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Abstract: The detection and classification of microplastics in the marine environment is a complex
task that implies the use of delicate and expensive instrumentation. In this paper, we present a
preliminary feasibility study for the development of a low-cost, compact microplastics sensor that
could be mounted, in principle, on a float of drifters, for the monitoring of large marine surfaces.
The preliminary results of the study indicate that a simple sensor equipped with three infrared-
sensitive photodiodes can reach classification accuracies around 90% for the most-diffused floating
microplastics in the marine environment (polyethylene and polypropylene).

Keywords: microplastics; microplastic detection; marine environment; polyethylene; polypropylene;
infrared reflectivity; low-cost sensors

1. Introduction

An emerging problem affecting the marine environment is the accumulation of An-
thropogenic Marine Debris (AMDs), also called Marine Litter (ML), in the open sea [1–3]
and emerged coastal areas [4–10], but also in deep water sediment [11–13], in polar ar-
eas [14,15], and in freshwater environments [16–19]. One performed survey confirmed that
the percentage of “plastics” (including all artificial polymeric types) among the different
categories of ML is very high, representing between 61% and 87% of AMDs [20,21]. The
persistence of plastic materials and their slow degradation in the environment allows
them to enter and accumulate in aquatic ecosystems, with possible harmful effects for the
biota [22]. Macroplastics (2.5 cm−1 m), when subjected to chemical and physical stresses
(photodegradation, mechanical shocks, etc.), fragment into smaller pieces [23–25], giving
rise to second-generation microplastics. Added to these are “first-generation microplastics”,
which are released into the aquatic ecosystem due to direct losses during their transfer and
transport to/from industries. This second category includes microbeads (tiny microspheres
used in cosmetics and other detergents, and nanoparticles used in industrial processes) and
resin pellets, also called nurdles, a raw material used in molding and packaging to produce
all kinds of plastic articles used in modern society [26–28]. Differences in the size of plastic
pieces can lead to different types of dangerous effects on the environment and on the health
of humans and animals, also due to chemicals and metals that might accumulate on their
surface [29–38]. The proposed classification of microplastics (MPs) into size classes takes
this fact into account [39].

It is therefore important, in line with protocol and standard monitoring strategies [40,41],
to collect information on the spatial and temporal distribution of marine waste, especially
on microplastics and their principal typology, to quantify their abundance and type, identify
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the areas of greatest accumulation, and possibly trace their origin and the contribution of
different possible sources (rivers, tourism, etc.).

The modalities of detecting and classifying marine microplastics is one of the most
discussed issues of recent years. The need to be able to compare collected data has led
the scientific community to converge on the adoption of some standard protocols that
define how to implement collection and which parameters are the most interesting to
classify. These include polymeric classification; several methods have been proposed and
tested for the analysis of marine microplastics, based on their different spectral response
in the infrared region of the spectrum (IR spectroscopy [42,43], micro-Raman [42–46],
hyperspectral imaging [47]) or on their emission spectrum under the effect of a laser
pulse [48]. All the above methods guarantee excellent discrimination of the main polymers
that compose the Marine Litter, but the instrumentation needed for the analysis is typically
restrained to laboratory applications. Microplastics are usually recovered from shorelines
or sampled at sea according to established protocols, and their analysis is then carried out
in the laboratory.

As part of the Tuscany Region’s MARTA (MultiplAtform smaRt drifTer—UAV—SAPR
for marine investigation) Project, the authors investigated the feasibility of making a mi-
croplastic sensor to be mounted aboard a drifter fleet, so as to directly map the distribution
of dispersed microplastics on the sea surface during their passive transport with currents.

The drifters typically used in the study of the sea currents are already equipped
with temperature, pressure and salinity sensors, and in some cases, they can also collect
information about marine micro-organisms by measuring the sea levels of O2, NO3 and
particle organic carbon. Each drifter can travel several hundred or even thousands of
kilometers from the time of release to their possible recovery (or at any rate, to the planned
end of their mission), so each is capable of mapping a considerable area of water. For this
reason, it would be extremely interesting to obtain, along with physical and microbiological
information, a mapping of floating microplastics.

However, for reaching this goal, it is necessary to substantially reduce the size, com-
plexity and, most importantly, the cost of the microplastics sensor. The latter condition is
particularly critical for minimizing the economic losses from the likely loss of drifters (with
attached sensors) after their release at sea. A reasonable target for the cost of each sensor
can be around EUR 200/300.

In Materials and Methods, we will describe which strategies have been adopted and
which choices were implemented to pursue the goal we set. In Results, we will demonstrate
the technical details of the prototype made and outline the first tests we carried out with it.

In Discussion and Conclusions, the initial results obtained will be discussed in light
of the technical solutions adopted. The advantages and drawbacks of the sensor, future
improvements, and possibilities for use in different contexts will be highlighted.

2. Materials and Methods

In our feasibility study for the realization of a robust, fast and cheap microplastics
sensor, we considered the possibility of detecting and classifying the floating marine
microplastics by exploiting their peculiar diffuse reflectance spectrum in the infrared region
between 950 nm and 2600 nm.

Several commercial instruments can operate in this region, with some of them also
guaranteeing the size and robustness (but not the cost) requirements for being mounted on
the drifters. Therefore, as a preliminary check, we analyzed a group of 218 plastic micro-
pellets, recovered from several Italian beaches, with one of these miniaturized instruments
(Neospectra from Si-Ware Systems, Cairo, Egypt). The instrument has a cost exceeding
EUR 2000, which rules out its use on a fleet of floaters, but it is, nevertheless, very useful
for the laboratory and in-situ characterization of microplastics. The Neospectra provides
the diffuse reflectance spectrum of the sample between 1250 nm and 2250 nm. It operates
at contact and acquires a spectrum in 2 s.
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The 218 spectra were classified using the Graph Clustering method, which was in-
troduced by the Pisa group in 2016 for the classification of samples based on their Laser-
Induced Breakdown Spectroscopy spectra [49,50] and then also successfully applied to the
classification of samples from their X-Ray Fluorescence spectra [51]. The graph is repre-
sented by an adjacency matrix whose (i, j) elements are given by the correlation between
the i and j spectra:

Aij =
< SiSj >

< S2
i >< S2

j >
(1)

The symbol < SiSj > represents the scalar product between the two spectra Si and Sj.
The adjacency matrix Aij is square and symmetric (undirected graph). When the spectra
are similar, as in the case of the marine pellets here studied, the elements of the adjacency
matrix are typically very close to 1. To perform an effective classification, it is thus necessary
to introduce a threshold value th, such that

Aij = 0 i f Aij < th (2)

The value of th can be determined by maximizing the modularity [49] of the resulting
graph, which is a measure of the compactness and separation of the clusters.

The graph corresponding to the 218 pellets here analyzed is shown in Figure 1.

Figure 1. Clustering of the resin pellets according to their composition. The small cluster of green
labels at the right corresponds to polypropylene (PP) pellets; the other cluster, far bigger, is of
polyethylene (PE) pellets. The Graph Clustering method is able to discriminate, among the analyzed
samples, the two types of polymers from their diffuse reflectance spectra. The graph was obtained by
setting a correlation threshold of th = 0.9886.

The two main clusters resulting from the analysis contain 184 polyethylene (PE) and
only 18 polypropylene (PP) pellets, respectively. The remaining 16 pellets were made of
different materials, each one not correlated with other pellets; so, as they do not have
connections, we do not show them in the graph.
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Having ascertained the possibility of discriminating from their reflectance properties
the two materials most found among floating marine microplastics (PE and PP), despite
the similarity of their spectra in the 950–2600 nm infrared region (see Figure 2), our next
task became to find a way to obtain similar results while cutting by an order of magnitude
the cost of the sensor used.

Figure 2. Average spectra of polypropylene (PP) and polyethylene (PE) pellets, taken with Neospectra
instrument. The two spectra are very similar in almost the entire spectral region considered and show
only slight differences around 1400 nm.

Broaband InGaAs Sensors

We devised as a possible solution the use of broadband InGaAs sensors with different
spectral sensitivity levels in the IR region, between 1250 nm and 2600 nm; they are described
in Figure 3 (Laser Components GmbH, Olching, Germany).

Figure 3. Typical spectral response of the InGaAs sensors available on the market. Each curve is
labeled with the cut wavelength of the sensor.
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The InGaAs photodiodes are alloys of InAs and GaAs deposited on an InP substrate.
The energy bandgap of the alloy (and, consequently, the long wavelength cutoff of the
photodiode) depends on the different proportions of the two components. The “standard”
InGaAs alloy corresponds to a proportion of 53% InAs and 47% GaAs. This alloy has the
same lattice constant of the InP substrate and a bandgap corresponding to 0.75 eV (at room
temperature), which corresponds to a long wavelength cutoff around 1.7 µm. By increasing
the InAs proportion in the alloy, the long wavelength cutoff increases, but a mismatch with
the lattice constant of the substrate also occurs, leading to higher dark current and lower
shunt impedance (slope of the current-voltage curve at V = 0) (see Table 1).

Table 1. Typical dark current and shunt resistance of the different photodiodes (1 mm diameter).

Cutoff Wavelength (µm) Dark Current @VR = 0.25 V Shunt Impedance @VR = 10 mV

1.7 1 nA 100 MOhm
1.9 40 nA 1.6 MOhm
2.2 1 µA 78 KOhm
2.4 2.5 µA 20 KOhm
2.6 6 µA 5 KOhm

To verify the feasibility of the use of InGaAs sensors for acquiring the diffuse reflec-
tivity signal, we performed a classification study using as input the simulated signal that
could have been obtained using the output of the five photodiodes, instead of the spectral
data recovered with Neospectra instrument.

Although the sensor is capable of distinguishing between different kinds of plastics
(preliminary tests, not shown here, were performed on polystyrene (PS), polyvinyl chloride
(PVC), polyethylene terephthalate (PET), polylactide (PLA) and polybutylene adipate
terephthalate (PBAT)), in view of the specific application of the sensor to the detection
of microplastic at open sea we focused on the possibility of detecting and classifying the
two classes that represents the large majority of floating microplastics at sea, i.e., PE and
PP. With the purpose of increasing the statistics (only 18 PP spectra were available), we
applied to our data a bootstrapping method [52] that allowed us to increase the number
of independent spectra up to 153, by averaging random couples of spectra to simulate a
different spectrum. To avoid an imbalance between the 2 classes, 18 spectra were randomly
selected among the 184 PE spectra available and the same bootstrapping method was
applied also to them, and we obtained 153 PE spectra, i.e., the same number as in the
PP case.

The simulated signal of each sensor was obtained by convolving the IR spectrum with
the sensor spectral response (see Figure 3). We used a simple Linear Discriminant Analysis
(LDA) classifier [53], which gave an excellent accuracy in the classification, as shown in
Figure 4.

The average True Positive Rate (TPR, percentage of the samples correctly classified)
reaches 98% (min 96.7% for PE), which corresponds to an average False Negative Rate
(FNR, percentage of the samples wrongly assigned to the class) of 2% (max 3.3% for PE).

To maintain low the cost of the instrument, we were forced to select only three among
the five sensors available on the market. In this way, we could guarantee the cost of
the prototype was around EUR 450, where 90% of this figure is given by the cost of the
photodiodes, and the rest by lamp, focusing system, filter and electronics). Given the prices
of the photodiodes on the market, keeping the cost of the single prototype under EUR 500
would probably guarantee a cost of EUR <300 per sensor for a small series production. The
best combination of sensors was determined by looking for the highest classification rate
that can be obtained while using the same strategy described above.
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Figure 4. Confusion matrix for the classification of PP (class 1) and PE (class 2).

The results of the optimization are shown in Table 2.

Table 2. Classification rates of different combinations of the 5 InGaAs available sensors.

Combination Average TPR Average FNR Min TPR Max FNR

(1.7, 1.9, 2.2) 90.8% 9.2% 90.8% 9.2%
(1.7, 2.2, 2.6) 75.8% 24.2% 70.6% 29.4%
(1.7, 1.9, 2.6) 61.1% 38.9% 58.8% 41.2%
(1.9, 2.4, 2.6) 58.8% 41.2% 56.2% 38.6%
(1.9, 2.2, 2.6) 58.5% 41.5% 56.2% 43.8%
(1.9, 2.2, 2.4) 56.5% 43.5% 55.6% 44.4%
(2.2, 2.4, 2.6) 54.2% 45.8% 53.6% 46.4%
(1.7, 2.4, 2.6) 51.3% 48.7% 49.0% 51.0%

It emerged that the best choice for the correct classification of PP and PE microplastics
is the combination of the three InGaAs sensors with cuts at 1.7 µm, 1.9 µm and 2.2 µm.

3. Results
3.1. Design and Realization of the Prototype Microplastic Sensor

Based on the above consideration, a conceptual scheme of the microplastics sensor is
shown in Figure 5.

Figure 5. Schematic view of the microplastics sensor.
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The illumination source is a small incandescence lamp (12 V, 3 W). The color tem-
perature of the lamp is around 2500 K. According to the black body Wien formula, the
wavelength corresponding to the maximum of the emission is

λmax =
2898 µm·K

T
(3)

Therefore, the maximum of the spectral intensity is around 1.1 µm. According to the
black body distribution:

I(λ) =
2hc2

λ5
1

e
hc

λkBT − 1
(4)

at the wavelength of 2.2 µm, which corresponds to the cut of the third InGaAs photodi-
ode, the lamp emission is about one-third of the intensity emitted at the maximum, thus
guaranteeing a good signal up to that wavelength. The light is loosely focused through
a cheap microscope objective on the water surface, where the microplastics are floating.
The visible component of the light is cut using an IR-pass filter. The light reflected by the
microplastics is finally collected by the InGaAs sensors, whose signals are amplified with a
simple electronic circuit and instantly analyzed by the onboard microcomputer (we provide
the logical scheme of the classification of the microplastics and the MatLab code used to
train the classification model in Figure S1 of the Supplementary Material).

The body of the sensor was designed (Figure 6) and 3D printed (Figure 7) using a
biodegradable plastic material (polylactide—PLA).

Figure 6. Schematic representation of the technical design of the microplastics sensor. Figures are not
readable, but they are available from the authors on request.

Figure 7. 3D printed microplastics sensor (IR-pass filter not shown in the pictures).

Unfortunately, because of the temporary unavailability of the InGaAs photodiode with
a cut at 1.9 µm, for the test of the sensor we were forced to use the next-best configuration,
with photodiodes at 1.7 µm, 2.2 µm and 2.6 µm.

3.2. Microplastic Sensor Tests

At the time of writing this paper, we have started the first laboratory tests of the
microplastic sensor. The pellets used for the preliminary feasibility test (Table 2) were
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not available anymore (they were subjected to destructive chemical analysis before the
realization of the prototype, for studying the process of the accumulation of metals on their
surface). For this reason, we tested the microplastic sensor (in the version made with the
photodiodes at 1.7 µm, 2.2 µm and 2.6 µm) on HDPE and PP plastic objects collected from
commercial packaging (8 bottle caps in HDPE, of different colors; 1 cap in PP; 5 PP lids; 1
PP transparent cup; and 1 PP plastic label), acquiring the signals of the 3 photodiodes in
103 different points for each sample. The total number of points samples was thus 1648
(824 on the 8 HDPE objects and 824 on the 8 PP objects). To reduce the effects produced by
the physical differences (color and shape) of the samples, we normalized the signal of each
photodiode to the total intensity measured on the three:

Snorm
1.7 = S1.7√

S2
1.7+S2

2.2+S2
2.6

Snorm
2.2 = S2.2√

S2
1.7+S2

2.2+S2
2.6

Snorm
2.6 = S2.6√

S2
1.7+S2

2.2+S2
2.6

(5)

In Figure 8, the HDPE and PP objects analyzed are shown.
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The results of the classification test obtained using the same Linear Discriminant Anal-
ysis (LDA) classifier used for the pellet spectra (see Section “Broaband InGaAs Sensors”,
Figure 4) are shown in Figure 9.

Figure 9. Confusion matrix for the classification of HDPE (class 0) and PP (class 1).

We obtained an average TPR of 69.2%, corresponding to an average FNR of 30.8%.
The minimum TPR was 64.7%, corresponding to a maximum FNR of 35.3%.

The results are coherent with what was obtained on the pellet spectra with the same
choice of sensors (average TPR of 75.8% and minimum TPR of 70.6%, see Table 2). It should
be considered that the samples used for the test were very different in shape and color (see
Figure 8). In comparison, the color and consistency of the pellets were much more similar
between PE and PP samples, making their classification easier only on the basis of chemical
composition.

It is important to note, in view of the use of the sensor on the floaters at sea, that the
reflectivity of the marine water is negligible with respect to the signal coming from the
plastics floating on the sea surface. Therefore, the results obtained in the laboratory are
encouraging for the forthcoming tests of the sensor at sea.

4. Discussion and Conclusions

The results obtained so far, concerning the design of a microplastic detector with a low
cost (a few hundred euros) but with sufficiently good performance, are definitely promising.
Having used three InGaAs photodiodes instead of the five available was a compromise
between high detection accuracy and low sensor cost. This last aspect, together with the
fact that the sensor can be easily built, such as with a 3D printer, constitute the main value
of the result obtained.

In addition, the use of biodegradable materials, among those available on the market
today, is also an important factor to consider; it lessens the environmental impact that any
leakage into the sea would have and thus makes it more environmentally friendly.

The choice of using LDA instead of Graph Clustering (or other more complex classifi-
cation methods such as Artificial Neural Networks [53] or Self-Organizing Maps [54,55]) to
evaluate the accuracy of classifying sample spectra was due to the need to implement an
algorithm that could prospectively be used directly on board the marine drifters, on the
same low-computational-power microcomputer used for real-time data acquisition. In any
case, LDA provides excellent accuracy in the classification. The tests performed, from the
first prototype of the sensor, on PE and PP samples showed good polymer discernment
ability (Figure 9), with accuracy values comparable to those obtained for the previously
analyzed pellets (Figure 4). This is an encouraging achievement that would justify further
studies and tests, on pellets as well as on other types of microplastic. At the same time,
initial tests are underway to impermeabilize the sensor in the best way without decreasing
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its efficiency, and to test its ability to function in the marine environment. This is a key
point in the development of the instrument since we must guarantee its long lifetime in a
harsh marine environment. In this direction, controlled tests are being implemented with
the sensor mounted onboard mini-drifters (Figure 10). In these tests it has emerged that
embedding the sensor in epoxy resin is probably the cheapest and most effective solution
to impermeabilize and protect the sensor. During the next test, we will explore how the
incorporation of the sensor into the resin works and whether it alters its optical properties.

Figure 10. Impermeability test of the microplastic sensor (red circle) mounted onboard a smart-drifter.

We think it worthwhile to stress again the advantage of using consumer and readily
available technologies for the microplastic sensor here presented; this fact allows for the
direct involvement of common citizens in the Big Data acquisition process in this field,
and raises awareness of the marine microplastic pollution problem and dimension. For
example, the sensor could be realized in the frame of projects, such as the Italian “alternanza
scuola lavoro” (“school-work internship”, now identified in Italy by the acronym PCTO),
where numerous schools have already been successfully involved by the Authors in the
collaborative development of simple tools for marine pollution monitoring [56]. Taking a
cue from these approaches, we would also like to involve the community of the so called
“makers ”, i.e., a large class of different people (technology enthusiasts, educators, thinkers,
inventors, engineers, authors, artists, students, artisans, etc.), part of an international
community that has a presence in over 100 countries, sharing the same spirit of the present
project, which can be summarized in the two mottos “do it yourself” and, above all, “let us
do it together”.

A low-cost, proximity microplastic sensor, such as the one presented here, lends
itself to be used as an accessory, on pleasure boats, or on ferries/small boats that engage
in passenger service in protected natural areas. In fact, these marine areas, such as, for
example, the Cinque Terre Park or the Venice Lagoon area, are particularly vulnerable
to pollution, including from microplastics, and are undergoing significant anthropogenic
changes and are often near the outlets of important rivers. Providing incentives for the use
of such a device in these vessels (or imposing it by regulation) would make a significant
contribution to data collection, either for scientific use and to organize prevention, or, again,
to increase the awareness of the problem among common citizens.

Finally, we are waiting for the possibility of using the best performing configuration
for the three photodiodes (1.7 µm, 1.9 µm and 2.2 µm, Table 1), as soon as the 1.9 µm



Sensors 2023, 23, 4097 11 of 13

photodiode is available on the market again. This will certainly lead to a significant
increase in performance (see Table 1) while maintaining the same final cost value for the
entire sensor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23084097/s1, Figure S1: Logical scheme for the classification
of microplastics.
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