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Abstract: The Internet of Things (IoT) paradigm aims to enhance human society and living standards
with the vast deployment of smart and autonomous devices, which requires seamless collaboration.
The number of connected devices increases daily, introducing identity management requirements
for edge IoT devices. Due to IoT devices’ heterogeneity and resource-constrained configuration,
traditional identity management systems are not feasible. As a result, identity management for IoT
devices is still an open issue. Distributed Ledger Technology (DLT) and blockchain-based security
solutions are becoming popular in different application domains. This paper presents a novel
DLT-based distributed identity management architecture for edge IoT devices. The model can be
adapted with any IoT solution for secure and trustworthy communication between devices. We have
comprehensively reviewed popular consensus mechanisms used in DLT implementations and their
connection to IoT research, specifically identity management for Edge IoT devices. Our proposed
location-based identity management model is generic, distributed, and decentralized. The proposed
model is verified using the Scyther formal verification tool for security performance measurement.
SPIN model checker is employed for different state verification of our proposed model. The open-
source simulation tool FobSim is used for fog and edge/user layer DTL deployment performance
analysis. The results and discussion section represents how our proposed decentralized identity
management solution should enhance user data privacy and secure and trustworthy communication
in IoT.

Keywords: Distributed Ledger Technology (DLT); blockchain; Internet of Things (IoT); identity
management; identity authentication; authorization; security; trust; privacy; scalability

1. Introduction

The research and development of connected devices and services are increasing every
day. Professor Ashton introduced the phrase Internet of Things (IoT) in 1999 [1]. An IoT
news forecast mentioned that by 2030, the number of connected devices worldwide would
reach 24.1 billion [2]. The internet-connected devices and services improve our lifestyles by
increasing work efficiency and productivity with innovative IoT applications. The benefits
of the IoT are no longer limited to urban areas, also improving the quality of life and work
in rural areas. The most common use cases are smart grid, smart city, smart home, smart
healthcare, [3] etc. All these innovative IoT applications are implemented in the physical
world, where individuals’ and organizations’ data are transferred via the internet [4]. As
the innovation of IoT applications is currently an ongoing process, the need for trustworthy
and secure communication increases. Identity management and authentication are essential
for trustworthiness and secure communication [5]. In the nascent stages of the Internet,
IPv4 was deployed to manage the identification of the increasing number of devices. IPv4-
and IPv6-based device identification are still in use for communication between devices [6].
To ensure small range communication, Bluetooth, RFID, and NFC were invented [7].
Cloud computing is an emerging technology. Though there are several benefits of all
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these currently available identity and communication solutions, these are still not fully
compatible with the future needs of trustworthy and secure communication for the IoT
paradigm [8]. The IoT device and services are heterogeneous, and they need real-time
decision-making within a short time period [9]. IoT devices are resource-constrained and
designed to perform specific tasks in the deployed environment [10,11]. Almost all the
currently deployed IoT solutions are centralized, and the cloud layer is the main place for
device identification and authentication. In these scenarios, IoT devices are controlled and
authenticated from centralized servers [12]. However, centralized solutions are not very
feasible for an IoT solution where real-time decision-making is required [13]. Additionally,
most IoT devices are deployed in human society. The intruders can collect confidential data
from IoT devices, gateways, during transactions to the cloud server, or even at the cloud
servers due to lack of security, authentication, and authorization [14].

Moreover, IoT devices need to trust and collaborate at the edge layer without ob-
taining any identity verification from the cloud layer [13,15]. DLT and Blockchain-based
security solutions are growing in popularity as they provide secure and trustworthy data
storage and management [16]. The first use case of Blockchain was Bitcoin, introduced by
Nakamoto in the year 2009, where he presented Bitcoin as a digital currency [17]. After the
first innovation of Blockchain, different business and communication sectors are adopting
the concept of Blockchain in their current use cases [18,19]. As a result, many types of
DLT have been introduced. Many recent researchers addressed the Blockchain-based trust,
identity, and security solutions for IoT. One of the main advantages of DLT is decentral-
ization. Our previous work proposed a distributed and decentralized architecture for
identity management and secure communication for edge IoT devices [20]. During further
research, we found that adopting DLT with our proposed model could be the best fit for the
increasing demand for secure communication and trustworthy identity management for
edge IoT devices. Motivated by the above information, we propose a DLT-based identity
management and secure communication solution for the IoT paradigm which is distributed
and decentralized. We have performed a detailed literature review in our research do-
main, compared our proposed solution with the recently proposed IoT device identity
management, and described how our proposed model would improve security, trust, and
privacy for IoT solutions. We have also performed formal and informal verification of the
proposed concept.

Below, we have listed our contributions in this article:

• In the Introduction section, we present an overview of the need for a distributed
identity management system for security, trust, and privacy at edge IoT devices;

• A comprehensive survey on the DLT and related terms is performed, and the results
are presented in the Background and Motivation section;

• We have also studied and summarized different DLT used for identity management
within the IoT domain;

• We have proposed a new DLT-based distributed identity management model for IoT
which will enhance data security, trust, and privacy;

• Additionally, we have presented the evaluation of our proposed architecture using
SPIN, Scyther and FobSim simulators.

The rest of the paper is organized as follows:

• In Section 2, we present a detailed review of the DLT followed by our motivation
to use DLT-based identity management for security, trust, and privacy at the edge
IoT devices;

• Section 3 examines the related works, where recent results on DLT for identity man-
agement are discussed;

• Section 4 presents our proposed DLT-based identity management model for security,
trust, and privacy at edge IoT devices;

• In Section 5, we present the performance measurement results of the simulation;
• In Section 6, we discuss different common qualities of an identity management system;
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• Section 7 presents the conclusion of our work, and this paper ends with a future
work description.

The following section describes our research background and a comparative presenta-
tion of DLT solutions and their connections with the IoT domain.

2. Background and Motivation

As discussed above, the use of Blockchain in different sectors is increasing on a
daily basis due to the decentralized and self-adaptive approach of DLT. The use case of
DLT and Blockchain in the IoT domain is also vast. Blockchain itself is a specific type of
Data Structure (DS), which is implemented in many of the distributed ledgers. Though
Blockchain and DLT are correlated, not every DLT needs to use blockchain technology [21].
DLT can be categorized based on different criteria. Selection of any specific DLT solution
for any use case is difficult due to different deployment environments. For example, some
use cases require public access to data, and others need private access. Below, we present
the definition of DLT, followed by a categorization of DLT and how they are used in the
IoT paradigm.

2.1. Distributed Ledger Technology (DLT)

A distributed ledger is a specific type of register that is shared and maintained by dif-
ferent entities distributed and connected over the Internet [21]. DLT allows data sharing be-
tween different entities without any third party or central authority to verify the transitions
performed by various entities. Additionally, DLT allows distributed and replicated storage
capability, which allows data verification and validation [22]. The five main features of any
DLT are: (1) data storage over distributed networks and sharing the identical copy on multi-
ple storage, (2) validation of data independently by different participants, (3) agreement on
the transaction by multiple parties (4) validation of changes in data by any participant of the
network, and (5) hard to change the values in a transaction, namely temper resistance [22].
As presented in Figure 1, based on the modification right, distributed ledgers can be cate-
gories as: (1) Permissionless Distributed Ledger and (2) Permissioned Distributed Ledger.
Based on the access right, distributed ledgers can be categories as: (1) Public Distributed
Ledger, (2) Private Distributed Ledger and (3) Consortium Distributed Ledger.
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2.1.1. Permissionless Distributed Ledger

A distributed ledger where any network entity can modify the entry is called a
permissionless distributed ledger [23]. It is a shared ledger between all the network
entities, and no restrictions or pre-registration requirement are applied. An example of a
permissionless distributed ledger is Bitcoin [23]. A permissionless ledger could be more
effective where multiple parties create entries to the ledger without any previous access
permission documented.

2.1.2. Permissioned Distributed Ledger

A permissioned distributed ledger only allows modification by a group of entities
based on the context it is implemented [23]. A modifier needs to be registered and has the
right to perform any modification. An example of a permissioned distributed ledger is
Hyperledger [23].

2.1.3. Public Distributed Ledger

As per the name, a public distributed ledger is publicly available, and there is no
restriction on the network access of its entity [23]. The use case of the public distributed
ledger could be a public Wi-Fi network that is publicly available for anybody to connect
their device and use the internet service.

2.1.4. Private Distributed Ledger

A private distributed ledger is implemented and published for use within a specific
group of entities based on its context [23]. For example, it could be people within an
organization or a set of Wi-Fi networks or devices with a specific range of IP addresses and
not publicly published.

2.1.5. Consortium Distributed Ledger

A consortium-based distributed ledger or consortium blockchain is a hybrid imple-
mentation based on public, and private ledger, in which different authorities can add
entries based on their access right, and can access the data based on their access right
defined based on their role and permissions set up in the system [24–27]. An example
implementation of consortium-based DLT is an inter-organizational ledger where multiple
parties can add entries and view the entries [28].

The use of the type of DLT depends on the context in which it is deployed. For
example, a multinational organization may need to have private DLT for communication
between the offices in different cities and countries. However, the same organization may
also need consortium DLT for interaction with their customers and partners, and public
DLT for managing leads from prospective customers. A similar concept is applicable for
the use of DLT in the IoT domain. Not all types of DLT are suitable for the IoT paradigm.
Although the initial use case of blockchains and distributed ledgers was to allow public
access to the data and to save the history of financial transactions, its use case is much
broader today. Almost every multidisciplinary area implements DLT, where computer
science can have a partial footprint. For example, law and order, a chain of custody for
digital forensics, smart healthcare, and so on. The use case we have covered in this paper is
identities for everything: users, user’s devices, and end IoT devices without compromising
the user data privacy. Below, we present the definition of blockchain.

2.2. Blockchain

Blockchain is a type of DLT. Blockchain uses a cryptographic hash function to keep
the integrity of each block [21]. Each of the new blocks added to the chain holds its hash
and a hash of the previous block, which introduces the immutability of any change in the
data at any block changing its respective hash. As a result, a change is easily detected
consequently invalidating the content of the block [29]. Another criterion of Blockchain
is P2P communication, where no central authority is involved, and all the nodes in a
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blockchain network hold the same copy of the data [30]. In case any change is required,
it needs to be changed in all nodes through the network, so a new entry is added instead
of rewriting the old record [31]. As the nodes within a blockchain network hold identical
copies of the data, it ensures consistency and transparency within the specific blockchain
network [32].

The heart of Blockchain and DLT is consensus mechanisms. Different types of consen-
sus mechanisms are applied in different distributed ledger technologies. The consensus
mechanisms have benefits and downfalls. When it comes to the IoT domain, not every
consensus mechanism applies to resource constraint IoT devices [2]. Below, we present
the definition of consensus mechanism followed by a description of different types of
consensus mechanisms and their use in the IoT domain.

2.3. Consensus Mechanisms

In an IoT paradigm, decision-making is an everyday use case while receiving and
processing data from trusted and untrusted data sources. Identifying the trusted entity
within a public internet network is also a problem. Consensus algorithms are used widely
in different applications to make decisions, select the leader, and synchronize the state
between distributed systems [33]. Consensus mechanisms relate to different types of
proofs. Below, we discuss a few types of proofs used in distributed ledger technologies
and Blockchains. We have explored these proofs considering their relationship to the IoT
paradigm. Figure 2 represents 12 popular proof-based consensus mechanisms that are
discussed in detail below.
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2.3.1. Proof of Work (PoW)

Proof of Work (PoW) is a miner-based consensus mechanism where network entities
solve complex mathematical problems to add the following block in a chain of blocks. It
is also called a leader election protocol because the winning miner achieves an award to
be the leader for solving tricky computational puzzles [34–38]. To solve the puzzles, PoW
requires high computational energy. PoW is suitable for public distributed ledger [36] as it
is permissionless DLT [39,40]. As IoT devices are resource constraints, the PoW consensus
mechanism cannot be used. The authors in [34] proposed a modified version of PoW called
Green-PoW. They claimed that the algorithm required 50% computational energy, but it
is still not a suitable solution for Fog and Edge-based DLT solutions. Furthermore, the
distributed identity management solution for IoT required a combination of private and
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consortium-based distributed ledger solutions, which cannot be achieved with a high-load
PoW consensus protocol.

2.3.2. Proof of Capacity (PoC)

Proof of Capacity (PoC) is another miner-based consensus mechanism where the
miners use their hard disk space to gain the chance to mine the next block [35,36]. As
IoT devices and IoT infrastructure built at the edge layer are not much resource-heavy,
proof of capacity is not a suitable consensus mechanism for distributed ledgers used for
any IoT solutions. Furthermore, PoC is for a public distributed ledger [36,40] solution
and is another permissionless DLT [39,40], so it is not of use in achieving the goal for our
proposed model.

2.3.3. Proof of Elapsed Time (PoET)

Proof of Elapsed Time (PoET) is another type of verification mechanism which can be
used for permissioned Blockchain. It has low power consumption and latency compared
to PoW [35,36]. In PoET, a leader is selected based on a random lottery on a first come,
first serve basis, which means the miners do not need high computation power to solve
puzzles [35]. PoET is one of the consensus mechanisms where a Trusted Execution Environ-
ment (TEE) is used for waiting time and equal distribution of mining opportunities [38].
PoET can be deployed both in private [40] and public distributed ledger [36] and it supports
both permissionless and permissioned ledger [40]. It is one of the consensus algorithms
which could be suitable for edge identity management modules.

2.3.4. Proof of Stake (PoS)

Proof of Stake (PoS) is another consensus protocol that does not require high computa-
tional resources for solving puzzles such as the PoW [37]. In PoS, a leader is also selected
by lottery. The amount of stake increases the possibility of being selected in the lottery [35].
PoS is one of the lightweight consensus protocols. PoS is categorized as Delegated Proof of
Stake (DPoS) [36,38] and Leased Proof of Stake (LPoS) [36,38]. These consensus algorithms
are also unsuitable for our proposed edge IoT solutions because there is no cryptocurrency
involved in our discussed IoT solution. Furthermore, PoS is suitable for public distributed
ledger [36,40] and a permissionless DLT [39], so it is not ideal for our proposed model.

2.3.5. Proof of Importance (PoI)

Proof of Importance (PoI) is another type of PoS consensus protocol where the network
activities of a node are considered a plus point for becoming the leader [35–38]. PoI can be
used both in the public and private distributed ledgers [36]. It is also a lightweight protocol
that requires fewer computational resources, and the importance is calculated based on the
interaction of the wallet and the amount of currency the node owns [37]. Though it is a
lightweight consensus mechanism, it is more suitable for cryptocurrency and not suitable
for the IoT domain.

2.3.6. Proof of Activity (PoA)

Proof of Activity (PoA) is a combination of PoW and PoS [35,37,38]. A miner needs to
solve cryptographic puzzles as PoW, and it also needs to have a significant share of coins in
the network. PoA is designed for public DLT and is a permissionless DLT [39,40], but in our
proposed model, we suggest a solution based on private and consortium distributed ledger
as it is not suitable for our proposed model. This protocol requires high computational
power as it is a PoW-based protocol, so it is unsuitable for fog-edge layer deployment and
edge IoT solutions [38].
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2.3.7. Proof of Burn (PoB)

Proof of Burn (PoB) is another extended version of PoW and PoS consensus protocols.
Here, the miners burn coins to obtain their turn for mining [35,36]. PoB is a permissionless
DLT [39,40] and suitable for public [40] deployment. Furthermore, this consensus pro-
tocol requires more computational power, which is inappropriate for edge-fog layer IoT
solutions [38].

2.3.8. Proof of Luck (PoL)

In Proof of Luck (PoL), a leader is selected for mining by random number generation
in Trusted Execution Environment (TEE). It is another lightweight protocol requiring
less computational power [37,38]. This consensus mechanism requires a special type of
hardware for TEE [38].

2.3.9. Proof of Policy (PoP)

Proof of Policy (PoP) is a consensus protocol that is also lightweight. It is another PoS
based protocol where the attribute-based ring signature is used to determine the miner. It
requires fewer computational resources than PoW and PoS. PoP is suitable for deployment
in a private DLT environment [41].

2.3.10. Proof of Trust Negotiation (PoTN)

Proof of Trust Negotiation (PoTN) is a trust-based protocol where only trusted miners
are selected for adding blocks. Here, random miners are determined based on their
trust level [37]. It is one of the protocols that can be used in permissioned DLT de-
ployment with a private ledger because here, miners can be elected based on their trust
negotiation capabilities.

2.3.11. Proof of Authority (PoAuth)

Proof of Authority (PoAuth) is a modified form of PoS [35]. In PoAuth, miners receive
opportunities based on their identity. It is one of the lightweight consensus mechanisms
suitable for permissioned DLT [38]. This consensus protocol could be ideal for our proposed
model, but Proof of Authentication (PoAh) is more suitable for our scenario, and it is
described below.

2.3.12. Proof of Authentication (PoAh)

Proof of Authentication (PoAh) is one of the consensus mechanisms that requires very
limited computational resources and low latency [37,42–48]. In PoAh, a node can be selected
for adding a block to the chain based on authentication status. PoAh can be deployed in
private DLT [42,44,45] and is suitable for a permissioned distributed ledger. PoAh is also
ideal for integration with fog and edge computing [46]. Recent research identified PoAh as
one of the consensus algorithms suitable for edge IoT solutions [42,43,45,47,48]. We have
also selected PoAh to demonstrate our proposed model.

Many other consensus algorithms are not described in detail as those are not much
relevant but can be found in Table 1. From the above discussion and categorizations,
there is no single way to achieve consensus in DLT. Many types of distributed ledgers are
introduced based on different consensus mechanisms.
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Table 1. More consensus mechanisms.

Consensus Mechanism Reference

Proof of Deposit (PoD) [35]

Yet Another Consensus (YAC) [35]

Practical Byzantine Fault Tolerance (PBFT) [35–38]

Delegated Byzantine Fault Tolerance [37]

Federated Byzantine agreement [35,36]

Proof of Participation and Fee [37]

Proof of Search [37]

Proof of Contribution [37]

Proof of Stake Velocity (PoSV) [37,38]

Proof of Exercise [37]

Proof of Learning [37]

Proof of Space (PoSpace) [37,38]

Proof of Vote (PoV) [37]

Proof of TEE-Stake (PoTS) [37]

Proof of Reputation (PoR) [35,38,49]

Proof of Reputation-X [37]

Delegated Proof of Reputation (DPoR) [37]

Proof of Property [37]

Proof of Block and Trade [37]

FastBFT [37]

Proof of QoS (PoQ) [37]

Proof of Validation [38]

Hashgraph [38]

2.4. Summary

The use of DLT, specifically blockchain-based consensus algorithms, became de facto
in the domain of digital currencies after the first proposal of Bitcoin. Though the adaptation
of Blockchain in IoT is ongoing research, PoW and the miner-based consensus are not
very suitable for the edge IoT devices as those are resource constraint devices and are
not suitable for resource-heavy calculations. Motivated by this, we have performed our
research within the domain and proposed a new hybrid distributed ledger-based approach
for identity management of IoT devices which will enhance security and trust at the edge
layer of IoT paradigm. Before describing our proposed solutions, we present an extensive
literature review on the state-of-the-art identity management for IoT devices, which are
related to our research.

3. Related Works

In this section, we have presented a comprehensive survey on related works. Many
recent papers have discussed DLT especially Blockchain-based identity management for
IoT devices [49–68]. However, some of them also discussed the combination of machine
learning and other technologies with the blockchain-based solution and some discussed
the use of IoTA for a similar purpose. We briefly present a review of related works below.

In [49], a detailed survey on blockchain-based identity management for the IoT was
presented. The authors discussed scalability, interoperability, and mobility as essential
requirements for the design of identity management systems for the IoT. The authors
also presented the drawbacks of centralized identity management solutions. Furthermore,
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the authors described traditional identity management solutions, followed by different
blockchain-based industrial solutions and currently proposed identity management solu-
tions by academics. Finally, the authors discussed different challenges related to identity
management, access controls, trust management, privacy, and performance evaluation. In
an earlier survey [50], the same authors presented comparative presentations on different
initiatives on identity management, as well as comparisons between different blockchain-
based identity management solutions. Another survey on Blockchain for identity manage-
ment presented a detailed analysis of six use cases where blockchain is used for identity
management. The discussed solutions are Namecoin, uPort, Sovrin, Blockstack, ShoCard
and Jolocom [51].

In [52], the authors suggested a lightweight blockchain-based authentication and
authorization solution framework for healthcare IoT systems. The proposed solution used
the probabilistic model. In the proposed model, the authors recommended a miner-based
solution and the authentication and authorization process take place at the cloud layer.
Though the authors used a fog layer in their recommended model, the Blockchain solution
is integrated with the cloud layer. Moreover, the authors recommended the solution based
on the PoW consensus mechanism, which is a heavyweight solution and not very realistic
for edge-based IoT scenarios. This type of solution can be applied for a model where most
of the operations, decision-making, and data transfers involve the cloud layer.

In [53], the authors proposed a consortium-based centralized identity management
solution for the IoT. They discussed certificate management for the IoT entities and pre-
sented the architecture. Furthermore, they implemented their recommended model in a
laboratory environment with Hyperledger Fabric. This solution is suitable for cloud-based
and centralized solutions for IoT device identity management. In another publication [54],
the same group of authors presented a combined solution for IoT access control using
capability-based access control and consortium-based blockchain technology. In our re-
search, we focus on edge-based identity solutions, which will improve the authentication
and authorization process at the edge layer.

The authors, in [55], recommended a model with device clustering and blockchain for
the authentication of devices. They also suggested the solution with local blockchain and
global blockchain layer for local authentication and authorization process, which shares
a slight similarity in architecture with our recommended model, but we have developed
our model based on our previous works [5,20], where we also designed and verified secure
communication protocol for IoT devices and their work is based on device clustering.
Moreover, we propose the use of private ledger at the edge layer (local blockchain layer) to
make it secure within a certain location and consortium ledger at the cloud layer (global
blockchain layer) where inter-organizational collaboration could be required for sharing of
identity information.

In [56], the author recommended a role and permission-based decentralized model
for access control of IoT. Wireless sensor nodes connect with the blockchain system via the
management hub and miner networks for performing smart contracts. The managers assign
access permissions to the IoT nodes. As we have already described above, a miner-based
solution is not suitable for edge-based IoT solutions.

In [57], the authors suggested a cross-domain secure authentication model for the
industrial IoT devices. The model used layered architecture and localization of IoT devices
by separating in different domains, which we think is a good concept, and we also consider
similar concepts in this paper as well as in our previous works [5,20]. However, in their
recommended model they proposed a central server for each domain, which creates the
possibility of a single point of failure, on the other hand, we propose identity management
using DLT at the edge layer of the IoT paradigm.

In [58], the authors presented identity management for cloud-based IoT applications
based on Blockchain. The proposed use case uses facial recognition of students to iden-
tify them for the printing service at any institute. They recommend the use of cloud
services for the user data for their blockchain-based solution. This is useful in that certain
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context, but it is not applicable for distributed IoT end devices and a generic model for
identity management.

User access control to IoT devices using Blockchain technology has been presented in
many recent publications [59–66]. A user access control based on ciphertext-policy attribute-
based authentication (CP-ABE) and IoTA is recommended in [59], though the paper title is
about IoT, the focus is more towards token-based authorization of user’s handheld devices
for accessing IoT devices. Another work recommended user access control and authoriza-
tion to IoT resources for its end users in a smart city environment. The proposed solution
was implemented in the private Ethereum blockchain [60]. The authors also presented
the smart contract, and blockchain interaction with the application. Smart-contract-based
access control for edge computing is suggested in another research publication [61]. Here,
the authors use Colored Petri Net (CPN) to present their blockchain-based edge comput-
ing solution. An Ethereum blockchain and smart contracts-based identity management
solution was also proposed in [62], where device ownership is mapped with the device
using Blockchain. A decentralized identifier and blockchain-based user-centric IoT device
identity management solution is recommended in [63], where the focus is also IoT device
ownership using blockchain technology. Another paper presented a private distributed
ledger based IoT identity management solution for enterprise users [64]. In [65], user
identity management and device ownership using Blockchain, attribute management via
certificate authority is recommended. Though the proposed identity solution is blockchain
based, it still has a dependency on certificate authority which is not fully a distributed
solution. Furthermore, a blockchain- and capability-based IoT user access control model is
recommended in [66].

A security model with an identity and authentication framework is recommended
in [67]. The authors here presented the security challenges in IoT and the requirement
of identity management for IoT devices. The recommended solution is namely BCoT
sentry, where device authentication is carried out at the Blockchain gateways. They also
implemented a prototype in Ubuntu virtual machine to demonstrate their proposal. This
approach is good, but their implementation is different from ours, as we have presented
the localization of the problem at the edge or fog layer of IoT to improve the IoT security at
the lower layer of the IoT paradigm.

In [68], the authors presented a blockchain and Unique-ID-based decentralized solu-
tion model for IoT devices. This solution also has some similarities with our model, but in
our model, we have recommended a solution that is distributed and decentralized but also
uses scalability feature of cloud layer of IoT paradigm.

As we found from the above literature review, a generic model for identity manage-
ment of edge IoT devices is still an open issue. Many of the works are more focused on
user access control to the IoT devices. As a result, in our recommended model, we have
presented a generic solution for distributed identity management for the IoT device itself
which can be adapted to different use cases, for example, smart city, industrial IoT, smart
home, smart agriculture, etc. The below section presents the architecture and details of our
proposed distributed ledger-based identity management solution for edge IoT devices.

4. Our Approach

In this section, we describe our proposed system. First, we presented abbreviations
and descriptions of different terms mentioned within our proposed model. After that, we
clarify different assumptions we have considered, followed by the offered system model
description, workflow of the system, and smart contracts and few algorithms for supporting
the proposed model.

4.1. Notations of Terms

We have considered different terms throughout the paper. Table A1 in the appendix
section presents abbreviations and descriptions of different notations of terms.
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4.2. Assumptions

The proposed identity management architecture with related protocols is valid with
the following assumptions. The assumptions support the further implementations of the
proposed model.

• Our proposed decentralized model has restricted access rights to identity infor-
mation within a particular area. Access to the identity information for devices
within other blockchain networks can also be possible via the global cloud layer
blockchain network;

• Any device collaborating with any other device via the Blockchain-based identity
management nodes must be initially registered to the network, either manually or via
a mobile operator;

• A valid national identity number and photo Id are required for user registration, which
should be stored in Blockchain;

• After the initial registration, the users and devices become part of a local blockchain
network where it is located;

• Data communications between devices, gateways, and servers are carried out using a
secure communication protocol that was proposed in our previous work;

• The symmetric keys for secure communication between IoT devices and edge gateways
are transferred securely using the secure communication protocol proposed in our
previous work.

4.3. System Model

As we have mentioned earlier, in our previous work, we described a decentralized
identity management model for edge IoT devices [20]. We also proposed a layered archi-
tecture for security in IoT [69]. In the current paper, we combined those models with DLT
and smart contacts. Our proposed model is based on the concept of shared ledger [70],
which can also be a distributed ledger but a private permissioned distributed ledger or a
private consortium ledger where the entries are not shared publicly but only between the
nodes where mutual trust exists. Furthermore, they are located within a particular location.
The region for proposing a hybrid architecture with a combination of mixed access rights
is to protect identity information from a broader range of users, which reduces security
risks and increases privacy. The private permissioned DL should store IoT device identity
information at the fog layer within a Local Identity Provider (LIdP), which could be within
a specific location, organizational network, or service provider. The consortium ledger is
used for inter-organizational collaboration and identity data transfer in case it is required at
the cloud layer within a Global Identity Provider (GIdP), which will allow interoperability
and mobility of the IoT devices.

As our proposed model is fog centric, all the devices are registered with the nearest
DLT-based local identity management node (as shown in Figures 3 and 4). The proposed
Fog layer DLT-based LIdP network consists of permissioned private blocks where access to
information is restricted within a group of entities within a specific location or organization.
On the other hand, the cloud layer GIdP network is built upon a consortium network
and is shared between different parties. Here, a party can be a group of people within
various organizations or devices involved in managing and processing identity information
for the devices registered with a LIdP. Edge gateways also keep the identity information
of the connected devices. IoT devices only keep track of their identity and the identity
information of the gateway it is connected to.
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Figure 4. IdP nodes represented as groups.

In Figure 4, two groups of LIdPs and GIdPs are presented. However, there could
be n number of groups. So, we have mentioned the groups on the right side with the
number n. There could be several LIdPs within a particular location, and they collaborate,
as shown above. The edge gateways and IoT devices get unique identities assigned and
stored in the distributed ledger at the LIdP. The local identity managers will have a private
distributed ledger that will collaborate with other fog layer distributed ledgers owned by
the same service providers. The GIdPs will be implemented with a consortium distributed
ledger to allow collaboration between different identity service providers. There will be
no collaboration between the fog layer identity providers if they are from different service
providers or at different locations. However, fog layer local identity providers from the
same provider will collaborate with each other as they are built upon a private distributed
ledger, which enhances the security and privacy of the identity information at the fog layer.

In Figure 5, we present the internal architecture of a single block. The left side of the
figure shows a single-block architecture. A block consists of a block header and a block
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body. A block header holds the block’s version, timestamp, previous block’s hash, and
current block’s hash. The block body consists of an identity registry where identification
information of different devices is stored. A single entry within the identity registry is
shown on the right side of the figure, which includes requestId, identity information of
IoT device/user device/IoT gateway represented as IdDevice, device type as DeviceType,
device connection information as ConnectedTo, timestamp of request as Timestamp, own
private and public key as PrivateKeyIdP and PublicKeyIdP, and public key of the device
as PublicKeyDevice. These keys are only used for communication between the IdP and the
respective device, which could be an IoT device/user device/IoT gateway. The reason
behind saving one’s own public and private key is to communicate uniquely with each
device. The private key will stay secure, as access to the ledger should be performed via
the Local Trusted Application (LTA) presented in Figure 6. For further details of secure
communication protocol, readers are suggested to look at our previous work [20], as the
current model is built on top of our previous work. A LIdP shares the identity information
of a device with a GIdP if it is requested. In that case, the key information is not shared
with the GIdP. Besides the identity of the device, the identity, and the public key of the LIdP
are shared so that the GIdP can share it with the requesting LIdP that has got a request
from a gateway where the IoT device is moved. The requesting LIdP requests a sync with
the other LIdP to sync the actual identity information of the device. The below section
describes the workflow of our proposed system.
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4.4. Workflow of the System

There are several different workflows for our proposed system model. As we have
discussed earlier, our proposed model handles different scenarios. We have considered
six different workflows for our proposed system to generalize all the scenarios.

Figure 6 represents the overall workflow of the proposed system. The request processor
module processes each valid external request before forwarding it to the Local Trusted
Application (LTA) module. The LTA module is responsible for further verification of the
request and comparison for the data saved in the smart contract or adding a new entry to
the local temporary storage for further adding it to the blockchain. As shown in the figure,
each device or IdP communicates with another IdP via the request processor. Here the
request processor plays an essential role in stopping unnecessary traffic toward LTA.

Figure 7 represents the flowchart of operations of a request processor. The request
processor checks the validity with respect to six different workflows: registration, authen-
tication, authorization, re-registration, revocation, and synchronization. These six types
of requests are only known to the community of IdP. The request processor discards all
other types of requests. The request processor only knows the six types of requests and
verifies them before forwarding to the LTA. For security reasons, the request processor
does not verify the identity of the requester. Before forwarding to LTA, the request proces-
sor adds tags to the request with three different types: administration, verification, and
synchronization. Below, we describe each of the workflows.
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4.4.1. Registration

Any user, user device, IoT device, or edge gateway connected to any specific edge
gateway needs to be registered with the nearest LIdP. Registration is only performed with
the first-time allocation. A generalized message flow of the registration process is given in
Figure 8. Here at the first stage, the device type is identified, and based on the device type,
and the registration process is carried out. To avoid the complexity of our proposed system,
we have not discussed the details of a user registration process in the workflow diagram.
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4.4.2. Authentication

Any user, user device, or IoT device needs to be authenticated before performing
any task within the IoT infrastructure. Here, a task can be defined as data transfer, data
store, and data access to any other device connected to the specific network. A simplified



Sensors 2023, 23, 4046 16 of 31

message flow model for authentication is shown in Figure 9. The same figure applies
for both authentication and authorization. The authentication varies based on the type
of device. Based on use cases, the IoT devices need to store and transfer data with the
nearest edge IoT gateways. The authentications of IoTDs are automated via the EIoTG.
Every packet sent from an IoTD to EIoTG consists of unique signatures of the sender device.
The EIoTG verifies the signatures by using the public key of the IoTD. The LIdP shares
the public key of the connected IoTD. If an IoTD is not authenticated, it is marked as
compromised in the EIoTG database for connected devices. At the same time, a notification
is sent to the LIdP so that the same device cannot get registered with another EIoTG and
performs malicious activities. If required, automated identity verification is performed
by the LIdP as it holds the smart contracts, which contain the details about the connected
IoTDs with different edge IoT gateways.
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4.4.3. Authorization

Authorization is the next step to authentication. Any authenticated user, user device, or
IoT device needs to be authorized before performing any task within the IoT infrastructure.
Here, a task can be defined as data transfer, data store, and data access to any other device
connected to the specific network, such as authentication. A simplified message flow
diagram for authorization is shown in Figure 9. The main difference here is to verify the
access right of the specific entity that requests access to any resource to perform any task.
A few more use cases where authorization is required are data access to an IoT device from
a user device, control of a device, device maintenance such as Firmware updates, etc.

4.4.4. Re-Registration

A re-registration of a device is performed with the re-location of any IoT device. A
device with mobility capability may move to a location where it needs to access resources
and complete tasks within a new edge IoT gateway. A simplified message flow diagram
for re-registration is shown in Figure 10, where reallocation to a new location based on the
device’s movement is performed with re-registration. A re-registration is only done for a
device already part of a specific IoT domain and must verify identity to a new edge IoT
gateway. Any new device registration is considered under the registration workflow.
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4.4.5. Revocation

The revocation of identity is performed for a compromised device. A compromised
device is defined as untrusted within the IoT domain due to malicious activity. A simplified
message flow diagram for revocation is shown in Figure 11. We proposed a dynamic trust
model [71] for trust management for IoT. The same model can be used for identifying
untrusted devices, and the identity of untrusted devices can be revoked. Revocation is
applicable for both authentication and authorization.
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4.4.6. Synchronization

The synchronization request always comes from another LIdP or from a GIdP, as we
have proposed a DLT-based model. The Ledgers in different LIdPs need to be synchronized.
As mentioned above, in our proposed model, the LIdP contains private distributed ledgers
that only completely sync with other LIdP within a specific location. The LIdPs sync
periodically to store the smart contacts containing identity information of local devices
and gateways at the edge layer and within a particular area. LIdP sync is a complete
sync between peers. A sync with GIdP is performed with limited data sharing. Figure 12
represents the message flow diagram of the synchronization process. In the next section,
we discuss different smart contracts and proposed algorithms for our proposed model.
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4.5. Smart Contacts and Proposed Algorithms

As previously mentioned, the proposed model should use permissioned blockchain at
both GIdP and LIdP. The LIdPs should have private ledgers, and the GIdPs should have
consortium ledgers. The LIA module in each IdP performs the primary role here. A total of
three main types of smart contacts will be stored in DLT. The smart contacts are designed
considering the workflows. Below, we have described each of them. As mentioned earlier,
the request processor adds tags for different valid requests before forwarding it to LTA. The
LTA first sort requests based on the tags. Algorithm 1 shows the tag identification steps.

Algorithm 1: Request Tag extraction

Input: RequestTag, Request

1: if RequestTag is IdentityAdministration:
2: forwared Request to Algoritm 2;
3: else if RequestTag is IdentityVerification:
4: forwared Request to Algoritm 3;
5: else if RequestTag is Syncronization:
6: forwared Request to Algoritm 4;

4.5.1. Smart Contracts for Identity Administration

Identity administration includes registration, revocation, and re-registration of devices.
Each new device must be registered in the distributed ledger with a smart contract. The local
identity provider is the initial registration place for a new device. Every new device identity
is registered as an entry in the DLT as a smart contract. When a device is compromised,
the details of that specific device are also written in DLT with an entry as revoked. An
IoT device should have mobility, and the device’s identity should be transferable between
nodes. In case a device moves to a new gateway that is not within the range of the current
location, new registration of the device is required. This is done by the global identity node,
where the device identity is synced in the LIdP at the new location and is recorded in DLT
as re-registered. Algorithm 2 presents LTA’s steps for handling registration, revocation,
and re-registration requests.
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Algorithm 2: Identity administration

Input: RequestType, RequesterId, RequestBody
Output: ResponseType, ResponseBody

1: if RequesterId in SmartContact: //RequesterId is only EIoTG and/or Device
2: if RequestType is registration: //RequestType registration
3: if all the necessary details are present in requestBody:
4: store new SmartContact for new device;
5: return registrationConfirmation;
6: else:
7: return RequestNotCompleteError;
8: else if RequestType is revocation: //RequestType revocation
9: if all the necessary details are present in requestBody:
10: if requestedDevice is compromised: //verify device status with peers
11: store new SmartContact with revocation details;
12: return revocationConfirmation;
13: else:
14: return RequestMoreEvidence;
15: else:
16: return RequestNotCompleteError;
17: else if RequestType is re-registration: //RequestType re-registration
18: if all the necessary details are present in requestBody:
19: if peers confirm the previous registration:
20: store new SmartContact for re-registration info;
21: return re-registrationConfirmation;
22: else:
23: return re-registrationDecline;
24: else:
25: return RequestNotCompleteError;
26: else:
27: return RequesterIdNotFoundError;

4.5.2. Smart Contracts for Identity Verification

Identity verification smart contracts are made for the authentication and authorization
of devices and edge gateways. After receiving a request for authentication or autho-
rization type, the LTA interacts with the smart contract saved in the DLT to verify the
identity or to check the authorization rights. Algorithm 3 presents simplified steps of
identity verification.

Algorithm 3: Identity verification

Input: RequestType, RequesterId, RequestBody
Output: ResponseType, ResponseBody

1: if RequesterId in SmartContact: //RequesterId is only EIoTG or LIdP
2: if RequestType is authentication: //RequestType authentication
3: if all the necessary details are present in requestBody:
4: verify identity with details in SmartContact;
5: return AuthenticationConfirmation; // Can be True or False
6: else:
7: return RequestNotCompleteError;
8: else if RequestType is authorization: //RequestType authorization
9: if all the necessary details are present in requestBody:
10: verify ACL details in SmartContact;
11: return AuthorizationConfirmation; //Can be True or False
12: else:
13: return RequestNotCompleteError;
14: else:
15: return RequesterIdNotFoundError;
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4.5.3. Smart Contracts for Identity Synchronization

The identity synchronization smart contacts are for peer-to-peer communication re-
quests for the synchronization of different DLTs. Our proposed model is based on private
and consortium ledgers, so the synchronization requests are significant. Only allowed
nodes are synced between each other, and all other requests related to sync are dropped at
the LTA. The identity synchronization is performed between LIdP-LIdP and LIdP-GIdP.

Algorithm 4 represents the steps taken by the LTA for sync requests. LTA checks
entries for requesters in smart contracts stored in DTL. Only trusted and authenticated
LIdP and GIdP get authorization for synchronization. Furthermore, the sync with GIdP is
limited and all the details are not synced with the GIdP. On the other hand, LIdP which
is located within certain location and considered as within local network are allowed for
full sync.

Algorithm 4: Identity syncronization

Input: RequestType, RequesterId, RequestBody
Output: ResponseType, ResponseBody

1: if RequesterId in SmartContact: //RequesterId is only LIdP or GIdP
2: if RequestBody is complete: //RequestBody verification
3: if requester is LIdP:
4: if requester is in LocalNetwork:
5: return SyncronizationAllowedConfirmation (FullSync);
6: else:
7: return UnauthorizedSyncronizationRequest;
8: else if requester is GIdP:
9: if GIdP is in peer:
10: return SyncronizationAllowedConfirmation (LimitedSync);
11: else:
12: return UnauthorizedSyncronizationRequest;
13: else:
14: return InvalidRequesterError;
15: else:
16: return RequestNotCompleteError;
17: else:
18: return RequesterIdNotFoundError;

Figure 13 presents the computation logic of our proposed model DIdM-EIoTD in an
LIdM, where the connections between algorithms and the DLT are shown. The next section
presents the results of simulations and related analyses for our proposed model.
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5. Results and Analysis

This section presents the simulation results of our proposed model. We have divided
this section into three different sub-sections. First, in Section 5.1, we introduce a formal
security analysis and description of the Scyther simulation experimental results. After
that, in Section 5.2, we present the results of the model-checking tool SPIN. At the end, in
Section 5.3, we present the results of FobSim simulation.

5.1. Formal Security Analysis

We have used Scyther [71] security verification tool for the security analysis of our
proposed model. Scyther tool allows claims of different security properties: Secret, Nisynch,
Niagree, Alive, Weakagree, etc. Figure 14 presents verification results for the secret of
Device identity as well as Edge IoT Gateway identity as well as Nisynch, Niagree, Alive,
and Weakagree. As described above, our proposed model will allow different types
of device identity management, but for simplicity, we have only presented everything
as a device during verification. The Scyther simulation was done in Intel (R) Core (™)
i7-6500 CPU @ 2.50 GHz 2.59 GHz and 16.0 GB internal memory (RAM) with Ubuntu
20.04 operating system.
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As mentioned earlier, the GIdP and LIdP will sync with each other. Furthermore,
the LIdPs within specific locations will collaborate as those will be within a private per-
missioned distribution ledger. Figure 15 presents the security verification for interaction
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between a GIdP and a LIdP, which verifies the secret of data transferred between each other
and other standard security properties Nisynch, Niagree, Alive, and Weakagree.
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5.2. SPIN Model Checker Results

SPIN is a popular model checker that verifies the states of different complex sys-
tems [72,73]. We have used Spin Version 6.4.9 to simulate our proposed model. The
simulation was conducted using an Intel (R) Core (™) i7-6500 CPU @ 2.50 GHz 2.59 GHz
and 16.0 GB internal memory (RAM) with Ubuntu 20.04 operating system. Our proposed
model was verified per the scenario presented in Figures 3 and 5. Below, we have the
verification results of the scenario of Figure 3, which is an interaction between different IdP.
Table 2 represents the SPIN verification result for interaction between different IdP.

Table 2. SPIN verification result for interaction between different IdP.

Verification Details State-Vector (Byte) Depth Reached Transitions Time (s) Memory (Mb) Rate (States/s)

Normal search 140 4583 30,148,417 10.1 379.706 361,954.85

Search with
acceptance cycle 140 4583 30,148,417 10.8 379.706 337,869.13

Search with safety 140 4583 30,148,417 11.2 379.706 326,989.62

From the above, we can see that the simulation time increased a bit with extra options.
Table 3 represents the complexity of increasing status with respect to depth and number of
states for normal SPIN search, search with acceptance cycle as well as search with safety.
We only noticed a slight difference in simulation time of around 0.10 s.
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Table 3. Complexity representation of SPIN simulation.

Depth No of States Transitions Memory (Mb) Time (s) Rate (States/s)

3659 1 × 106 6.89 × 106 197.382 2.07 5 × 105

4583 2 × 106 1.49 × 107 266.034 4.72 4 × 105

4583 3 × 106 2.38 × 107 334.687 7.8 4 × 105

Figure 16 represents the SPIN verification results without any error state. As we
have performed a simulation for the continuous running of the system, the end state is
unreachable. We have created four different groups of IdP where two groups represent the
GIdP, and two other groups present the LIdP.
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Table 4 represents the compression effect of the simulation. The SPIN simulator allows
different types of compression during the verification. We have considered a standard
run of the simulation followed by normal compression, hash compact compression, bit-
state compression, bitstate compression with optimization, and bitstate compression with
different array sizes and optimization.



Sensors 2023, 23, 4046 24 of 31

Table 4. Compression effect on the simulation results.

Type of Run Rate (States/s) Memory (Mb) Time (s)

Standard 352,871.04 379.706 10.4

Normal Compression 157,915.51 323.944 23.1

Hash compact compression 497,625.48 267.987 7.34

Bitstate compression 359,067.49 17.413 10.2

Bitstate compression with optimized search 367,367.54 17.413 9.95

Bitstate with array size 230 array size
with optimization

318,167.36 129.413 11.5

Bitstate with array size 234 array size
with optimization

252,294.27 2049.413 14.5

In Figure 17, we present the verification result for the scenario in Figure 5. The
verification took 23.1 s, and produced 44,446,704 transitions. The total amount of memory
usage was 1,023.944 Mb.
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5.3. FobSim Simulation Results

We used FobSim [74] to analyze the behavior of our fog-based identity management
solution with DLT deployment at the fog layer and at the edge/user device layer. The
simulation was run in an Intel (R) Core (™) i5-6200U CPU @ 2.30 GHz 2.40 GHz with
16.0 GB internal memory (RAM) and Windows 10 Professional operating system. FobSim
is an open-source simulator that allows deployment of Blockchain/DLT at the fog layer
and used device layer. FobSim allows simulation with Proof-of-Work (PoW), Proof-of-Stake
(PoS), Proof-of-Authority (PoA), Proof-of-Elapsed-Time (PoET), and delegated Proof-of-
Stack (dPoS) as a consensus mechanism. We used Proof-of-Authority (PoA) as it is best
suits our simulation needs. The simulator supports payment/Trading, data management,
identity management, and computational services through smart contracts. We used the
identity management service for our simulation. The authors of FobSim mention miners
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which is verified in our scenario. A verifier can only verify a block based on its Proof-of-
Authority (PoA).

We have performed the simulation with the number of fog nodes from 100 to 1000,
as presented in Figure 18. The simulation parameter configuration details are shown in
Table 5. The Blockchain was placed at the Fog layer and the user device layer. As we can
see in the graph as well as in Table 6, the simulation took more than 300 s when we used
1000 fog nodes, and the Blockchain was deployed at the fog layer. On the other hand, the
simulation with blockchain deployment at the user device/edge layer took less than 20 s.
A cloud layer deployment of Blockchain will be worse than the deployment at the fog layer
as it is far from the device layer.
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Table 5. FobSim simulation parameter configuration.

Simulation Parameter Value

No. of fog nodes 100–1000

No. of devices per fog node 100

No. of task per device 5

No. of miners/EIoTG 100

No. of neighbors per miners/EIoTG 3

No. of task per block 5

Gossip activated True

Asymmetric key length 512

Delay between fog neighbors 12 ms

Delay between end-user/device neighbors 1000 ms
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Table 6. FobSim simulation results with BC deployment at edge/user layer and fog layer.

Number of Fog Nodes BC in Edge/User Layer BC in Fog Layer

100 6.05780482292175 6.22806930541992

200 8.13564014434814 14.2369947433471

300 12.6292879581451 31.1524369716644

400 15.3436908721923 52.6077961921691

500 18.693144083023 80.9993338584899

600 23.1540505886077 116.00711941719

700 26.5926034450531 158.398232460021

800 28.3022751808166 207.182087421417

900 33.2225153446197 260.620384931564

1000 35.4516329765319 327.477404356002

6. Discussion

As described in [49], scalability, interoperability, and mobility are three major concerns
that need to be addressed using traditional centralized identity management systems.
In our proposed identity management solutions, we have considered all of these. Our
recommended identity management solution will allow scalability by combining permis-
sioned and consortium distributed ledger technologies. At the edge layer, the permissioned
ledgers will collaborate locally and share identity data with the cloud layer ledgers, where
we have recommended a consortium-based DLT approach. This will enhance scalability
as we are allowing cloud storage of identity information. It will enable interoperability,
as we suggest a consortium-based distributed ledger approach. Finally, it will enable the
mobility of devices as local and global identity information is shared between the locally
configured distributed ledger and globally configured distributed ledger as per demand
from the edge gateways.

Other significant concerns identified by the authors in [49] are security, privacy, trust,
and user-centric approaches. We have proposed a fog-computing-based distributed, de-
centralized identity management solution for IoT devices. The proposed system has the
following benefits:

- Distributed identity management for edge IoT devices;
- Decentralized identity verification solution at the fog layer of the IoT paradigm;
- End-user data privacy using permissioned Blockchain;
- Digital identity for user devices as well as end-users;
- End-to-end data security using a secure communication protocol;
- Trustworthy collaboration between devices.

The main reason for using permissioned smart contracts and permissioned Blockchains
is to enhance user data privacy at the edge layer of IoT. Users’ personal information are
saved locally at the edge layer/fog layer of the IoT paradigm and only accessible within the
respective parties, which increases security and ensures privacy. Our proposed approach is
decentralized and distributed. Identity management is possible locally, which allows quick
responses for quick decision-making at the edge IoT layer without verification from the
cloud layer.

7. Conclusions

To bring the identity service towards the edge, we have proposed distributed ledger-
based identity providers at the fog layer of the IoT paradigm. The proposed model can
be adapted for identity management of users, handheld devices, edge gateways, and IoT
devices assigned for specific tasks. As mentioned earlier herein, the reason for using
a permissioned ledger is that we aim to enhance security and privacy in combination
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with identity management. Although we have verified our proposed model with several
simulation tools, we have not deployed the model in real-life scenarios with practical IoT
devices and DLTs, which presents a limitation of our work. Future works should address
the practical implementation of our proposed model in real-life situations. Furthermore,
the proposed model will be integrated with our proposed multi-agent-based edge gateway
solution [75] for trust management and machine-learning-based privacy solution model [15]
for complete security, trust, and privacy solution for the IoT paradigm.

Author Contributions: Conceptualization, K.M.S., R.R. and P.J.; methodology, K.M.S. and R.R.;
software, K.M.S.; validation, K.M.S., R.R. and P.J.; formal analysis, K.M.S. and R.R.; investigation,
K.M.S.; resources, K.M.S. and R.R.; data curation, K.M.S. and R.R.; writing—original draft preparation,
K.M.S. and R.R.; writing—review and editing, K.M.S., R.R. and P.J.; visualization, K.M.S.; supervision,
R.R. and P.J.; project administration, R.R. and P.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the reviewers of this paper for their intellectual feedback.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Abbreviations and descriptions of different terms.

Abbreviations Description

IoT Internet of Things

CA Consensus Algorithm

SC Smart Contracts

SP Service Provider

DL Distributed Ledger

TTP Trusted Third Party

IoTD Internet of Things Device

EIoTG Edge Internet of Things Gateway

DLT Distributed Ledger Technology

BC Blockchain

FG Fog Gateway

FC Fog Computing

P2P Peer-to-Peer

IdP Identity Provider

LIdP Local Identity Provider

LTA Local Trusted Application

GIdP Global Identity Provider

LBCN Local Blockchain Network
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Table A1. Cont.

Abbreviations Description

GBCN Global Blockchain Network

IdU User Identity

IdUd User Device Identity

IdIoTD Identity of Internet of Things Device

IdEIoTG Identity of Edge Internet of Things Gateway

IdLIdP Identity of Local Identity Provider

IdGIdP Identity of Global Identity Provider
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