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Abstract: Cluster validity indices (CVIs) for evaluating the result of the optimal number of clusters
are critical measures in clustering problems. Most CVIs are designed for typical data-type objects
called certain data objects. Certain data objects only have a singular value and include no uncertainty,
so they are assumed to be information-abundant in the real world. In this study, new CVIs for
uncertain data, based on kernel probabilistic distance measures to calculate the distance between two
distributions in feature space, are proposed for uncertain clusters with arbitrary shapes, sub-clusters,
and noise in objects. By transforming original uncertain data into kernel spaces, the proposed CVI
accurately measures the compactness and separability of a cluster for arbitrary cluster shapes and
is robust to noise and outliers in a cluster. The proposed CVI was evaluated for diverse types of
simulated and real-life uncertain objects, confirming that the proposed validity indexes in feature
space outperform the pre-existing ones in the original space.

Keywords: uncertain data; cluster validity index; kernel probabilistic distance; feature space

1. Introduction

The purpose of clustering is to partition objects into groups with criteria such that
the similarity within the groups and the dissimilarity among different groups should be
maximized [1,2]. Although clustering methods have been widely used in many applications,
most clustering algorithms do not provide the optimal number of clusters. Partitional-
based clustering algorithms such as K-means clustering [3] must preset the number of
clusters [4]. As cluster information is rarely known in the real world, it is crucial to
evaluate the clustering results depending on the different numbers of clusters. Although
many clustering methods exist for diverse applications, such as pattern recognition [5],
semiconductor manufacturing [6], and healthcare [7], they have been developed primarily
for only certain data or fixed values. However, the embedded uncertainty of data is essential
in many applications. For instance, a patient’s blood pressure may not be consistent because
of environmental conditions and instrument errors. Furthermore, measurement values
are continuously changing because of the positions of instrumentation devices or workers’
conditions. Aside from these examples, data randomness, missing data, delayed updates,
and worker fatigue are other factors of data uncertainty [8,9].

Uncertain data are assumed to be prevalent information in the real world, e.g., mea-
surement errors and environmental conditions. The uncertainty of uncertain data can be
expressed by probability density functions (PDFs). Figure 1 illustrates two uncertain data,
each distributed by a PDF. The standard method of converting uncertain data is to trans-
form a summary statistic (e.g., mean or median) into certain data. However, these statistics
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could lose extra information of uncertainty that is significant to capture the uncertainty
information of uncertain objects.

Figure 1. Two uncertain datasets, each expressed by a PDF.

Cluster validity indices (CVIs), which are indicators for validating the quality of
clustering algorithms, have been widely used to determine the correct number of clusters
for the given data. As the CVIs only use input data information, they must be used
according to the characteristics of the data. The two components of a CVI are compactness
and separability measures. The former refers to an intra-cluster distance, and the latter
represents an inter-cluster distance. Most CVIs indicate that a good partition produces a
small compactness value and a high separability value. However, the existing CVIs are
vulnerable to validating cluster results when the shapes of the clusters are not spherical
clusters [10,11].

For certain data, several CVIs, such as the Dunn [12], Calinski–Harabasz [13], Davies–
Bouldin [14], and Xie–Beni [15] indices, have been proposed based on combinations of
compactness and separability measures. However, most of the existing CVIs have been
developed for certain data. There have been few studies on uncertain data. Moreover,
relatively new CVIs are also being designed to incorporate mathematical theories into
pre-existing CVIs, such as the K-nearest neighbor algorithm, which is used to compute
compactness and separation by taking into account shared/non-shared data pairs [10], and
principal component analysis, which is used to capture the geometry of the clusters [16]; or
to develop clustering algorithms to cluster more well-separated clusters [1].

To apply uncertain data to the existing CVIs’ formulas, they should be changed to
calculate distance measures of compactness and separability. In a study of uncertain CVIs,
Tavakkol et al. [17] proposed CVIs for uncertain data to calculate the distance between two
uncertain objects using probabilistic distance measures in the original space. However, it
leads to sensitivity to arbitrary shapes of clusters, sub-clusters, and outliers because of the
clusters shape that may cause inaccurate compactness and separability [11].

Consequently, this study proposes new uncertain CVIs for uncertain data objects based
on kernel probabilistic distance measures in feature space. The proposed CVIs for uncertain
objects are designed to adapt the kernel-based Bhattacharyya probabilistic distance in
kernel spaces. In kernel space, the proposed CVIs produce accurate compactness and
separability for the arbitrary shapes of clusters by transforming them into elliptical shapes
in feature space. Figure 2 illustrates that the ambiguous shape of a dataset in the original
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space is transformed into a relatively elliptical, circular shape in feature space; thus, the
kernel transformation can improve performance in calculating accurate compactness and
separability. Furthermore, the proposed approaches could be robust to noise and outliers in
a cluster. The superior performance of the proposed CVIs was evaluated through diverse
experiments, including simulated and real-life datasets.

Figure 2. Visualization of kernel transformation: (a) asymmetry shape in original space; (b) trans-
formed shape in feature space.

This paper is organized as follows. Section 2 reviews the previous studies on CVIs.
New CVIs for uncertain data based on a kernel probabilistic distance measure are proposed
in Section 3. After the extensive experiments are presented in Section 4, the conclusions
and future studies are provided in Section 5.

2. Related Work
2.1. CVI for Certain Data

In the past few decades, many CVIs have been developed to determine the optimal
number of clusters. Most CVIs focus on calculating compactness and separability measures.
The combination of the two measures is composed of a ratio-type or summation-type index.
This section presents several popular CVIs that have been evaluated in many applications.

The Dunn (DU) index [12]:

DUK =
mini,j=1,··· ,K, i 6=j

{
minx∈Ci , y∈Cj d(x, y)

}
maxi=1,··· ,K

{
maxx,y∈Ci d(x, y)

} . (1)

Compactness and separability are computed using the maximum diameter among all
clusters and the minimum pair-wise distance between objects in different clusters. The DU
index is integrated by the ratio type of separability to compactness. Thus, the maximum
value of the DU index is the optimal number of clusters (max. S/C).

Calinski–Harabasz (CH) index [13]:

CHK =
∑K

i=1 ni·d(zi·ztot)
2

K− 1
· n− K

∑K
1=1 ∑x∈Ci

d(x, zi)
2 (2)

The CH is composed of the ratio type of separability and compactness like the DU
index. ztot is the centroid of the entire dataset. Compactness and separability are computed
using within- and between-cluster sums of squares. Thus, the maximum value for CH is
the optimum partition (max. S/C).

The Davies–Bouldin (DB) index [14]:

DBK =
1
K

max
i=1, ...,K, i 6=j

{(√
1
ni

∑x∈Ci
d(x, zi)

2 +

√
1
nj

∑y∈Cj
d
(
y, zj

)2
)

/d
(
zi, zj

)}
(3)
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where zi and zj are the centroids of each cluster. Compactness and separability are calcu-
lated using the sum of mean squares of individual clusters, unlike the DU index, which
considers the compactness and separability of the total cluster. Compactness is the com-
puted sum of the pair-wise distances between different clusters; separability is calculated
differently for each cluster. The DB index is comprised of the ratio types of compactness
and separability. Therefore, the minimum value of DB is the optimum partition (min. C/S).

The pre-existing CVIs are sensitive to sub-clusters, arbitrary shapes, and noise in
clusters for the compactness measure [18]. This study overcomes those drawbacks by
conducting a spatial transformation from the original space into feature space using a
kernel function that correctly measures cluster compactness and separability.

2.2. CVI for Uncertain Data

Most CVIs have focused on certain data or fixed values [19]. Certain data do not have
uncertainty caused by several factors and environments such as sensor measurement error,
repeated measurements by workers, or equipment operating environments. Uncertain data
objects come in two possible forms: (1) multiple points for each object and (2) a PDF for each
object, either given or obtained by fitting the multiple points [20]. Several studies related to
clustering uncertain data have been conducted. However, CVIs for uncertain data have
rarely been used. The CVIs are crucial criteria for validating the results of clusters [21,22]
to find the appropriate number of clusters. Therefore, the study of CVIs for uncertain data
is necessary.

In this study, the proposed CVIs use kernel probabilistic distance measures to compute
the distance between two uncertain data objects. There are many popular probabilis-
tic distance measures, such as Bhattacharyya distance [23], Wasserstein distance, and
Kullback–Leibler divergence [24]. This study uses the Bhattacharyya distance measure. The
Bhattacharyya distance measure is one of the widely used probabilistic distance measures
and has been generally used in diverse applications.

The Bhattacharyya distance between two probability distributions can be calculated
in discrete and continuous cases. Let p and q be the continuous probability distributions
over the same space. The definition of the Bhattacharyya distance for a continuous case in
original space can be described as follows:

PDBhatt(p, q) = − ln
{ ∫

x

√
p(x)q(x)dx

}
(4)

There are closed-form solutions for many probabilistic distance measures, including
the Bhattacharyya distance, for cases where uncertain data objects are modeled with
multivariate normal distributions. As probabilistic distance measures can capture the
distance between PDFs, they can also be used to capture the distance between uncertain
data objects [25]. The Bhattacharyya distance is a special case of Chernoff distance with
parameters α1 = α2 = 1/2, and the closed-from of Bhattacharyya distance for multivariate
normal PDFs is defined in Equation (5):

PDBhatt(p, q) =
1
8
(
µp − µq

)′(
Σp + Σq

)−1(
µp − µq

)
+

1
2

ln

 ∣∣Σp + Σq
∣∣

2
(∣∣Σp|+|Σq

∣∣) 1
2

 (5)

where µp and µq are means, and Σp and Σq are covariance matrices of P ∼ MVN
(
µp, Σp

)
and Q ∼ MVN

(
µq, Σq

)
.

This study models the Bhattacharyya distance between two uncertain data objects
in kernel space. We can compute the probabilistic distance between two uncertain data
objects in feature space using a kernel function.
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3. Proposed CVIs for Uncertain Data
3.1. Kernel Probabilistic Distance Measure in Feature Space

Computing the probabilistic distance is a nontrivial problem. We can compute the
Bhattacharyya distance in feature space by referring to several steps developed by Zhou and
Chellappa [26]. In capturing the probabilistic distance, suppose that x1 = {x11, x21, . . . , xN1}
and x2 = {x12, x22, . . . , xN2} are the given objects in original space Rd with a multivariate
normal density function:

N(x; µ, Σ) =
1√

(2π)d|Σ|
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(6)

The radial basis function (RBF) kernel function displayed in Equation (7) can be used
to transfer original data into feature space for calculating the distance between uncertain
data objects x1 and x2. The RBF kernel function is commonly used in various fields and
algorithms because it outperforms other kernel functions [27,28].

Kij = exp
(
− 1

2σ2 ‖xi − xj‖2
)

, i, j = 1, 2 (7)

In kernel function K(x1, x2), where x1, x2 ∈ Rd, and the non-linear mapping function φ and
kernel Gram matrix K are defined as K = ΦTΦ, where Φ := ΦN = [φ(x1), φ(x2), . . . , φ(xN)] ∈
R f , and f � d represents the data transformed to kernel space. The mean µ and covariance
matrix Σ in feature space are estimated as:

µ = N−1
N

∑
n=1

φ(xn) = Φ, (8)

Σ = N−1 ∑N
n=1(φn − µ)(φn − µ)T = ΦJJTΦT, (9)

where J = 1√
n (IN − s

→
1 ) with sN×1 = 1

N

→
1

T
and

→
1 = [1, 1, . . . , 1].

The covariance matrix Σ must be converted into approximation form because of
its rank-deficient characteristic f � d. Therefore, we can use the approximation form
as follows:

C = ΦJJTΦT + ρI f = WWT + ρI f = ΦAΦT + ρI f , (10)

where W .
= ΦJQ, A .

= JQQTJT, and ρ is a user parameter that should be pre-specified
in advance.

Obtaining the matrix Q requires computing the top r eigenvalues matrix Λr and the
top r eigenvectors matrix Vr of K = JTKJ, where top r is a pre-specified parameter; thus,
r = 3 is used. Q is an N × r matrix calculated as follows:

Q .
= Vr

(
Ir − ρΛ−1

r

)1/ 2
. (11)

Define matrix P as:

P(N1+N2)×(r1+r2)
=

[√
α1J1Q1 0

0
√

α2J2Q2

]
. (12)

The Bhattacharyya distance is a special case of Chernoff distance; it must be set to
α1 = α2 = 1/2 for all experiments. The τi, i = 1, . . . , r1 + r2, are eigenvalues of a Lch matrix,
with dimensions of (r1 + r2)× (r1 + r2) given by

Lch = PT
[

ΦT
1

ΦT
2

][
ΦT

1 ΦT
2

]
P = PT

[
K11 K12
K21 K22

]
P. (13)
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Scalar values ε11, ε12, ε22 are computed by Equation (14).

εij = sT
i Kijsj − sT

i [Ki1Ki2]Bch

[
K1j
K2j

]
sj (14)

where Bch = P(ρIr1+r2 + Lch)
−1PT with dimensions of (N1 + N2)× (N1 + N2).

The kernel-based probabilistic Bhattacharyya distance between two uncertain data
objects x1 and x2 in feature space is calculated as follows:

KPDBhatt = 0.5[α1α2ρ−1(ε11 + ε22 − 2ε12 ) + 0.5 ∑r1+r2
i=1 log

ρ + τi
λi,1

+ ∑r1+r2
i=1 log

ρ + τi
λi,2

,

(15)
where λi,j , i = 1, . . . , rj are the eigenvalues of Cj:

λi,j =

{
λi,j, when i = 1, . . . , rj

ρ, when i = rj + 1, . . . , r1 + r2
(16)

3.2. New CVI for Uncertain Data

The uncertain data objects in the cluster are transformed into feature space to compute
the compactness and separability in the feature space by applying a kernel function. The
mapped uncertain data objects are used to compute the distance between different clusters
for calculating compactness and separability, which are used to obtain the values of the
proposed CVIs. The calculated value of the indices changes according to the number of
clusters K, and the proposed uncertain feature space DU (UFSDU) and uncertain feature
space CH (UFSCH) index, are defined in Equations (17) and (18), respectively:

UFSDU index:

UFSDUK =
mini,j=1,··· ,K, i 6=j

{
minx∈Ci , y∈Cj KPDBhatt(x, y)

}
maxi=1,··· ,K

{
maxx,y∈Ci KPDBhatt(x, y)

} (17)

UFSCH index:

UFSCHK =
∑K

i=1 ni·KPDBhatt(zi·ztot)
2

K− 1
· n− K

∑k
i=1 ∑x∈Ci

KPDBhatt(x, zi)
2 (18)

These proposed CVI equations are similar to the DU and CH indices, except for the
term KPDBhatt(x, y), which is the computed distance between two uncertain data objects in
feature space in Equation (15).

4. Experimental Results

In this study, we propose two CVIs that are calculated probabilistic distances between
different uncertain data objects in feature space. The K-medoids clustering algorithm
proposed by Jiang et al. [19] was used to compare the performances of the proposed
CVIs in feature space. The K-medoids algorithm is one of the most useful algorithms in
clustering problems, which uses probabilistic distance measures to capture the similarity
between uncertain objects. It differs from the popular K-means clustering algorithm used
for clustering data into groups in its robustness to outliers. The K-means method represents
each cluster by the mean of all objects in this cluster, whereas the K-medoids method
calculates the distance between every pair of all uncertain data objects and the medoid
within a cluster [19]. Then, of all calculated distance values, uncertain data with the
smallest distances are assigned as a new medoid for the cluster. We proceeded with the
experiments by setting the value of K, which is the number of clusters and is used as the
probabilistic distance measure. In this study, we varied the number of clusters (K) and the
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Bhattacharyya distance measure to compute distances between different uncertain data
objects in feature space.

4.1. Experimental Procedure for Uncertain Data

Experiments were performed with artificial and real-world datasets that may have
sub-clusters and clusters with asymmetrical, arbitrary, and noisy shapes to evaluate the per-
formances of the proposed CVIs. A normalization process was conducted for each feature
of the datasets to reduce the scale gap between different features defined in Equation (19):

xnorm =
x− xmin

xmax − xmin
, (19)

where xmin and xmax are the minimum and maximum values of one feature of the dataset.
We then simulated uncertain data objects from certain data objects by following the method-
ology used by [20].

The pre-existent DU and CH indexes were used to compute uncertain data objects
in original space—uncertain original space, DU (UOSUD), and uncertain original space,
CH (UOSCH)—to confirm the validity of the proposed CVIs. The overall experimental
procedure is represented by Algorithm 1. The procedure used to compare the performances
of the proposed CVIs with those of the previous CVIs was as follows: The inputs included
the number of uncertain data objects N, the number of object features M, and the number
of clusters K. We modeled the uncertain data with multivariate normal distributions. The
means of the distributions were the original certain data. The covariances were estimated
as follows:

f
(

Sk
i

∣∣∣Ψk, d f k
)
=

∣∣Ψk
∣∣ d f k

2

p·d f k

2 Γp

(
d f k

2

) ∣∣∣Sk
i

∣∣∣− d f k+p+1
2 e−

1
2 tr(Ψk(Sk

i )
−1

), i = 1, . . . , nk, k = 1, . . . , K (20)

where Sk
i represents the covariance matrices for objects in class k with the inverse Wishart

PDF [29], as defined in Equation (20) [20]. Ψk is a positive definite scale matrix and d f k is
the degree of freedom. p indicates the dimensions of Sk

i , tr(·) is the trace of a matrix, and Γ
is the multivariate gamma function.

Algorithm 1: K-medoids for uncertain data using a probabilistic distance measure in feature space.

1. Input: n: The number of objects in cluster k, K: The number of clusters, iter = 0;

2. Randomly select the cluster medoids C(0) = {c(0)1 , . . . , c(0)K } obtained from the initial clusters
3. Initialize
4. CVIs =

{
cvi(1), . . . , cvi(K)

}
obtained UOSDU, UOSCH, UFSDU, and UFSCH

5. Repeat
6. for k = 2 to K
7. c(old)

k = c(0)k ; c(new)
k = 0

8. Compute the new medoids:

9. while c(old)
k 6= c(new)

k

10. p = argmin︸ ︷︷ ︸
1≤i≤n

k
∑

j=1
KPDBhatt(xi, cjk), where j is an index of cluster medoid in ck

11. c(new)
k = xp

12. end
13. Calculate the cvi(k) using Equations (1), (2), (17), and (18).
14. end
15. iter = iter + 1
16. Until (iter = Maxiter)

Step 1: Set K initial clusters with uncertain objects randomly for a given dataset. Run
a K-medoids clustering algorithm with different values for the K parameter (2 ≤ K ≤10).
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Step 2: Obtain the medoids of each cluster for which the sum of the probabilistic
distance between the objects is the smallest.

Step 3: Calculate CVIs for all the partitions. We calculated the compactness and sepa-
rability in kernel space using an RBF kernel function with σ (bandwidth in the RBF kernel
function). The optimal value was determined through a set of preliminary experiments by
taking [0.1, 0.2, . . . , 4] in σ.

Step 4: We increased the reliability of experimental results by replicating the experi-
ment 100 times for the same dataset with different trial seeds to obtain the initial medoids
in Step 1 and used the average value of CVI for each cluster.

Step 5: Finally, we evaluated each CVI and the suggested number of clusters from a
CVI; the actual numbers of clusters of a dataset were then compared.

4.2. Experiments with Artificial and Real-World Datasets

Experiments were conducted to evaluate the proposed CVIs in comparison to the
pre-existent CVIs. These experiments used 10 datasets with sensitive characteristics con-
taining arbitrariness, sub-clusters, asymmetry, and noise provided by the UCI (https:
//archive.ics.uci.edu/, accessed on 10 March 2023) [30] and Tomas Barton repositories
(https://github.com/deric/clustering-benchmark, accessed on 10 March 2023), which have
122 artificial datasets with arbitrariness, sub-clusters, and asymmetric shapes in two or
three features. The datasets from UCI repository, (e.g., D3, D4, D5, and D7) were collected
in real environmental conditions; however, the other datasets were artificially created,
which can be checked in Tomas Barton repositories.

The summary of datasets used for the experiments is presented in Table 1. Two-
dimensional (2D) and three-dimensional (3D) dataset shapes are illustrated in Figure 3.
The CVI values were computed by changing the number of clusters (K) in each dataset and
then comparing the predicted labels of experiments to the actual labels in the datasets.

Table 1. Summary of datasets.

Dataset Index Dataset Name # of Obs. # of Dim. # of Clusters Projection Shape

D1 A.K Jain’s Toy 373 2 2 Asymmetry, Arbitrary shape

D2 Flame 240 2 2 Sub-cluster, Noise

D3 Iris 150 4 3 -

D4 Thyroid 215 5 2 -

D5 Wine 178 13 3 -

D6 Wisconsin 683 9 2 -

D7 Harberman 301 3 2 Random shape

D8 Chainlink 1000 3 2 Sub-cluster, Arbitrary shape

D9 Lsun 400 2 3 Asymmetry, Arbitrary shape

D10 Zelnik1 299 2 3 Sub-cluster

4.3. Performance Comparison of the Proposed CVIs

The experimental results are given in Tables 2–11. The actual number of clusters is
below the name of the dataset. It is also noted with an asterisk (*) adjacent to the actual
number of clusters along the top. Moreover, all the results of the datasets are presented in
Table 12, indicating the performance of the proposed CVIs by a quantitative figure. Each
cell in Table 12 represents the optimal number of clusters K determined by its CVI criteria.

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://github.com/deric/clustering-benchmark
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Figure 3. Shapes of 2D and 3D datasets: (a) D1 dataset; (b) D2 dataset; (c) D7 dataset; (d) D8 dataset;
(e) D9 dataset; (f) D10 dataset.

Table 2. Performance results for D1.

CVI
# of Clusters

2 * 3 4 5 6 7 8 9 10

D1
(2)

UOSDU 0.00075 0.00063 0.00049 0.00046 0.00043 0.00047 0.00044 0.00042 0.000410

UOSCH 554.4796 537.8279 573.5387 586.5310 576.5872 562.0666 575.2021 566.6556 567.6008

UFSDU 0.011830 0.00727 0.007410 0.006350 0.006920 0.006390 0.006740 0.00580 0.005630

UFSCH 256.0945 204.767 167.9338 149.5915 138.3076 128.206 122.4676 117.0263 112.4593

Table 3. Performance results for D2.

CVI
# of Clusters

2 * 3 4 5 6 7 8 9 10

D2
(2)

UOSDU 0.00578 0.00581 0.00583 0.00533 0.00494 0.00494 0.00452 0.00454 0.00448

UOSCH 218.9052 188.6698 201.7685 195.0877 190.2412 190.7961 192.3785 187.7774 186.0032

UFSDU 0.01875 0.01433 0.01619 0.01386 0.01284 0.01261 0.01263 0.0125 0.01271

UFSCH 246.7711 190.3472 184.7522 163.52 150.3938 143.1108 138.9139 131.6189 127.3284

Table 4. Performance results for D3.

CVI
# of Clusters

2 3 * 4 5 6 7 8 9 10

D3
(3)

UOSDU 0.57393 0.18691 0.06671 0.04599 0.03375 0.03045 0.02475 0.02443 0.02427

UOSCH 393.8149 340.7616 288.9103 257.4766 227.8328 211.7321 193.9894 179.4227 172.1492

UFSDU 0.78121 0.05291 0.0332 0.02818 0.0201 0.02217 0.02033 0.01676 0.01503

UFSCH 97.24412 100.9677 83.47847 74.68629 65.08186 59.80128 55.42499 51.32508 48.54411
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Table 5. Performance results for D4.

CVI
# of Clusters

2 * 3 4 5 6 7 8 9 10

D4
(2)

UOSDU 0.01059 0.00702 0.00447 0.00389 0.00338 0.00285 0.0029 0.00264 0.00254

UOSCH 52.44662 49.27229 45.29772 44.23136 46.29286 43.05835 40.0334 38.99379 36.43862

UFSDU 0.09045 0.02678 0.02097 0.01941 0.0186 0.0166 0.01728 0.01604 0.01577

UFSCH 88.16833 63.62494 54.54528 48.32164 43.33752 38.65073 35.53446 32.89777 30.6346

Table 6. Performance results for D5.

CVI
# of Clusters

2 3 * 4 5 6 7 8 9 10

D5
(3)

UOSDU 0.28546 0.19218 0.16953 0.13451 0.13042 0.12188 0.1222 0.11775 0.11498

UOSCH 46.98845 41.61822 34.08324 29.45127 26.66111 23.71564 21.97848 20.8878 19.0692

UFSDU 0.1351 0.13992 0.12361 0.11102 0.1058 0.10544 0.10343 0.10402 0.10242

UFSCH 166.5115 94.11775 70.17926 57.15066 48.48219 42.44803 38.19718 34.55733 31.1674

Table 7. Performance results for D6.

CVI
# of Clusters

2 * 3 4 5 6 7 8 9 10

D6
(2)

UOSDU 0.10223 0.04719 0.02262 0.01209 0.00742 0.00342 0.0014 0.00109 0.00075

UOSCH 237.829 186.8503 145.4631 119.3866 98.36381 89.72379 80.18472 70.83073 66.12163

UFSDU 0.22631 0.10763 0.04928 0.03902 0.01416 0.01228 0.0084 0.00605 0.00391

UFSCH 349.3685 261.4169 205.8692 171.2457 144.4285 124.5582 109.2653 97.50292 88.98401

Table 8. Performance results for D7.

CVI
# of Clusters

2 * 3 4 5 6 7 8 9 10

D7
(2)

UOSDU 0.00198 0.0014 0.00112 0.00086 0.00078 0.00089 0.00069 0.00079 0.00076

UOSCH 128.8359 117.8517 104.8203 97.56451 95.82686 92.17925 86.85381 84.98897 82.71107

UFSDU 0.13021 0.02577 0.01681 0.01199 0.01108 0.01122 0.01132 0.01028 0.00945

UFSCH 319.3255 171.7169 127.0638 104.5919 90.63319 80.94442 72.86994 67.51974 62.62473

Table 9. Performance results for D8.

CVI
# of Clusters

2 * 3 4 5 6 7 8 9 10

D8
(2)

UOSDU 0.00019 0.00017 0.00017 0.00017 0.00017 0.00018 0.00021 0.00019 0.00017

UOSCH 419.8882 371.9768 388.8548 430.2229 426.5956 430.8854 449.3122 438.7834 417.3569

UFSDU 0.00439 0.00237 0.00204 0.00114 0.0013 0.00118 0.00149 0.00153 0.0014

UFSCH 445.5408 463.2664 449.4758 439.8262 425.4487 411.5018 422.1565 428.8755 437.9047
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Table 10. Performance results for D9.

CVI
# of Clusters

2 3 * 4 5 6 7 8 9 10

D9
(3)

UOSDU 0.01277 0.00168 0.00087 0.00081 0.00069 0.00062 0.0006 0.00063 0.00054

UOSCH 316.7407 406.3877 395.188 401.578 380.968 363.1193 365.4242 349.9761 351.8199

UFSDU 0.01439 0.02006 0.01697 0.01119 0.00658 0.00574 0.00485 0.00472 0.00416

UFSCH 190.3465 205.1745 189.6315 175.6124 164.8462 154.2108 149.907 141.5702 133.6363

Table 11. Performance results for D10.

CVI
# of Clusters

2 3 * 4 5 6 7 8 9 10

D10
(3)

UOSDU 0.030644 0.049296 0.048849 0.048798 0.046752 0.044594 0.042478 0.037749 0.041905

UOSCH 235.4205 161.3342 142.117 135.4194 127.012 126.4954 125.6673 123.9964 132.4379

UFSDU 0.00368 0.00123 0.00123 0.00115 0.00103 0.00087 0.00073 0.00077 0.00056

UFSCH 102.6013 106.5976 99.7133 98.79822 97.68495 95.67929 95.82844 96.62246 102.6371

Table 12. Difference between the actual and estimated numbers of clusters in lower-
dimensional datasets.

Dataset Dim # of
Clusters UOSDU UOSCH UFSDU UFSCH

D1 2 2 � 5 � �
D2 2 2 4 � � �
D3 4 3 2 2 2 �
D4 5 2 � � � �
D5 13 3 2 2 � 2

D6 9 2 � � � �
D7 3 2 � � � �
D8 3 2 8 8 � 3

D9 2 3 2 � � �
D10 2 3 � 2 2 �

# of successes in estimating the optimal
number of clusters 5 5 8 8

The bold values with gray-shaded backgrounds indicate the optimal cluster K decided
by each CVI. As presented in Table 2, three of the CVIs succeeded in estimating the number
of clusters as two in D1. UOSCH failed. The proposed UFSDU and UFSCH also successfully
predicted the number of clusters in D2. In contrast, UOSDU failed to estimate the number
of clusters in D2.

Although the proposed UFSDU index and the pre-existent CVIs failed to predict
the number of clusters in D3, UFSCH was successful. All CVIs correctly predicted the
number of clusters for some datasets; see Tables 5, 7 and 8. In contrast, the proposed
UFSDU index is the only CVI that correctly predicted the actual number of clusters in
D5, as presented in Table 6. Furthermore, the UFSDU index predicted the actual number
of clusters of D8. D8’s shape (Figure 3) is classified distinctly into two classes when
viewed visually. However, it is challenging to calculate the compactness and separability
of a cluster in the original space. Nevertheless, the UFSDU index was successful in such
predictions; the UFSCH forecasted the number of clusters as three, which is close to the
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actual number of clusters, two. The kernel transformation facilitates computation to obtain
greater compactness and separability in the feature space than the original space, leading
to high-performance clustering.

The UOSCH index and the new CVIs predicted the number of clusters to be three in
D9, and the UOSDU and UFSCH indexes successfully estimated the number of clusters
in D10. Table 12 presents a summary of the results of the 10 datasets above, whereas the
symbol of a circled dot (�) indicates that the CVI accurately predicted the actual number
of clusters. As presented in Table 12, the pre-existent CVIs precisely estimated the number
of clusters for five experimental datasets, whereas the newly proposed CVIs accurately
predicted the number of clusters for eight datasets—three more than the pre-existent CVIs.

5. Conclusions

In this study, we proposed novel cluster validity indices (CVIs) for uncertain data
objects in feature space. Unlike conventional CVIs in original space, the proposed CVIs are
used for uncertain data objects with arbitrariness, sub-clusters, and noisy shapes of clusters
that are hard to evaluate, by transforming the uncertain data from the original space to the
feature space, which is performed by the kernel function. The proposed CVIs measure the
compactness and separability of each cluster in kernel space, which transforms the original
data into a higher-dimensional space, leading to less sensitivity to the arbitrary shapes of
clusters and more robustness to noise and outliers. We compared the performances of the
proposed CVIs with those of pre-existent CVIs that only consider for the original space.
The Bhattacharyya distance measure, one of the most widely used for calculating distance,
was used to perform experiments with several artificial and real-life datasets to capture
the distances between probability density functions. Numerical examples, including a
real-life case study and artificial datasets, confirmed that our proposed CVIs are robust
to arbitrary cluster shapes, especially sub-clusters, and are promising alternatives for
evaluating the fitness of clustering results that can find the optimal number of clusters,
K. The proposed CVIs outperform the pre-existent CVIs because of the application of
kernel functions to uncertain data, transforming them from the original space to the
feature space. As for practical significance, the proposed CVIs could be utilized in diverse
applications. For example, Kim et al. proposed new a multivariate kernel density estimator
for uncertain data classification for mixed defect patterns on DRAM wafer maps [31]. The
proposed CVI method could be applied for evaluating the number of defect patterns on
wafer maps. However, there are some limitations to the proposed CVIs. The uncertain
data are assumed to have multivariate normal distributions in advance to compute the
distances between different uncertain data objects. The uncertainty of the uncertain data
may have a variety of probability functions (normal distribution, exponential distribution,
etc.), and some cannot be strictly modeled by PDFs. This might be overcome through
methods for generating random variables and support-measure data description, which is
a non-parametric machine learning method that does not require an assumption of a prior
distribution to be made in advance.

Future research should consider the compactness measure in kernel space in advanced
machine learning algorithms, such as support vector data descriptions or Bayesian frame-
works of Bayesian support vector data descriptions. The concepts of our CVIs can also be
applied to other clustering algorithms.
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