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Abstract: Wearable wireless biomedical sensors have emerged as a rapidly growing research field.
For many biomedical signals, multiple sensors distributed about the body without local wired
connections are required. However, designing multisite systems at low cost with low latency and
high precision time synchronization of acquired data is an unsolved problem. Current solutions
use custom wireless protocols or extra hardware for synchronization, forming custom systems with
high power consumption that prohibit migration between commercial microcontrollers. We aimed
to develop a better solution. We successfully developed a low-latency, Bluetooth low energy (BLE)-
based data alignment method, implemented in the BLE application layer, making it transferable
between manufacturer devices. The time synchronization method was tested on two commercial BLE
platforms by inputting common sinusoidal input signals (over a range of frequencies) to evaluate time
alignment performance between two independent peripheral nodes. Our best time synchronization
and data alignment method achieved absolute time differences of 69 ± 71 µs for a Texas Instruments
(TI) platform and 477 ± 490 µs for a Nordic platform. Their 95th percentile absolute errors were more
comparable—under 1.8 ms for each. Our method is transferable between commercial microcontrollers
and is sufficient for many biomedical applications.

Keywords: Bluetooth low energy (BLE); biosensor; time synchronization; wireless sensor network;
Internet of things (IoT)

1. Introduction

Recent development of wireless technologies and low-power wireless transmission
protocols have paved the way for using wireless biosensors to continuously monitor human
biosignals [1–7]. The use of low-power BLE (Bluetooth low energy), ZigBee, and Wi-Fi
(IEEE 802.11ah or Wi-Fi HaLow) is increasing rapidly in Internet of things applications,
wearable wireless systems for health monitoring, and related areas [8–13]. EEG (electroen-
cephalogram), ECG (electrocardiogram), and EMG (electromyogram) are frequently used in
medical and health applications. These applications require low power consumption, low
latency, and high bandwidth data transmission. Comparing different low-power wireless
transmission protocols, BLE has much lower power consumption (~1 mA compared to
~10 mA for low-power Wi-Fi), as well as a high transmit rate of 2 Mbps physical layer com-
pared to ZigBee’s 250 kbps [14–18]. The faster transmit rate supports higher bandwidths
and lowers latency. Although custom wireless protocols might exceed this performance,
they are difficult and expensive to develop and upgrade, whereas improved commercial
off-the-shelf device performance occurs at a rapid pace. Hence, we sought to develop
wearable systems based on the standard BLE 5.0 wireless transmission protocol.

Most biosignal applications require multiple signal channels [19]. For example, two
EMG channels are typically required for myoelectric control of a prosthesis, our own

Sensors 2023, 23, 3954. https://doi.org/10.3390/s23083954 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083954
https://doi.org/10.3390/s23083954
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7781-0800
https://orcid.org/0000-0001-8657-4213
https://orcid.org/0000-0002-2811-200X
https://orcid.org/0000-0003-0584-3448
https://orcid.org/0000-0002-0729-2523
https://doi.org/10.3390/s23083954
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083954?type=check_update&version=1


Sensors 2023, 23, 3954 2 of 19

primary area of interest. The minimum sampling rate of such applications is high, e.g.,
1000–2000 Hz for EMG [20], as high as 500 Hz for EEG [21], and 250–360 Hz for ECG [22,23].
Currently, most wireless sensor systems either use one combined peripheral data sender
hard-wired to multiple sensors [24] or use custom wireless protocols to achieve high
throughput and low latency (Trigno® Research+ System, Delsys Inc, Boston, MA, USA).
Combining sensors at a peripheral node does not eliminate wires locally attached across the
body (thus, not fully wireless) and can make it hard to locate all electrodes at their desired
positions [25–27]. Fully distributed wireless multichannel peripheral nodes would make it
easier to select the best sensor sites. Furthermore, custom protocols make it hard to migrate
from one platform to another to take advantage of ongoing electronic device improvements.
In addition, custom protocols are harder to share within the research community.

Traditionally, wired multichannel data acquisition systems using a multichannel
analog-to-digital converter (ADC) inherently time-synchronize all channels to within one
sample period. However, with distinct wireless nodes, each ADC is controlled via its
local peripheral clock which operates at a slightly different sampling rate and sampling
phase [28]. In addition, each clock rate may drift over time [29]. Thus, a method is needed
to synchronize time between wireless devices, and then use that time synchronization to
align multiplexed data at the central node [30–32]. For the Bluetooth, ZigBee, and Wi-Fi
protocols, native time synchronization methods are not accurate enough for high-sample-
rate biosignals [33].

In this paper, we describe a BLE 5.0 time synchronization and data transmitting system
that is programmed at the application layer, demonstrated via two peripheral devices and
one central device, and tailored for low-latency high-throughput applications. The method
is expandable to more peripheral devices. Two peripheral devices concurrently transmitted
ADC samples at 1000 Hz sampling rate, with latency ≤30 ms. Time synchronization was
applied on the basis of paired timestamps from the peripheral and central nodes, with
random timing variation reduced via a linear least squares regression algorithm. The
central node (or an offline algorithm, in our study) then multiplexes the received data
from the peripheral nodes, with proper time alignment. Our method was implemented
separately on two common microcontroller platforms (TI and Nordic), demonstrating its
transferability. No modification of the underlying transmission protocols and no extra
hardware were needed.

The primary goal of this study was to validate a novel BLE time synchronization
and alignment method that is low-latency, high-throughput, and transferable between
manufacturer microcontroller platforms (i.e., implemented at the application layer). We
characterized its performance vs. the number of timestamp pairs and the timestamp
update interval used by the regression algorithm. We evaluated these parameters on two
microcontroller platforms. We hypothesized that too few timestamp pairs used in the
regression would lead to higher data alignment errors, and that too many timestamp pairs
would not follow real changes in central vs. peripheral timing. Similarly, too short of a
timestamp update interval was hypothesized to provide averaging over too short of a time
duration (thus producing poorer data alignment) while too long of an interval would not
follow actual timing changes.

The sections which follow begin (Section 2) by reviewing background information
on existing time synchronization methods and relevant characteristics of BLE and the
BLE-based microcontrollers used in this research. Section 3 describes our approach to time
synchronization and data alignment. Section 4 presents our laboratory experiments that
tested the performance of these algorithms as a function of selectable system parameters.
Section 5 gives the results of these tests. The paper ends with a discussion and some
conclusions.
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2. Background
2.1. Existing Time Synchronization Methods and Their Limitations for This Application

As summarized in Table 1, several methods have been introduced to achieve better
time synchronization when using BLE (see reviews in [34–36]). One method is based on the
Bluetooth beacon role [37–39], in which a central node broadcasts clock information that is
received near-simultaneously by all listening peripheral nodes (and with low latency). All
peripheral nodes then synchronize to the central node. Beacon transmissions are repeated
to maintain synchronization over time. However, when the central node broadcasts, it
cannot receive data from different peripheral nodes in real time. Thus, this beacon role
method is not suitable for high-throughput, low-latency applications. Another method
uses extra hardware to detect the onset of antenna activation when transmissions are
initiated [40], achieving a synchronization precision of 9 ± 17 µs. However, additional
hardware must be included, some extra battery power is always consumed, and such
custom hardware is not readily upgradable. For daily health monitoring, less power
consumption (and, thus, longer battery life) is desired. For typical wireless nodes with a
20 mAh battery, the additional hardware can preclude a desired battery life of 16 h (for
example). Another recent method used BLE non-connectable non-scannable undirected
advertising (BLE “ADV_NONCONN_IND”) to reset peripheral clocks to achieve time
synchronization [41]. However, this technique also did not demonstrate a manner in which
to maintain synchronization of streaming ADC data from peripheral nodes [42]. Hence,
there is a need for a BLE time synchronization and data alignment method that is low-
latency, high-throughput, and implemented at the application layer (thus, transferable
across devices).

Table 1. Summary of existing time synchronization methods for BLE and their limitations for use
with low-latency, high-throughput applications that are transferrable between different manufacturer
microcontrollers. The MAC layer refers to the medium access control layer of the communications
protocol.

Method
Name

Protocol
Used

Reported
Time

Precision

Limitation for
Our Application References

Bluesync BLE
Beacon 451 ± 4.5 µs Not continuous

synchronization [37]

Bideaux et al. BLE
Beacon

7.5 ± 0.4 ms;
40 ± 14 µs

Not continuous
synchronization [38]

CheapSync BLE
Beacon ∼10 µs Not continuous

synchronization [39]

Rheinlander and
Wehn

BLE
Beacon <20 µs Requires additional

hardware [40]

Dian et al. BLE
Advertise ∼700 µs Not continuous

synchronization [41]

NTP NTP ∼10 µs
Large message

volume and
computation

[43]

TTS TTS ∼10 µs Requires fast
two-way messaging [44]

TPSN TPSN ∼10 µs Programmed at
MAC layer [45,46]

FTSP FTSP ∼10 µs Programmed at
MAC layer [31]
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There exist other more traditional methods for wired and wireless networks. However,
these methods are not considered appropriate for a high-bandwidth, low-latency, and
continuous data stream using BLE. The NTP (network time protocol) [43], for instance,
was designed for large-node wired systems and employs a complex hierarchy of nodes
and methods for rejecting anomalous synchronization information. NTP is not considered
suitable for use in BLE systems, given its substantial volume of synchronization messages,
high computation, and low energy inefficiency. TTS (traditional time synchronization) [44]
assumes that two-way messaging between wireless nodes can be executed within a short
timeframe, rendering this technique unsuitable for BLE systems. Message exchange times in
BLE are not firmly controlled. The time-synch protocol for sensor networks (TPSN) [45,46]
and flooded time synch protocol (FTSP) [31] are programmed at the MAC (medium ac-
cess control) layer and not the application layer; thus, they are also unsuitable for this
application.

2.2. Relevant Bluetooth Low Energy Characteristics

IEEE 802.15.1 (Bluetooth) is a wireless technology standard used for short-distance
applications, which operates in the 2.402 GHz to 2.480 GHz band. BLE was introduced to
overcome some of the limitations of the standard Bluetooth version, such as high power
consumption, low packet size, and high link reestablish time. BLE 5.0 [47], used in this
research, has a transmit rate of 2 Mbps, maximum data packet size of 251 bytes (plus four
header bytes), average power consumption of 0.01–0.5 W, and connection latency of 6 ms
in a non-connection state (and even lower in a connection state).

The BLE protocol stack consists of two main levels: the controller and the host. The
controller is the lower level which mediates BLE packet sending and receiving, differing
from platform to platform. To ensure transferability at the application level, the controller
level was not modified. The host level, which is the application layer, can more easily
migrate from one platform to another. We implemented synchronization and data align-
ment in “C” code at this level. The host–controller interface (HCI) is used to communicate
between the two levels, exchanging packetized data. Within the host level, the generic
access profile (GAP) must run in one of four roles: broadcaster, observer, peripheral, or
central. As our application needs to transmit data bidirectionally (central timestamp data
from central to peripheral; ADC data and peripheral timestamp from peripheral to central),
the central role and peripheral role are required.

In the BLE peripheral–central role, the central and peripheral nodes cannot remain
continuously connected when multiple peripheral nodes are used. A connection interval
ranges from 7.5 ms to 4 s, with a gap of 1.25 ms required between assigned time slots. If
multiple peripheral nodes pair with one central node, each peripheral node’s connection
interval is set to their connection setting’s least common multiple. A connection interval
of 15 ms was used for the two-peripheral implementation on the TI platform, and a
connection interval of 10 ms was used for the Nordic platform. These were the smallest
intervals supported by the respective platforms.

2.3. The TI and Nordic Wireless Microcontrollers

The TI CC2640R2f is a BLE module manufactured by Texas Instruments (TI). It features
Bluetooth 5.0 and a 32 bit 48 MHz ARM Cortex®-M3 processor. The integrated antenna
has a maximum transmit (TX) power of +5 dBm and a receiver sensitivity of −97 dBm.
It requires a 5.9 mA receive (RX) current, a 6.1 mA TX current at 0 dBm, and a 9.1 mA
TX current at +5 dBm, all from a 1.8–3.8 V supply. It has a built-in eight-channel 12 bit
200 k samples/s ADC. However, its 28 kB static random-access memory (SRAM) was only
sufficient in our work when this microcontroller was used as a peripheral node. Hence, our
TI-based implementations used a TI CC2642 as the central node. This model has an 80 kB
SRAM and slightly higher RX (6.9 mA) and TX current consumption (7.3 mA at 0 dBm and
9.6 mA at +5 dBm), from a 1.8–3.8 V supply. Overall, due to these characteristics and its
small size (7 mm × 7 mm), it is an excellent selection for wireless biosensor systems.
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To evaluate and demonstrate the ease of migration of our time synchronization meth-
ods across platforms, a competitive BLE module was selected. The Nordic Semiconductor
nRF52840 also features Bluetooth 5.0 with a 32 bit 64 MHz ARM Cortex®-M4 processor. Its
current consumption is 4.6 mA RX and 4.8 mA TX, from a 1.7–5.5 V supply. It also has a
built-in 12 bit 200 k samples/s ADC and is equipped with a large RAM size of 256 kB. With
even lower power consumption and similar integrated features, it is also an excellent test
platform choice.

3. Time Synchronization and Data Alignment Methods
3.1. System Architecture

In this research, we assembled two BLE wireless biosignal sensor bench-top systems
to prototype our time synchronization and data transfer method. In each case, only
ADC data and timestamps were collected in real time on the microcontrollers (i.e., data
logging). Time synchronization and data alignment were then completed offline. In this
manner, the same data could be used to evaluate multiple parameter combinations of the
time synchronization method, which facilitates a more robust comparison. In embedded
applications, the complete time synchronization and data alignment algorithm would be
implemented online in the peripheral and/or the central nodes of the system.

The first system (Figure 1) was based on a TI BLE development board platform. Vari-
ants of these development boards, utilizing the same active hardware, are available in
smaller packages for embedded system use. Use of the full-size development board facili-
tated rapid prototyping. The first part of the system comprised two peripheral biosensor
nodes (one sensor per node), each using TI CC2640R2f boards with built-in 12-bit ADC to
sample the biosignals. These peripheral nodes wirelessly transmitted data and timestamps
to one central node utilizing a TI CC2642 development board. For this research study, the
central node logged all data and timestamps to a PC using its UART port. Thereafter, data
processing used MATLAB on a PC.
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With only software modifications at the application layer, we implemented the second
system (Figure 1) using Nordic BLE development boards. The architecture was similar to
that of the TI-based system, except that both peripheral nodes and the central node used
the same Nordic development board (nRF52840). All data were still streamed to the PC for
offline analysis.

The bandwidth of most bioelectric signals is less than 500 Hz, with EMG having the
largest range of 10–500 Hz [20,48]. According to the Nyquist–Shannon theorem, a sampling
rate of 1000 Hz is required to correctly reconstruct a signal containing frequencies up to
500 Hz. Hence, we selected a 1000 Hz sampling rate. To achieve continuous transmission
of ADC values without delay, a dual buffer structure was used for data collection on a
peripheral node. When one buffer was full, an interrupt triggered its transmission, while
the second buffer stored the new data without delay. The ADC automatically toggled
incoming data storage back and forth between these buffers to achieve no missed ADC
samples.

The connection interval (and ADC buffer duration) was 15 ms on the TI platform
and 10 ms on the Nordic platform. During preliminary testing, these intervals were the
minimum achieved without blocked transmissions in each respective platform.

3.2. Time Sychronization Method Design
3.2.1. Generation of Timestamp Pairs and ADC Timestamps

All newly available ADC samples were transmitted in data packets at each connection
interval (15 ms for TI; 10 ms for Nordic). Ideally, each connection interval would generate
one ADC packet. However, timing variations between a peripheral and central clock
can occasionally lead to either zero or two packets formed within a connection interval.
BLE transmission from a peripheral clock is not synchronized directly with ADC packet
readiness. Rather, the peripheral clock sets the timing of ADC conversion on a peripheral
node, whereas the central node schedules BLE transmission. Regardless, as each new ADC
packet is generated, it is placed in the peripheral node’s BLE transmit buffer for transmission
to the central node during the next connection event. Once queued for transmission, the
peripheral’s application layer software has no further access to the packet. Thus, packet
receive time on the central node is a poor indication of ADC conversion time on a peripheral
node. Transmission delay times unpredictably range from near zero up to one connection
interval, or longer if blocked transmissions are automatically rescheduled for transmission
during ensuing connection events. Hence, time synchronization based on arrival time on
the central node has an uncertainty of up to several connection intervals (in our case, 10 or
15 ms per connection interval), which is too long for many applications. An alternative time
synchronization method is necessary. One alternative is to use beacon transmissions (from
the central node to all peripheral nodes) at system startup, thereby synchronizing clocks
once (“single shot”) [37]. Data transmissions would begin thereafter, since they cannot run
coincident with beacon transmissions. However, differences in clock rate, which are always
present, would cause timing errors to accumulate over time. In addition, clock drift is not
necessarily consistent throughout device operation, i.e., due to changes in temperature,
vibrations, pressure, and other conditions [29]. As noted previously, repeated/continuous
use of beacon transmissions is not consistent with continuous ADC sampling; hence, it is
also not a time synchronization option.

In our approach, all data are moved between nodes using BLE notifications from
within the application layer. A notification transmission, as opposed to a BLE indication,
does not receive confirmation, thus minimizing delay and wireless transmission duration
(at the risk of increased data loss). The basis of our time synchronization method is to
generate time-synchronized (paired) central and peripheral timestamps. The more closely
they are paired in time, the better. We found that the most reliable time fiducial occurred
when initiated on the central node upon receiving a peripheral data packet. In particular,
if the central node queried its timestamp clock immediately after peripheral data arrival
(software-requested timestamps are available from within the application layer), then added
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one connection interval to this value, an excellent estimate of the arrival time was produced
on that peripheral node of the ensuing central data packet BLE notification transmission
(which was only transmitted on connection intervals in which paired timestamps were
desired). The central data packet included this central timestamp, denoted TSC[m], where m
indexes the timestamp pairs. Once this central data packet was received on the peripheral, it
immediately queried its own timestamp clock (with this timestamp being denoted TSP[m],
which is also available from within the application layer), forming a timestamp pair. The
timestamp pair can be used on the peripheral node for data synchronization, or transmitted
back to the central node in the next peripheral data packet for synchronization on the
central node or on the PC (as applied herein). New timestamp pairs were not generated
every connection interval (see below).

In addition, the ADC clock on the peripheral node ran asynchronously from the BLE
sub-system. However, when the ADC completed converting data for a packet, a software
interrupt was automatically generated at the application layer. Hence, the peripheral node
immediately queried the timestamp clock again and associated this time with the final
ADC sample for that packet. This timestamp was denoted TSADC.

3.2.2. Timestamp Rollover Avoidance

The TI platform generates unsigned 32 bit integer timestamps, which count the number
of 10 µs intervals since power-up. Thus, this timestamp rolls over every 11.93 h. The Nordic
platform generates an unsigned 24 bit integer count of the number of 30.1 µs intervals since
power-up, rolling over every 8.42 min. These rollovers are too short and would threaten
robust real-time synchronization at rollover. We, therefore, re-stored each timestamp in an
unsigned 64 bit integer, accounting for rollover when doing so (i.e., incrementing the 64 bit
count through each rollover). The 64 bit timestamps were used thereafter and rolled over
at durations greater than 5 million years. Use of 64 bit unsigned integers was convenient
since many compilers for these embedded systems support them.

3.2.3. Time Synchronization Model

The N most recent timestamp pairs (TSC[m] and TSP[m]) were used in a linear least-
squares clock synchronization method to continuously estimate central clock time. To
understand this method, let TSP[m], 0 ≤ m < N be the most recent peripheral node clock
timestamps and TSC[m], 0 ≤ m < N be the paired set of central node clock timestamps.
The affine model that estimates central time on the basis of peripheral time is

T̂SC[m] = β0 + β1·TSP[m] + ε, (1)

where β0 is the offset parameter, β1 is the slope parameter, m is the timestamp index, and ε
is a random error term. Since it is assumed that both clocks have reasonable time precision
with slightly different drifting rate, it will be the case that the slope parameter β1 has a value
near 1.0 counts/count. The offset term β0 can vary over the full range of the timestamp
values and can be a negative value. With N timestamp pairs, we can estimate β0 and β1 via
linear least squares [49] as follows:{

β1 = N·ΣPC−ΣP ·ΣC
N·ΣPP−ΣP ·ΣP

β0 = ΣC−β1·ΣP
N

, (2)

where ΣPC = ∑N−1
m=0 TSP[m]·TSC[m], ΣP = ∑N−1

m=0 TSP[m], etc. This least-squares approach
has a low cost computationally and is a direct (noniterative) solution without issues of
convergence.
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This model was updated as each new timestamp pair was received (or at a lower
rate, if desired). For each data packet from the peripheral node, the most recent affine
model was applied to the ADC timestamp (TSADC), producing an estimate of the central
time corresponding to the last ADC sample. The central time corresponding to earlier
samples in the packet was estimated using the sampling period. A flowchart of the time
synchronization method is shown in Figure 2.
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3.2.4. ADC Data Latency

Note that the connection interval is the primary factor in setting minimum latency
of each system. Shorter connection intervals lead to shorter latency. Latency can be
segmented into the sum of three delays: (1) the time from ADC sampling to scheduling for
transmission from the peripheral to the central node, (2) the subsequent time to transmit
from the peripheral node and be received on the central node, and (3) the time on the
central node to time-synchronize, data-align, and group samples with other peripheral
streams.

The first of these delays is equal to the connection interval plus a small amount of
processing time. It is equal to the connection interval since the data are not even scheduled
for transmission until the final sample in the packet is acquired. This sample is already
delayed by approximately one connection interval. This delay is relatively consistent from
packet to packet.

The second delay varies depending on channel availability and assignment, and it can
be longer if a transmission is blocked (and, thus, saved for transmission after the ensuing
connection interval). The experimental system had few, if any, blocked transmissions. This
delay can be quite variable, but tends to be a few ms in duration.

The third delay depends on the relative timing of the arrival of packets from other
peripheral nodes. That is, the central node must wait for data to arrive from all peripheral
nodes, but those data arrive serially. In the Nordic platform with two peripheral nodes, the
transmissions can be arranged to alternate time slots between peripheral nodes, separated
by one-half of the connection interval. Of course, there is some amount of time required for
time synchronization and data alignment processing (again, relatively short in duration).
This delay is at least the duration of one-half of a connection interval.

Taken together, a rough estimate of latency is approximately twice the connection
interval, especially for the short-duration connection intervals used (and our avoidance of
blocked transmissions). We did not make real-time latency measurements in this study.
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3.3. Data Alignment Algorithm Design

Our data alignment approach was to synchronize the timing of each peripheral data
sample to the central clock, which, in turn, synchronized them to each other. In addition,
even highly accurate clocking on distinct nodes cannot be perfect. That is, the clock rates
on distinct nodes are slightly different. Thus, over time, a peripheral ADC produces too
many or too few samples, relative to time on the central clock. If clock rates drift, the
relative clock rates also drift with respect to each other. Hence, a data alignment algorithm
was introduced. This algorithm utilized the timestamp pairs from each peripheral node to
maintain an affine synchronization model for each respective peripheral node. The ADC
timestamp from each packet per peripheral node was used to estimate the corresponding
central node time. This ADC timestamp corresponds to the time of the last sample in the
packet; all other sample times within the packet were estimated by subtracting respective
multiples of the sampling period (1 ms, in this case). We then compared, on a sample-by-
sample basis, when the accumulated temporal drift (i.e., mathematical difference) between
the two peripheral clocks was larger than a threshold. For convenience, we assigned the
first peripheral as the primary clock. If the second peripheral clock was running more
quickly, one data sample was removed from the head of its data stream. If the second
peripheral clock was running more slowly, one data sample was interpolated and added
to the head of its data stream. In our case, the prior sample value was inserted as the
interpolated value. An illustration of this process is shown in Figure 3, and a simple
mathematic formulation of this method is available in [49]. A threshold value that was too
small (e.g., under a sampling period) led to excessive corrections in which samples were
alternately deleted and interpolated in subsequent packets. A threshold value that was too
large (e.g., multiple sample periods) allowed larger time synchronization errors to persist
longer in the data stream. After some preliminary testing [50] we selected a threshold value
of one sample. This approach can be generalized to more than two peripheral nodes.
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Figure 3. Illustration of ADC stream deletion and insertion of a sample, as needed, to maintain
data alignment. The sample time corresponding to each peripheral 1 ADC sample is adjusted to the
estimated central node time using its respective linear regression time synchronization model (which
is based on paired timestamps—see Figure 2). ADC samples from peripheral 2 are similarly time-
synchronized, using its respective model. Whenever too few ADC samples arrive from peripheral 2,
an extra peripheral 2 sample is inserted (shown above). Whenever too many ADC samples arrive
from peripheral 2, a peripheral 2 sample is deleted (also shown above). Note: ADC arrival time
variations in peripheral 2 are exaggerated above to illustrate both an insertion and a deletion. In
practice, at most one correction was made per packet.
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4. Experimental Materials and Methods

The TI- and Nordic-based systems, consisting of two peripheral nodes and one cen-
tral node, were separately implemented and hardware-tested on the benchtop (Figure 4).
Both platforms were USB-powered, for convenience. In a fielded system, the peripheral
nodes would be battery-powered and physically separated from the central node. The TI
CC2642 central node microcontroller was programmed using TI SimpleLink (development
kit version 3.10.01.11, compiler version TI v18.12.2 LTS). The TI CC2640R2f peripheral
node microcontrollers were programmed using TI SimpleLink (development kit version
1.40.00.45, compiler version TI v16.9.1 LTS). “C” code was developed in TI Code Com-
poser Studio (version 9.0.1). All Nordic microcontrollers were programmed using Nordic
nRF52840 SoftDevice (development kit version S140 and SDK version v17.0.0). “C” code
was developed in Nordic Segger Embedded Studio (version 5.62). These were the available
and supported tools for these two processors available at the time data were collected. For
all logged data, offline analysis used MATLAB (the MathWorks, version R2021b).
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Figure 4. TI platform (left) and Nordic platform (right).

For each platform, a function generator (HP 33120A) simultaneously applied the same
input to one ADC channel of each peripheral node. The generator produced a sine wave
ranging from 0.5 V to 2.5 V (1.5 V offset, to align with the unipolar ADCs). During a
test trial, the signal frequency was varied from 1 Hz to 12 Hz with an increase of 1 Hz
every 1 min. This maximum frequency was selected such that its period (83.3 ms) was well
outside our worst-case time synchronization error, since timing errors that are multiples
of one sine wave period are ambiguous. Each testing trial was 12 min in duration. Each
peripheral node sampled and transmitted these data and the timestamps wirelessly to the
central node. For testing, the central node was connected to a PC through a UART port,
transferring unsynchronized ADC data packets, their corresponding timestamp pairs, and
their ADC final sample timestamps from both peripheral nodes directly into MATLAB
in real time. These data were then stored to the hard drive for offline analysis. For each
platform, seven trials were collected.

Offline, each 12 min recording from both peripheral nodes for a trial was separately
time-aligned, using our time synchronization and data alignment method. Each recording
was upsampled by a factor of 100 (via zero insertion followed by lowpass filtering, as
implemented by MATLAB “interp”) to improve time resolution between samples from
1 ms to 10 µs. We used zero-phase lowpass filtering in the upsampler; thus, the first and
last 10 s of each recording were discarded, to eliminate filter startup/tail transients. For
each 12 min trial, 700 s of data remained. The data from each trial were then segmented
into 1 s duration contiguous epochs (700 segments/trial × 7 trials = 4900 epochs total). For
each epoch, we computed the cross-correlation coefficient function [i.e., normalized such
that auto-correlations at zero lag is equal to 1; see the “normalized” option of MATLAB’s
xcorr() function] between the data from the two peripheral nodes, extracting the location of
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the maximum correlation and the correlation value at this location. All average correlation
values exceeded 0.99. The location of the maximum correlation was an estimate of lag/lead
between the peripheral ADC channels. The mean and standard deviation lag/lead of the
4900 epochs was reported, and all 4900 values were used for statistical analysis.

The entire process was repeated for all combinations of the number of sequential
timestamp pairs used in the affine regression model (N = 2, 4, 8, 16, 32, 64, or 128) and
the number of connection intervals between timestamp updates (every 10, 20, 50, and
100 connection intervals). A smaller N is computationally more expedient, but provides
less averaging in the least-squares estimate. A small timestamp update period requires
more frequent updating of the affine model (thus, computationally expensive), whereas an
overly long timestamp update period may not adapt quickly enough to true changes in
clock rate.

All statistical comparisons of conditions were computed using SPSS version 28.0.00
(190). The data from each statistical comparison were first tested for normality using
the Kolmogorov–Smirnov test. As all data were not normally distributed (p < 0.001),
a nonparametric Friedman test was used to test performance differences according to
the factor timestamp update interval and number of timestamp pairs. If significant, we
proceeded to post hoc paired Wilcoxon signed-rank tests with Bonferroni–Holm correction
for multiple comparisons. Differences were considered statistically significant for p < 0.05.

5. Results

Figure 5 shows a probability distribution function estimate of inter-channel signed
timing errors (positive value corresponding to the first peripheral node leading to the
second peripheral node) for the Nordic platform, combining results across all different
conditions (update interval = 100, 200, 500, and 1000 ms; N = 2, 4, 8, 16, 32, 64, and 128).
Note the large number of times in which the error is equal to 0 lag/lead (count) values
(at the upsampled rate). Table 2 (TI) and Table 3 (Nordic) show the average and standard
deviation signed and absolute time difference errors (i.e., the absolute value of the signed
timing errors) between the two peripheral nodes as a function of different number of
sequential timestamp pairs (N) and timestamp update intervals.
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Figure 5. Histogram, scaled as a probability density function estimate, showing Nordic platform time
differences between two peripheral nodes. Results are combined from all number of timestamp pairs
(N = 2, 4, 8, 16, 32, 64, and 128) and update intervals (100, 200, 500, and 1000 ms).
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Table 2. Summary results for TI microcontroller system. Cells in bold red font indicate results with
the minimum mean value within that timestamp update interval. “NS” (in bold blue font) denotes
that the results in this cell are NOT significantly different from those of the cell with the minimum
mean value within that timestamp interval. Mean ± SD results are each from 4900 epochs. The last
two columns list 90th and 95th percentile absolute errors.

Timestamp Update
Interval (ms)

Number of Timestamp
Pairs (N)

Mean ± SD
Signed Errors (µs)

|- - - - - - - Absolute Errors - - - - - - -|

Mean ± SD (µs) 90th % (ms) 95th % (ms)

150

2 13 ± 508 348 ± 370 0.72 0.91
4 37 ± 442 318 ± 309 0.70 0.83
8 26 ± 467 349 ± 314 0.75 0.92

16 17 ± 502 365 ± 344 0.74 0.91
32 14 ± 495 366 ± 333 0.85 1.05
64 33 ± 490 376 ± 316 0.85 1.03
128 11 ± 439 336 ± 283 0.68 0.87

300

2 7 ± 483NS 359 ± 323 0.80 0.94
4 27 ± 517 373 ± 359 0.80 0.91
8 12 ± 476 346 ± 327 0.75 0.96

16 27 ± 458 357 ± 288 0.75 0.91
32 11 ± 434 322 ± 292 0.74 0.90
64 9 ± 412 NS 317 ± 263 0.63 0.85
128 4 ± 412 305 ± 277 0.75 0.90

750

2 18 ± 97 69 ± 71 0.18 0.19
4 18 ± 219 114 ± 188 0.22 0.53
8 1 ± 228 115 ± 197 0.22 0.44

16 12 ± 267 153 ± 218 0.42 0.59
32 23 ± 200 120 ± 162 0.22 0.41
64 18 ± 97 69 ± 71 0.18 0.19
128 8 ± 197 106 ± 166 0.22 0.45

1500

2 57 ± 413 301 ± 288 0.70 0.85
4 18 ± 335 NS 241 ± 233 0.57 0.70
8 7 ± 314 201 ± 241 0.54 0.74

16 65 ± 361 249 ± 269 0.65 0.76
32 22 ± 317 196 ± 250 0.53 0.75
64 27 ± 355 217 ± 282 0.64 0.78
128 13 ± 282 NS 167 ± 227 0.46 0.66

5.1. Texas Instruments (TI) Platform Results

For the signed errors resulting from using the TI platform, the Friedman test (factors:
timestamp update interval and number of timestamp pairs) found a statistically significant
difference [χ2(27) = 622, p = 6 × 10−144]. We began post hoc evaluation by identifying
the minimum average error within each update interval (i.e., the best as a function of
N), identified in bold red font in Table 2. Within the results for each update interval, we
pairwise compared (Wilcoxon signed-rank test) the results of this best value of N to each
value of N. Significant and insignificant results are shown in Table 2. In most cases, results
within an update interval varied with N. Lastly, we compared results from the cell with the
overall lowest average error to the best case within each update interval using a Wilcoxon
signed-rank test. This lowest average error of 1 ± 228 µs (N = 8 timestamp pairs, 750 ms
timestamp update interval) was significantly lower than the others (p < 4 × 10−5).
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Table 3. Summary results for Nordic microcontroller system. Cells in bold red font indicate results
with the minimum mean value within that timestamp update interval. “NS” (in bold blue font)
denotes that the results in this cell are NOT significantly different from those of the cell with the
minimum mean value within that timestamp interval. Mean ± SD results are each from 4900 epochs.
The last two columns list 90th and 95th percentile absolute errors.

Timestamp Update
Interval (ms)

Number of Timestamp
Pairs (N)

Mean ± SD
Signed Errors (µs)

|- - - - - - - Absolute Errors - - - - - - -|

Mean ± SD (µs) 90th % (ms) 95th% (ms)

100

2 40 ± 731 513 ± 522 1.26 1.66
4 54 ± 700 491 ± 501 NS 1.17 1.57
8 41 ± 700 488 ± 504 1.17 1.54

16 53 ± 714 495 ± 517 NS 1.20 1.63
32 13 ± 709 494 ± 509 NS 1.20 1.63
64 3 ± 716 502 ± 510 NS 1.26 1.63
128 29 ± 701 491 ± 501 NS 1.17 1.60

200

2 48 ± 682 477 ± 490 1.16 1.57
4 64 ± 705 491 ± 509 NS 1.17 1.57
8 33 ± 709 488 ± 515 NS 1.23 1.63

16 4 ± 714 498 ± 511 NS 1.23 1.63
32 36 ± 707 492 ± 509 NS 1.23 1.60
64 58 ± 99 493 ± 504 NS 1.20 1.54
128 27 ± 708 NS 489 ± 513 NS 1.17 1.60

500

2 48 ± 700 492 ± 499 NS 1.17 1.60
4 27 ± 710 495 ± 509 NS 1.20 1.55
8 55 ± 731 515 ± 522 1.26 1.72

16 41 ± 715 491 ± 521 NS 1.20 1.63
32 45 ± 712 NS 504 ± 505 NS 1.20 1.60
64 82 ± 712 499 ± 514 NS 1.20 1.61
128 71 ± 696 486 ± 503 1.14 1.57

1000

2 49 ± 699 492 ± 499 NS 1.17 1.60
4 28 ± 710 496 ± 509 NS 1.20 1.54
8 56 ± 731 515 ± 522 1.26 1.72

16 42 ± 716 492 ± 522 NS 1.20 1.63
32 44 ± 712 NS 504 ± 505 NS 1.20 1.60
64 80 ± 712 499 ± 515 NS 1.20 1.63
128 71 ± 696 487 ± 502 1.14 1.57

We repeated this statistical analysis for the absolute errors. The Friedman test found
a significant difference [χ2(27) = 26, 923, p = 1 × 10−311]. Post hoc evaluation within
each timestamp update interval is shown in Table 2. In all cases, results within an update
interval varied with N. The cell with the overall lowest average error was a tie for the
750 ms update interval with N = 2 or 64 (error of 69 ± 71 µs). Between-update interval
comparisons with the data corresponding to each overall minimum cell found each to be
significantly lower than each of the other minimum cells from the other update intervals
(p < 4 × 10−13).

5.2. Nordic Platform Results

For the Nordic platform, the above statistical analysis was repeated. For signed errors,
the Friedman test found a statistically significant difference between different parameter
combinations [χ2(27) = 872, p = 3 × 10−166]. Post hoc evaluation within each timestamp
update interval is shown in Table 3. In most cases, results within an update interval varied
with N. The cell with the overall lowest average error of 3 ± 716 µs (N = 64 timestamp pairs,
100 ms timestamp update period) was significantly lower than the others (p < 0.0012).
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For the absolute error, the Friedman test found a significant difference
[χ2(27) = 108, p = 1 × 10−11]. Post hoc evaluation within each timestamp update interval
is shown in Table 3. In most cases, results within an update interval did not vary with N.
The cell with the overall lowest average error of 477 ± 490 µs (N = 2 timestamp pairs, 200
ms timestamp update period) did not differ significantly from the other minima (p > 0.179).

6. Discussion and Future Direction
6.1. Overall Time Synchronization Performance

When independent wireless peripheral nodes are each collecting ADC data, it is imper-
ative to time-synchronize these data streams. We did so using a BLE implementation from
within the application layer, thereby avoiding the need for custom hardware and facilitating
software reuse between microcontroller platforms and versions. Our method synchronizes
each peripheral to the central clock, thereby mutually synchronizing multiple peripheral
nodes. Our method also avoids timestamp “rollover” errors, whereby synchronization
remains valid for as long as a device is powered.

We assessed both the signed time synchronization error between two independent
peripheral node ADC samples and the absolute error. We tested using input sine wave
frequencies spanning 1–12 Hz. The signed error, on average, was quite small, with a
best-case mean value of 1 µs for the TI platform (750 ms timestamp update interval, N = 8)
and 3 µs for the Nordic platform (100 ms timestamp update interval, N = 64). If this error is
large (not the case in these results), then a correctable time bias exists. However, this error
can be misleadingly small if approximately half of the errors cause one peripheral to lead,
while the other half cause this same peripheral to lag.

Thus, we also assessed the absolute timing error, which better represents performance;
it is strongly related to the standard deviation of the signed timing error. Depending on
the timestamp update interval (whose possible values varied between platforms) and the
number of timestamp pairs (N), the TI platform had mean absolute errors ranging from
69 to 376 µs and a best-case error of 69 ± 71 µs (750 ms timestamp update interval, either
N = 2 or N = 64 timestamp pairs). The Nordic platform had mean absolute errors ranging
from 477 to 515 µs and a best-case error of 477 ± 490 µs (200 ms timestamp update interval,
N = 2 timestamp pairs). These errors had large standard deviations, typically similar in
value to the mean. Thus, we also reported the 90th and 95th percentile absolute errors.
The 95th percentile errors were less than ∼1 ms for the TI platform and less than 1.8 ms
for the Nordic platform, thus being quite comparable. For many engineering applications,
these 95th percentile absolute errors likely provide a better design guideline than the other
measures.

Surprisingly, these 95th percentile errors did not seem to vary much with timestamp
update interval and number of timestamp pairs used in the time synchronization algorithm
(see Tables 2 and 3), although the TI platform may have exhibited somewhat lower 95th
percentile errors when using a 750 ms timestamp update interval. Thus, in our work, the
added value of averaging (i.e., regressing) over many timestamp pairs may have provided
limited value. However, our peripheral and central nodes were located side-by-side in a
low-noise laboratory environment. Since timing variations in wireless transmission would
seem to represent the largest source of error in our method for generating timestamp pairs,
this variation will likely be larger in fielded devices. In that case, averaging timestamp
information should prove valuable.

The average ± standard deviation absolute errors were larger for the Nordic platform
compared to the TI platform. However, we used different connection intervals and, thus,
different timestamp update intervals. Hence, we did not compare the platforms statistically.
We chose each connection interval as the minimum that performed reliably (i.e., without
noticeable packet loss) for the respective platform—15 ms for TI and 10 ms for Nordic.
However, it is possible that the longer connection interval for the TI platform led to fewer
outlier transmission delays. The few long delays may dominate time synchronization
errors (e.g., see Figure 5 and [49]). In opposition to this concern, signal latency is directly
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proportional to the connection interval. For real-time control applications, shorter latency
(and, thus, shorter connection intervals) is desired. Thus, the shorter connection interval
for the Nordic platform is advantageous. In addition, the 95th percentile absolute errors
were similar between the two systems (each <1.8 ms). Hence, neither platform was clearly
better or worse than the other.

Overall, our errors were quite small when considering biomedical signal acquisition.
For ECG and EEG (typical sampling rate below 500 Hz), these errors were less than one
sample period. For EMG (typical sampling rates of 1000 or 2000 Hz), these errors were
1–4 sampling periods. Hence, our technique improves the design of BLE-based wireless
biomedical device systems by facilitating data alignment that is precise enough for many
applications, is low-latency and high-throughput, and is transferable between manufacturer
devices.

Previous time synchronization methods developed specifically for BLE systems re-
ported somewhat lower average ± standard deviation time synchronization errors; how-
ever, as detailed above, these systems are not transferrable or suitable for continuous,
high-throughput and low-latency applications as supported by our method. When custom
hardware is added to BLE systems, errors as low as 9 ± 17 µs have been achieved [40].
Such systems are not readily transferrable to different microcontrollers or microcontroller
versions. When systems are time-synchronized when a connection is established, timing
errors as low as 40 ± 14 µs have been demonstrated [38]. However, this method, as well
as those which utilize the BLE beacon role [37], drift over time and/or are not compatible
with continuous high-throughput data acquisition. Our method fills a role not currently
provided by these other techniques.

6.2. Robustness of the Timestamps

Synchronization is based entirely on the precision and robustness of the timestamps.
When referring to precision, our method relies more on the repeatability of the timestamps,
rather than their accuracy. For example, the peripheral TSADC timestamp is created and
associated with the final ADC sample in a packet. However, this clock query is completed
after the final ADC sample has been acquired and within the resulting ADC software
interrupt service routine. In other words, this timestamp always represents a time that is
slightly delayed from the actual time at which that last ADC sample is converted. However,
this time difference should be small (a few µs). More importantly, this time difference
should be very similar on the two peripheral nodes. So long as both peripheral nodes
experience the same repeatable delay, their synchronization is preserved.

More concerning is the central timestamp TSC, which is generated by querying the
central clock after peripheral data are received and then adding one connection interval to
this value. As noted above, the precision of this timestamp depends on the reliability of
wireless transmission from the peripheral to the central and then (at the next connection
interval) from the central node to the peripheral node. These external delays should be less
reliable; hence, our use of a synchronization algorithm to average out the timestamp data
from several update intervals via regression.

Our laboratory environment happened to have few other active BLE devices, resulting
in the Bluetooth 2.4 GHz transmission frequency band experiencing limited use. Thus, we
experience limited “blocked” transmissions. A blocked transmission occurs when a given
wireless frequency channel is in use; hence, the scheduled transmission does not have
channel access. When a BLE transmission is blocked, BLE waits an additional connection
interval and then reattempts transmission. This action is not reported to the application
layer software. When a central to peripheral transmission is blocked and delayed by one
connection interval, the central clock timestamp becomes stale (incorrect) by one connection
interval in our scheme. The connection interval (10 or 15 ms, depending on the platform) is
much longer than our average absolute errors. We anecdotally found much higher absolute
errors during the few times in which transmission was blocked. In other more complex
laboratory or field settings, this issue may be much more prevalent [51].
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6.3. Limitations and Future Work

Because blocked central to peripheral transmissions lead to large but predictable errors
in the central timestamp TSC, they likely can be detected and corrected. In particular, the
errors are approximately a multiple of the connection interval. Finding such errors on our
available dataset was rather limited, since our rate of blocked transmissions was quite
small (estimated below 0.001%). Thus, we simulated this condition offline in MATLAB. We
created 1 h of central timestamps at equal timestamp intervals of 100 ms. We then created
the matching peripheral timestamps with a time offset error drawn from an independent,
random, uniform distribution ranging from 0 to 1.25 ms. This span is representative of the
errors found in our TI and Nordic platforms. Lastly, we treated each central timestamp as
an independent Bernoulli trial, adding a 10 ms delay (representing a blocked transmission)
with a selection probability of 0.1%. Hence, on average, one in every thousand central
timestamp updates was treated as having been blocked. This blocking rate is artificially
high compared to our dataset, but useful in simulation. We then independently analyzed
our timestamp pairs to detect blocked transmissions. To do so, we formed the ratio,
Ratio[m], of the difference of the last two central timestamps to the difference of the last
two peripheral timestamps, as follows:

Ratio[m] =
TSC[m]− TSC[m − 1]
TSP[m]− TSP[m − 1]

.

Whenever this ratio was greater than 1.5, we correctly detected every blocked trans-
mission, with no false positives. Of course, detection is likely more complex in practice. In
particular, a transmission can be blocked for several transmit cycles.

Another limitation is that we only evaluated synchronization performance in systems
using two peripheral nodes. As more peripheral nodes are included, the connection interval
for each peripheral node will likely need to grow. Doing so will increase packet size (more
ADC samples per packet due to the longer interval), which may eventually exceed channel
capacity. Longer connection intervals also increase latency, which is detrimental for various
applications, including real-time control (e.g., prostheses and orthoses) and biofeedback.
Methods to mitigate these limitations include wiring multiple sensors to one node (thus
decreasing the number of required nodes) and compression of ADC data samples. Each of
these possibilities can be studied as future work.

While we evaluated performance as a function of the number of timestamp pairs and
timestamp update interval, many other parameters/configurations could be evaluated.
To mitigate this limitation, we suggest future studies. Other parameters include packet
size, ADC sampling rate, and connection interval (in cases where the minimum interval
is not necessary or desired). Configuration considerations include the distance between
nodes and number of other devices competing for BLE spectrum. Furthermore, operational
schemes that operate even in the presence of inevitable packet loss should be evaluated.

7. Conclusions

We developed a time synchronization algorithm and data alignment method that
operates at the BLE application layer, for low-latency, high-throughput applications. Com-
pared to other methods, this method is easily transferred from one BLE platform to another,
as demonstrated herein on two platforms. The method was implemented without the
costs associated with specialized hardware. Our best performance achieved absolute time
differences between two independent peripheral nodes of 69 ± 71 µs for the TI platform
and 477 ± 490 µs for the Nordic platform on average. The 95th percentile absolute errors
for both TI and Nordic platforms were less than 1.8 ms, which is appropriate for use by
most ECG, EEG, and EMG applications. The 95th percentile results were, contrary to our
original hypothesis, not particularly sensitive to the timestamp update interval or the num-
ber of timestamp pairs used in the time synchronization model. Additional evaluation is
warranted in environments in which delayed or blocked Bluetooth transmissions are likely,
i.e., situations not considered by our research but relevant to practical usage. Although the
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method should scale to systems with many peripheral nodes, evaluation in such systems is
an appropriate next step.
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