced to
improve its performance, which are the positional encoding module and the feature-
enhanced MLP module. The positional encoding module can capture complex positional
relationships by using more coordinate information. The feature-enhanced MLP module
is constructed by adding prior information from the LR image to the hidden layer of
MLP, which can improve the expression and learning ability of the network. Extensive
experimental results demonstrate the effectiveness of the proposed method. It is worth
noting that our method outperforms the state-of-the-art methods for magnifications outside
of the training distribution, which is important in practical applications.

As far as we know, the inference speed of the MLP is a bit slow, which limits the
application of our method. In the literature, there are some acceleration algorithms for the
MLP architecture, which can be used to decrease the inference time. Therefore, we will
attempt to integrate these methods into our algorithm to improve its efficiency.
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