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Abstract: Star images from star trackers are usually defocused to capture stars over an exposure time
for better centroid measurements. While a satellite is maneuvering, the star point on the screen of the
camera is affected by the satellite, which results in the degradation of centroid measurement accuracy.
Additionally, this could result in a worse star vector outcome. For geostationary satellites, onboard
thrusters are used to maintain or change orbit parameters under orbit disturbances. Since there is
misalignment in the thruster and torque is generated by an impulsive shape signal from the torque
command, it is difficult to generate target torque; in addition, it also impacts the star image because
the impulsive torque creates a sudden change in the angular velocity in the satellite dynamics.
This makes the noise of the star image non-Gaussian, which may require introducing a method
for dealing with non-Gaussian measurement noise. To meet this goal, in this study, an adaptive
extended Kalman filter is implemented to predict measurement vectors with predicted states. The
GMM (Gaussian mixture model) is connected in this sequence, giving weighting parameters to each
Gaussian density and resulting in the better prediction of measurement vectors. Simulation results
show that the GMM-EKF exhibits a better performance than the EKF for attitude estimation, with
30% improvement in performance. Therefore, the GMM-EKF could be a more attractive approach for
use with geostationary satellites during station-keeping maneuvers.

Keywords: satellite attitude estimation; thruster-induced disturbance; blurred star image; Gaussian
mixture model; adaptive extended Kalman filter; non-Gaussian noise

1. Introduction

This paper introduces a method for adaptively improving the performance of an
attitude extended Kalman filter with a star tracker and gyroscope under thruster-induced
disturbance onboard a geostationary satellite.

Due to external disturbances such as the influence of the Moon, the Sun and the non-
centrality of the Earth’s gravitational field, satellite orbit parameters change with time and,
therefore, the orbit ceases to be geostationary [1]. Thrusters onboard geostationary satellites
are used to maintain orbit parameters. However, misalignment in the thrusters’ setup
produces additional disturbances to the satellite. These problems result in unnecessary
fuel consumption during mission mode [2]. Moreover, the torque command from the
attitude control law is converted into an impulse shape signal. The pulse width modulator
(PWM) impacts the attitude estimation carried out with an extended Kalman filter because
star tracker images are directly influenced by the thruster-induced disturbance. In this
environment, the noise of a star vector is not white Gaussian noise, but rather is considered
to be non-Gaussian noise. Special care should be taken when dealing with non-Gaussian
noise if an EKF is the estimator. However, previous research about station-keeping maneu-
vering for geostationary satellites has not included precise attitude determination under
non-Gaussian noise when using star tracker as an attitude sensor [3,4]. Star images are
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usually generated by defocusing the camera images in order to precisely acquire the cen-
troids of stars. When the satellite is maneuvering, the star image is blurred during the
star tracker’s exposure time and the centroid measurements of the star tracker will have
degraded accuracy.

There are two categories of solutions when the blurring occurs in the star images. One
is to remove the blur directly from the image; the other is to measure the star vector of the
blurred image and apply it to the attitude Kalman filter considering a non-Gaussian noise
process.

There have already been substantial efforts to remove the blurring effect of star images
when under the dynamical conditions of satellites. Most researchers have concentrated
on modeling the PSF as accurately as possible and applied it to the deblurring algorithms.
The authors of [5] employed a correlation filter to conduct denoising and improve the
signal for deblurring star images, considering the angular velocity of the spacecraft to be
a constant speed. In addition, the authors of [6] proposed a method to model the PSF of
star images and compensate for it under a constant angular velocity and nonfixed angular
velocity. Meanwhile, [7] developed a method to simulate multiple blurred star images
with uniform and nonuniform blur. Another approach involved restoring blurred star
images using maximum likelihood estimation with the aid of microelectromechanical
systems (MEMS) gyroscopes [8]. The authors of [9] proposed a motion blur model for
the real star tracker that accounts for composite motion beyond uniform and nonuniform
motions, and simulated blurred star images under rotations and angular vibrations. Finally,
a study by [10] implemented a Kalman filter to estimate the centroids of star images, which
improves performance by proposing the covariance prediction equation, adaptive tuning
process, and measurement noise matrices depending on the star light magnitude or star
existence in the image.

A lot of work has also been done on using the extended Kalman filter (EKF) to estimate
the satellite attitude with the star vector measurement as well as recovering blurry images.
Ref. [11] represented the algorithm of attitude EKF using a quaternion parameter. Ref. [12]
expanded the algorithm of [11] to have the multiplicative error quaternion to avoid a
constraint of the quaternion. Since the attitude EKF in [11] assumed a zero-mean Gaussian
white-noise process, an adaptive Kalman filter should be used to adaptively tune the
parameters in real time if the measurement noise is the non-Gaussian noise process.

The adaptive Kalman filter has been widely studied to tune the process noise matrix
and the measurement noise matrix. There are various methods for making the Kalman
filter adaptive [13]. A covariance matching algorithm is one of the techniques that is
tracking the innovation profile of the filter. It could be divided into the R-adaptation and
the Q-adaptation. A multiple model-based adaptive estimation (MMAE) method is also
the technique of the adaptive Kalman filter that constructs the Kalman filters with different
models and merges the estimates of all filters using the probability that each model is
true [14].

However, these techniques have not reflected the non-Gaussian noise process of the
measurement. In order to deal with the non-Gaussian noise process, the GMM could
be adopted for the prediction of measurement noise with the state of the filter and it
provides desirable estimation results [15]. In addition, the GMM has been previously
used to compensate for non-Gaussian process noise in the system [16]. Ref. [17] used
the GMM to capture the nonlinearities of the light-curve measurement model with the
adaptive unscented Kalman filter for the attitude determination. Therefore, the GMM-
based extended Kalman filter is applied to predict the non-Gaussian process noise under
the blurred star image in this paper.

In this paper, our focus is on increasing the performance of attitude estimation based
on star vector measurements with the aid of a gyroscope. The attitude EKF is introduced
to carry out the vector measurements via attitude prediction (a priori attitude), utilizing
the angular velocity estimate. Since the attitude EKF only considers a measurement model
with Gaussian noise, a method that deals with the PSF (point spread function) in star



Sensors 2023, 23, 4212 3 of 22

images should be used. A PSF under a small angular velocity would not be a problem for
attitude estimation; however, the attitude estimation performance may deteriorate under
fast maneuvering or complicated dynamics.

The rest of the paper is organized as follows: Section 2 presents a star image generation
method with the PSF, demonstrates thruster modeling, and describes the influence of
thruster-induced disturbance on the star image using a simulation example. Section 3
introduces the attitude extended Kalman filter with an error quaternion. Sections 4 and 5
detail GMM implementation with the extended Kalman filter to predict the non-Gaussian
measurement noise. The simulation results of the EKF and GMM-EKF are compared and
discussed. These comparisons show that the accuracy of the attitude estimation of the
GMM-EKF is around 30% better than that of the EKF.

2. Star Image Generation with PSF
2.1. Pinhole Camera Model of Star Tracker

The star tracker measurement method is modeled using a pinhole camera model
shown in Figure 1. Star points are generated in the focal plane through the optical lens
system.
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The relationship between the inertial frame and the star tracker frame of a star position
coordinate system was obtained from [18], such that
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where O− xyz is the frame system of the star tracker, (x0, y0) is a point where the boresight
axis intersects the focal plane, f is the focal length, b represents the observed star vector
in the star tracker frame, r is the reference star vector in the star catalogue that the star
tracker is equipped with, and

(
Λ,
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boresight axis intersects the focal plane, f   is the focal length, b   represents the ob-

served star vector in the star tracker frame, r  is the reference star vector in the star cata-
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)

is the right ascension and declination of the observed
star defined in the celestial sphere. The reference star vector and observed star vector
have a relationship with the attitude direction cosine matrix A(q), which is defined by two
coordinate systems written as

b = A(q)r, (3)
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where A(q) is the direction cosine matrix for the attitude quaternion q given by

q =
[
ςT q4

]T , (4)

ς =
[
q1 q2 q3

]T , (5)

where ς corresponds to a vector part of q and q4 is a scalar part of q.

2.2. Star Tracker Image Generation

Once the star position is determined, the star’s light distribution around the center of
the star spot should be calculated. In order to facilitate the determination of the centroids
with subpixel accuracy, the optics of the star tracker need to be slightly defocused so that the
star light is spread out over several pixels [19]. The most accurate centroiding algorithms
rely on fitting a PSF to the measured pixel data [20]. In [21], the star spot PSF is defined by

0PSF(x, y) =
1

2πσ2
lens

exp

(
− (x− x0)

2 + (y− y0)
2

2σlens
2

)
, (6)

where σlens is the Gaussian PSF radius, which is related to the spread scale of the optical
lens. In addition, the star’s light distribution for a star spot is defined by

Espot(x, y) = nfluxTexp0PSF(x, y), (7)

where nflux is the incident flux of the star on the image plane and Texp is the exposure time.
In order to obtain the centroid from the star’s light distribution, the center of gravity

is evaluated around the star spot as given by [22]

(xc, yc) =


∑

pi=1
∑

pj=1
xpiEspot(pi, pj)

∑
pi=1

∑
pj=1

Espot(pi, pj)
,

∑
pi=1

∑
pj=1

ypiEspot(pi, pj)

∑
pi=1

∑
pj=1

Espot(pi, pj)

, (8)

where xpi and ypi are the pith pixel integer coordinates.

2.3. Star Tracker Image under Thruster-Induced Disturbance
2.3.1. Thruster Modeling

In general, six thrusters are needed to allow for attitude maneuvers in space; although,
some highly sophisticated systems claim to achieve the same space maneuvers with only
four thrusters that are strategically located on the satellite body. For various practical
reasons six or more thrusters are necessary to complete a reaction control system [23].
Therefore, six thrusters were chosen as the number of thruster units in this paper.

For a single thruster unit, the torque components were derived by considering the
setup location, direction of the thruster, and elevation and azimuth angles defined in the
coordinate system of the thruster [23]. Figure 2 presents a single thruster’s setup direction
with regard to the satellite body axis and sequences of rotation of the thruster’s frame.
In this paper, the system of rotation of each thruster unit is the same as the system in
reference [23]. First, the yB axis is rotated based on the amount of βthr, and then the zB axis
is rotated based on the amount of αthr. Hence, the resultant force components are given by

Fthr,x = Flev cos(αthr) cos(βthr),
Fthr,y = Flev sin(αthr),
Fthr,z = Flev cos(αthr) sin(βthr),

(9)

where Fthr,x, Fthr,y, and Fthr,z are components of the unit thruster force vector Fthr, and Flev
represents the thruster level.
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The misalignment of the thruster setup is considered in this paper, which leads to

Fthr,x = Flev cos(αthr + ∆αthr) cos(βthr + ∆βthr),
Fthr,y = Flev sin(αthr + ∆αthr),
Fthr,z = Flev cos(αthr + ∆αthr) sin(βthr + ∆βthr),

(10)

where ∆αthr and ∆βthr are misalignment angles of the unit thruster setup. By considering
the position of the unit thruster rthr, the torque τthr from the unit thruster is given by

τthr = rthr × Fthr

=

 rthr,y sin(βthr,mis) cos(αthr,mis)− rthr,z sin(αthr,mis)
rthr,z cos(αthr,mis) cos(βthr,mis)− rthr,x cos(αthr,mis) sin(αthr,mis)

rthr,x sin(αthr,mis)− rthr,y cos(αthr,mis) cos(βthr,mis)

Flev

=

 ∆xth,arm
∆yth,arm
∆zth,arm

Flev,

(11)

where ∆xth,arm, ∆yth,arm, and ∆zth,arm represent the equivalent torque arms of the thruster
τthr for the three-axis satellite body frame, and rthr,x, rthr,y, and rthr,z are the three-axis
components of position vector rthr measured from the center of the mass of the satellite. In
addition, αthr,mis and βthr,mis are rotation angles for considering misalignments given by

αthr,mis = αthr + ∆αthr,
βthr,mis = βthr + ∆βthr.

(12)

2.3.2. Thruster Torque Command Generation with Pulse Width Modulation

Reaction controllers can be used in a quasilinear mode by modulating the width of the
activated reaction pulse proportionally to the level of the torque command that is input
into the controller, which is the often-used pulse width modulation (PWM) principle [23].
Torque from the thruster is generated based on the ratio between the time that the thruster
is on and the thruster sampling time. The activating time for each thruster is derived using
the thruster set-up model, which is shown in Figure 3. All thruster setups for each thruster
location and rotation direction, as well as all equations in this section, were obtained
from [23].
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The relationship between the three-axis torque command from the control law and the
ratio is given by

τcmd,x = rratio,5GxB ,5 + rratio,3GxB ,3 − rratio,4GxB ,4 − rratio,6GxB ,6
τcmd,z = rratio,5GzB ,5 + rratio,6GzB ,6 − rratio,3GzB ,3 − rratio,4GzB ,4
τcmd,y = rratio,2GyB ,2 − rratio,1GyB ,1,

(13)

where rratio,i represents the ith(i = 1, 2, . . . , 6) ratio and GxB ,i, GyB ,i, and GzB ,i are ith torque
constants written as

GxB ,i = Flev∆xth,arm,i
GyB ,i = Flev∆yth,arm,i
GzB ,i = Flev∆zth,arm,i

(14)

where, ∆xth,arm,i, ∆yth,arm,i, and ∆zth,arm,i are the ith torque arms of the three-axis satellite
body frame. Using the thruster setup in Figure 3, the torque constants are defined as

GxB ,3 = GxB ,4 = GxB ,5 = GxB ,6 = Flev∆xth,arm,ex = GxB ,ex
GzB ,3 = GzB ,4 = GzB ,5 = GzB ,6 = Flev∆zth,arm,ex = GzB ,ex
GyB ,1 = GyB ,2 = Flev∆yth,arm,ex = GyB ,ex

(15)

where ∆xth,arm,ex, ∆yth,arm,ex, and ∆zth,arm,ex represent the torque arms of the three-axis
satellite body frame, and the torque constants for each axis are represented as GxB ,ex, GyB ,ex,
and GzB ,ex, as shown in Figure 3. Then, Equation (13) can be rewritten as

τcmd,x = (rratio,5 + rratio,3 − rratio,4 − rratio,6)GxB ,ex
τcmd,z = (rratio,5 + rratio,6 − rratio,3 − rratio,4)GzB ,ex
τcmd,y = (rratio,2 − rratio,1)GyB ,ex.

(16)

After normalization of the command torques, Equation (16) becomes

τ̂cmd,x =
τcmd,x
GxB ,ex

= rratio,5 + rratio,3 − rratio,4 − rratio,6

τ̂cmd,z =
τcmd,z
GzB ,ex

= rratio,5 + rratio,6 − rratio,3 − rratio,4

τ̂cmd,y =
τcmd,y
GyB ,ex

= rratio,2 − rratio,1,

(17)
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where τ̂cmd,x, τ̂cmd,y, and τ̂cmd,z are the normalized torques for each axis. The first and
second normalized torques from Equation (17) can be rewritten in a matrix form as

[
τ̂cmd,x
τ̂cmd,z

]
=

[
1 −1 1 −1
−1 −1 1 1

]
rratio,3
rratio,4
rratio,5
rratio,6

. (18)

By evaluating a pseudoinverse, the above equation can be rewritten as
rratio,3
rratio,4
rratio,5
rratio,6

 =
1
4


1 −1
−1 −1
1 1
−1 1

[τ̂cmd,x
τ̂cmd,z

]
. (19)

The thruster on-time for each thruster could be found to be negative based on the
three-axis torque command, which is not physically possible. In order to solve this problem,
the thruster unit which has a negative on-time is turned off and replaced with the one
which has a positive on-time, enabling it to provide the same torque. The operational logic
is shown in Algorithm 1 [23].

Algorithm 1: Thruster on-time setting algorithm

Input : τ̂cmd,x, τ̂cmd,y, τ̂cmd,z
Compute the ratio of thruster 3, 4, 5, 6 using (19).

rrratio,6 = rratio,6 − rratio,3 ; rrratio,3 = 0 ;
if (rrratio,6 < 0) rrratio,3 = rratio,3 − rratio,4; rrratio,6 = 0; end
rrratio,4 = rratio,4 − rratio,5 ; rrratio,5 = 0 ;
if (rrratio,4 < 0) rrratio,5 = rratio,5 − rratio,4; rrratio,4 = 0; end

if
(

τ̂cmd,y > 0
)

rrratio,2 = τ̂cmd,y; rrratio,1 = 0 ; end

if
(

τ̂cmd,y < 0
)

rrratio,1 = Abs
(

τ̂cmd,y

)
; rrratio,2 = 0 ; end

Output : rratio,1, rratio,2, rratio,3, rratio,4, rratio,5, rratio,6[
rratio,1 rratio,2 rratio,3 rratio,4 rratio,5 rratio,6

]
=[

rrratio,1 rrratio,2 rrratio,3 rrratio,4 rrratio,5 rrratio,6
]

In Algorithm 1, Abs( · ) represents an absolute of the value.

2.3.3. Star Image Implementation under Thruster-Induced Disturbance

In this section, a star image under thruster-induced disturbance is simulated to model
the smearing effect and is compared with a situation where the satellite is stationary. For the
simulation, the thruster setup is the same as that shown in Figure 3. Thruster specifications
are presented in Table 1 and star tracker specifications are provided in Table 2. The star
tracker boresight axis is aligned with the zB axis of the satellite body frame.

Table 1. Thruster specifications for simulation.

Thruster
Index (i) Position

(
rthr,x,rthr,y,rthr,z

) Elevation
Angle (αthr)

Azimuth
Angle (βthr)

Misalignment (αthr,βthr)
Thruster Level

(Flev)
Sampling

Rate

#1 (−1, 0, −0.5) m 30◦ 90◦

3◦, 3◦ 3 N 4 Hz

#2 (−1, 0, 0.5) m 30◦ 90◦
#3 (1, 1, 0.5) m 0◦ 30◦
#4 (1, 1, −0.5) m 0◦ 30◦
#5 (−1, 1, 0.5) m 0◦ 30◦
#6 (−1, 1, −0.5) m 0◦ 30◦
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Table 2. Star tracker specifications for simulation.

Pixel Array
Size Focal Length Pixel Size Field of View Exposure Time Magnitude

Threshold
Radius of

Gaussian PSF

1024 × 1024 76.08 mm 13 µm 10◦ × 10◦ 100 ms 5 3.8 pixel

The satellite is assumed to be initially stationary, and the goal of this simulation is to
maintain its attitude as zero. To control the satellite attitude, a quaternion feedback PD
control law is applied in a form obtained from [24] as given by

u = −[ω×]Jω− KDω− KPqe, (20)

whereω is an angular velocity vector of the body frame relative to the reference frame and
[ω×] is a skew symmetric matrix ofω. J represents the moment of inertia of the satellite
and qe is the error of the current and target quaternion defined by

qe = q⊗ qtarget
−1, (21)

where KD and KP are control gains which are written as

KD = dgain J,
KP = kgain J,

(22)

where dgain and kgain are designed to be in the form of

dgain = 2ξdamωn,
kgain = 2ω2

n,
(23)

where ξdam is a damping ratio and ωn is a natural frequency given by

ωn =
8

tsξdam
, (24)

where ts is a settling time. The rigid satellite model and controller gain information is
presented in Table 3.

Table 3. Satellite model and parameters of quaternion feedback PD control law.

Moment of Inertia
(Ixx,Iyy,Izz) Damping Ratio Settling Time Initial Angular

Velocity Initial Attitude Target Attitude

[500, 500,
500]kgm2 1 2.5 s [0.01, 0.01, 0.01]◦/s [0, 0, 0]◦ [0, 0, 0]◦

Three stars were captured by the star tracker at the initial attitude in the simulation.
The magnitudes of each star were 4.24, 3.03, and 4.52. The simulation time was 100 s, and
these three stars were continuously captured in the camera of the star tracker. During the
simulation, the true quaternion and true angular velocity were used for attitude control
without sensor data since the goal was to examine the smearing effect with the angular
velocity induced by thruster disturbance.

Euler angle error, angular velocity, and thruster torque are described in Figures 4–6,
respectively.
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Figure 4 shows that the Euler angle has a steady state error, which is related to the
thruster’s sampling time and the closed-loop bandwidth. The angular velocity has an
oscillatory profile in Figure 5 because the output of each thruster is generated in an impulse
form, with the sampling time of the thruster as shown in Figure 6a.

The smearing effect due to the thruster torque is described in Figures 7 and 8. At the
initial time, since the angular velocity is 0.01◦/s for each axis, the star image is not blurred
as much by the angular motion as it is in the thruster-operating case. In Figure 8, each star
spot is more influenced by the angular motion than in Figure 7.
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In order to reduce the smearing effect, an attitude extended Kalman filter will be intro-
duced in the next section that predicts measurement noise based on the PSF information.
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3. Extended Kalman Filter for Attitude Determination

In this section, an extended Kalman filter for spacecraft attitude determination is
introduced. Observations from multiple stars are used to carry out measurements with the
EKF and angular velocity measurements from the gyroscope are used for the propagation
of states and covariances of the EKF. The quaternion parameter is chosen to represent
the spacecraft attitude because it is free from singularities for all attitudes. In addition,
the quaternion features the lowest dimensional attitude parameterization compared to all
other alternatives. However, the quaternion has a normalization constraint which may be
violated during the update sequence of the standard EKF. Instead of using the quaternion
as a state, a multiplicative error quaternion-based extend Kalman filter is selected because
the four-component quaternion can effectively be replaced by a three-component error
vector [25].

3.1. Multiplicative Quaternion Formulation

A multiplicative quaternion-based extended Kalman filter, made by Lefferts et al. [12],
has been used to implement an attitude determination filter. This section briefly introduces
the derivation and configuration of this filter by referring to [12] and [25]. The derivation
of the multiplicative extended Kalman filter begins with a quaternion kinematics model
described as

.
q =

1
2

Ω(ω)q, (25)

where

Ω(ω) =

[
−[ω×] ω

−ωT 0

]
, (26)

and q is a quaternion where q =
[
ςT q4

]T . Because of the normalization constraint of the
quaternion, error quaternion kinematics is adopted for the extended Kalman filter.

First, an error quaternion is defined as

δq = q⊗ ^
q
−1

, (27)

where δq =
[
δςT δq4

]T and ⊗ is an operator for quaternion multiplication. Error quater-
nion kinematics is written as

δ
.
q = −

[
[ω̂×]δς

0

]
+

1
2

[
δω
0

]
⊗ δq. (28)

Following first-order approximation, it is given by

δ
.
ς = −[ω̂×]δς + 1

2 δω,
δ

.
q4 = 0.

(29)

A rate-integrating gyro is a commonly used sensor for measuring angular velocity
and its observation model is defined as

ω = ω̃−β− ηv,
.
β = ηu.

(30)

where
~
ω is a gyroscope measurement, β is a bias vector, and ηv and ηu are zero-mean Gaus-

sian white-noise processes with covariances given by σ2
v I3×3 and σ2

u I3×3, respectively [25].
The estimated angular velocity and the time derivative of the bias vector are as follows:

ω̂ = ω̃− β̂,
.
β̂ = 0.

(31)
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with Equations (30) and (31), and δω =ω− ω̂, Equation (29) yields

δ
.
ς = −[ω̂×]δς− 1

2
(∆β+ ηv), (32)

where ∆β = β−
^
β. The small angle approximation, δς = δα/2, gives

δα = −[ω̂×]δα− (∆β+ ηv), (33)

where δα is the components of the roll, pitch, and yaw angles for any rotational sequence.
Using Equations (30) and (32), the extended Kalman filter error model is described as

∆
.
~
x(t) = F(

^
x(t), t)∆

~
x(t) + G(t)w(t), (34)

where ∆
~
x(t) =

[
δαT(t) δβT(t)

]T , w(t) =
[
ηT

v (t) ηT
u (t)

]T , and F(
^
x(t), t). Additionally,

G(t) and Q(t) are given by

F(
^
x(t), t) =

−[ ^
ω(t)×

]
−I3×3

03×3 03×3

, (35)

G(t) =
[
−I3×3 03×3
03×3 03×3

]
, (36)

Q(t) =
[

σ2
v I3×3 03×3
03×3 σ2

u I3×3

]
. (37)

The discrete time–star vector observation matrix is defined using the current quater-
nion and reference star vector in the star catalogue and is given by

~
yk =


A(q)r1
A(q)r2

...
A(q)rn

+


ν1
ν2
...

νn

, (38)

where k is a sample index,
~
yk is a measurement matrix, A(q) is a direction cosine matrix

of the current attitude, rn is the reference vector in the star catalogue of the nth observed
vector, and νn is a zero-mean Gaussian white-noise process of the nth observed vector with
a covariance of σ2

n I3×3, which leads to a measurement covariance matrix such that

Rk = diag
[
σ2

1 I3×3 σ2
2 I3×3 . . . σ2

n I3×3
]
. (39)

The sensitivity matrix for the star vector measurements has the form

Hk

(
^
x
−
k

)
=



[
A(

^
q
−
)r1×

]
03×3[

A(
^
q
−
)r2×

]
03×3

...
...[

A(
^
q
−
)rn×

]
03×3


. (40)
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The estimate output is given by

hk

(
^
x
−
k

)
=


A(

^
q
−
)r1

A(
^
q
−
)r2

...

A(
^
q
−
)rn

. (41)

Then, the error-state update is written as

∆
^
~
x

+

k = Kk

[
~
yk − hk

(
^
x
−
k

)]
, (42)

where ∆
^
~
x

+

k =

[
δ

^
α
+

k
T δ

^
β

+

k
T

]T
and Kk is given by

Kk = P−k HT
k

(
^
x
−
k

)[
Hk

(
^
x
−
k

)
P−k HT

k

(
^
x
−
k

)
+ Rk

]−1

. (43)

Using Equation (42), the bias and quaternion updates are given by

^
β

+

k =
^
β

−

k + ∆
^
β

+

k , (44)

^
q
+

k =
^
q
−
k +

1
2

Ξ
(

^
q
−
k

)
δ

^
α
+

k , (45)

where

Ξ(q) =
[

q4 I3×3 + [ς×]
−ςT

]
. (46)

Renormalization of the quaternion update should be applied to the result of Equation (45).
The propagation of the state and covariance is outlined below. The readers are referred

to [25] for detailed derivations. The propagated quaternion is given by

^
q
−
k+1 = Ω

(
^
ω

+

k

)
^
q
+

k , (47)

with

Ω
(

^
ω

+

k

)
=


cos
(

1
2

∥∥∥∥ ^
ω

+

k

∥∥∥∥∆t
)

I3×3 −
[

^
ψ

+

k ×
]

^
ψ

+

k

−
^
ψ

+

k
T cos

(
1
2

∥∥∥∥ ^
ω

+

k

∥∥∥∥∆t
)
, (48)

where

^
ψ

+

k =

sin
(

1
2

∥∥∥∥ ^
ω

+

k

∥∥∥∥∆t
)

^
ω

+

k∥∥∥∥ ^
ω

+

k

∥∥∥∥ , (49)

The bias propagation and postupdate angular velocity are given as

β̂−k = β̂+
k

ω̂+
k = ω̃k − β̂+

k ,
(50)
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The propagation of the covariance is given by

P−k+1 = ΦkP+
k ΦT

k + GkQkGT
k , (51)

with

Φk =

[
Φk,11 Φk,12
Φk,21 Φk,22

]
, (52)

where

Φk,11 = I3×3 −
[
ω̂+

k ×
] sin(‖ω̂+

k ‖∆t)
‖ω̂+

k ‖
+
[
ω̂+

k ×
]2 {1−cos(‖ω̂+

k ‖∆t)}
‖ω̂+

k ‖
2

Φk,12 =
[
ω̂+

k ×
]{1−cos(‖ω̂+

k ‖∆t)}
‖ω̂+

k ‖
2 −

[
ω̂+

k ×
]2 {‖ω̂+

k ‖∆t−sin(‖ω̂+
k ‖∆t)}

‖ω̂+
k ‖

3 − I3×3∆t

Φk,21 = 03×3
Φk,22 = I3×3,

(53)

The process noise covariance is given by

Qk =

(σ2
v ∆t + 1

3 σ2
u∆t3

)
I3×3 −

(
1
2 σ2

u∆t2
)

I3×3

−
(

1
2 σ2

u∆t2
)

I3×3
(
σ2

u∆t
)

I3×3

. (54)

4. Non-Gaussian Measurement Noise Modeling

The multiplicative extended Kalman filter introduced in Section 3 assumes that the
noise of the observed star vector is a zero-mean Gaussian white-noise process. Due to
thruster-induced disturbance, the star images are blurred, which means this assumption
is untrue and leads to the necessity of modeling the measurement error as non-Gaussian
noise.

One of the methods for modeling non-Gaussian noise is the GMM. Based on the
Wiener approximation theorem, any non-Gaussian noise distribution can be expressed as,
or approximated sufficiently well by, a finite sum of known Gaussian distributions [15].

Lemma 1 [7]. Any density f (g) associated with an m dimensional vector g can be approximated
as closely as desired by a density of the form

fC(g) =
l

∑
ζ=1

aζ N
(
µζ , Bζ

)
. (55)

For some integer l and positive scalars aζ with
l

∑
ζ=1

aζ = 1, where N(·) is a Gaussian density with

mean value µζ and covariance matrix Bζ :

N
(
µζ , Bζ

)
=

1
(2π)m det

(
Bζ

)−0.5 exp
(
−0.5‖g− µi‖2

B−1
ζ

)
, (56)

where ζ is a Gaussian distribution index, det(·) is the matrix determinant and ‖ · ‖ is the inner
product in the Euclidean space Rm.

If the number of Gaussian densities increases, the density function fC(g) may converge
and the covariance of each density will approach a zero matrix [15].

GMM-based predicted star vector measurements are constructed by adding µζ to the
predicted star vector measurement (yellow circle), and these are marked with four (l = 4)
green circles in Figure 9.
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5. GMM-Based Adaptive Extended Kalman Filter

In the previous section, a Gaussian point generation method for non-Gaussian ob-
served vectors was introduced. Using Equation (55), the non-Gaussian observed vectors
can be approximated as a weighted Gaussian mixture. For the configuration of an EKF
using the GMM, it is important to find out the optimal Gaussian approximation for the
mixture. For this purpose, the linear adaptive Kalman filter algorithm proposed by Platani-
otis et al. [15] was referred to for implementing the adaptive attitude estimation extended
Kalman filter. For each propagated vector from the observed vectors, the extended Kalman
filter is implemented in parallel. Then, based on the interim results from these dedicated
Kalman filters, we can obtain a Bayesian a posteriori approximation of the Gaussian mixture
required in the filtering process [15]. Finally, the optimal Gaussian approximation for the
mixture is obtained by an adaptive algorithm with a weighting evaluation. The equations
for the GMM-EKF are introduced below.

In the multiplicative quaternion-based EKF described in Section 3.1, after propagating
the states and covariance matrix with the postupdate states and covariance matrix, the
innovation and Kalman gain are the next parameters to be obtained. Given the non-
Gaussian measurement noise, we have to evaluate the parameters for each Gaussian point
and adaptively assemble these parameters before computing the innovation covariance
and Kalman gain.

The estimate measurement output is given by

hk,sum =
Nζ

∑
ζ=1

γk,ζ hk,ζ , (57)

where hk,sum is a weighted sum of each estimate measurement output with propagated
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quaternions, hk,ζ is the ζth GMM-based predicted measurement, and γk,ζ is a weight for the
ζth Gaussian density. In addition, hk,ζ is defined as

hk,ζ =


A(

^
q
−
k )r1

A(
^
q
−
k )r2
...

A(
^
q
−
k )rn

+ µζ . (58)

Here, each group of elements, hk,ζ(3κ − 2 : 3κ), κ = 1, 2, . . . n, should be renormal-
ized because of the constraint that a unit star vector has.

The innovation covariance is given by

Pz
−
k =

Nζ

∑
ζ=1

(
Pz
−
k,ζ +

(
hk,sum − hk,ζ

)
×
(
hk,sum − hk,ζ

)T
)

γk,ζ , (59)

with
Pz
−
k,ζ = Hk,ζ P−k Hk,ζ

T + Rk,ζ , (60)

where

Hk,ζ =


[
hk,ζ(1 : 3)×

]
03×3[

hk,ζ(4 : 6)×
]

03×3
...

...[
hk,ζ(3n− 2 : 3n)×

]
03×3

. (61)

and Rk,ζ is a measurement covariance matrix for the ζth propagated quaternion. Moreover,
γk,ζ is given by

γk,ζ

=

(
(2π)−mdet

(
Pz
−
k,ζ

)−1
exp

(
−0.5

((~
yk−hk,ζ

)T
Pz
−
k,ζ
−1
(~

yk−hk,ζ

))))
aζ

ck
,

(62)

where aζ represents the initial weighting coefficients defined in Equation (55) and ck is a
normalization factor given by

ck =
Nζ

∑
ζ=1

(
(2π)−mdet

(
Pz
−
k,ζ

)−1
×

× exp
(
−0.5

((~
yk − hk,ζ

)T
Pz
−
k,ζ
−1
(~

yk − hk,ζ

))))
aζ .

(63)

Then, the Kalman gain is obtained by

Kk,sum = P−k HT
k,sum

(
Pz
−
k
)−1, (64)

with

Hk,sum =


[hk,sum(1 : 3)×] 03×3
[hk,sum(4 : 6)×] 03×3

...
...

[hk,sum(3n− 2 : 3n)×] 03×3

, (65)

where hk,sum(3n− 2 : 3n) denotes a [3× 1] matrix from hk,sum, of which the elements are
evaluated using the nth reference vector. Then, the state update begins with

∆
^
~
x

+

k,sum = Kk,sum

[~
yk − hk,sum

]
, (66)
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where

∆
^
~
x

+

k,sum =

[
δ

^
α
+

k,sum
T δ

^
β

+

k,sum
T

]T
. (67)

The final processes of the states update are as follows:

^
β

+

k =
^
β

−

k + ∆
^
β

+

k,sum,
^
q
+

k =
^
q
−
k + 1

2 Ξ
(

^
q
−
k

)
δ

^
α
+

k,sum,

P+
k = [I − Kk,sumHk]P−k .

(68)

The logic of the GMM-EKF is presented in Algorithm 2.

Algorithm 2: GMM-EKF algorithm

Input :
^
q
+

k−1,
^
β

+

k−1, P+
k−1, ω̂+

k−1, aζ ,
~
yk,

~
ω, µζ , Qk−1, Rk−1, Gk−1

Propagation :
^
q
−
k = Ω

(
^
ω

+

k−1

)
^
q
+

k−1

β̂−k = β̂+k−1
P−k = Φk−1P+

k−1ΦT
k−1 + Gk−1Qk−1GT

k−1
Gain:

Computation and renormalization of hk,ζ as in (58)
Computation of Hk,ζ as in (61)
Computation of Pz

−
k,ζ as in (60)

Computation of ck, γk,ζ as in (62) and (63)
Computation of hk,sum as in (57)
Computation of Pz

−
k as in (59)

Computation of Hk,sum as in (65)
Kk,sum = P−k HT

k,sum
(

Pz
−
k
)−1

Update:

∆
^
~
x

+

k,sum = Kk,sum

[~
yk − hk,sum

]
^
β

+

k =
^
β

−

k + ∆
^
β

+

k,sum
ω̂+

k = ω̃k − β̂+k
^
q
+

k =
^
q
−
k + 1

2 Ξ
(

^
q
−
k

)
δ

^
α
+

k,sum

Computation of Hk as in (40)
P+

k =
[
I − Kk,sumHk

]
P−k

Output :
^
q
+

k ,
^
β

+

k , ω̂+
k , P+

k

6. Simulation Study

In this section, the GMM-based EKF is implemented using the profile of the quaternion,
angular velocity, gyroscope, and star tracker measurements generated for the simulation
in Section 2.3.1. The performance of the GMM-EKF and EKF is compared with the same
profiles. The gyroscope and filter conditions are shown in Tables 4–6.

Table 4. Gyroscope specifications for simulation.

Angle Random Walk Rate Random Walk Initial Bias Update Frequency

0.001◦/h 0.05◦/h3/2 [0.0004, −0.0003, 0.0001]◦/s 100 Hz
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Table 5. Filter conditions for simulation.

Measurement Noise
Matrix Update Frequency Gaussian Density Mean Value (µζ)

3.52 0 0
0 3.52 0
0 0 3.52

arc sec2 100 Hz

−8 arcsec

(For three axes)
−4 arcsec
4 arcsec
8 arcsec

Table 6. Filter initial states.

Euler Angle Bias Covariance

0.005 ×[1,1,1]◦ 0.0042×[1,1,1]◦/s



(0.005◦)2 0 0 0 0 0
0 (0.005◦)2 0 0 0 0
0 0 (0.005◦)2 0 0 0
0 0 0 (0.05◦/ sec)2 0 0
0 0 0 0 (0.05◦/ sec)2 0
0 0 0 0 0 (0.05◦/ sec)2



6.1. GMM-EKF Simulation Results

The proposed algorithm was simulated under thruster-induced disturbance. Since the
measurement noise is non-Gaussian, a weighted sum of Gaussian densities was introduced
to predict the measurement. In this simulation, four Gaussian densities were chosen
and added to the predicted measurement with the a priori quaternion. Since quaternion
prediction is obtained using the angular velocity estimate, reducing bias from the angular
velocity is also important. For each Gaussian density with mean values selected, the pixel
errors of the centroid were considered to widely cover the measurement noise. The process
noise matrix Qk from Equation (54) was chosen as 10Qk due to its better performance. The
accuracy of the GMM-EKF estimation error was evaluated using the root mean square error
(RMSE), as shown in Equation (69).

RMSE =

√√√√ 1
ntotal

ntotal

∑
k=1

(x̂k − xk)
2 (69)

where ntotal represents the total number of estimates, x̂k represents the estimated state, and
xk is the true state.

In Figure 10a, the Euler angle estimate error from the GMM-EKF is shown, in which
the RMSE is [3.43, 3.89, 4.86] arcsec. This RMSE corresponds to an almost 0.20-pixel error
and is improved compared to the raw pixel error. In Figure 10b, the bias estimate error
from the GMM-EKF is shown, in which the RMSE is [6.96, 8.03, 8.21]× 10−4◦/s.

A Monte Carlo simulation was conducted to verify the convergence of the GMM-
EKF. One hundred sets of initial conditions were simulated, with the initial Euler esti-
mation errors ranging from −0.5 to 0.5◦ and initial bias estimation errors ranging from
−4.2× 10−3◦/s to 4.2× 10−3◦/s. Figure 11 shows the attitude and bias estimation errors
for all 100 cases, and it can be observed that all cases converged successfully.
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6.2. Comparison between GMM-EKF and EKF Performance

The GMM-EKF and EKF are compared in this section. Since the EKF only considers
the measurement noise as Gaussian, the predicted measurement is only made with an
a priori quaternion. It cannot cover non-Gaussian measurement noise. After tuning the
EKF parameters, the process noise Qk was chosen as 10Qk, and the measurement noise
matrix Rk was set as 5Rk due to their better performance. Rk was changed in order to make
the estimation error stay within the three-sigma boundary. In Figure 12, the RMSE of the
Euler angle estimate of the EKF is [5.48, 5.71, 6.09] arcsec, which is equivalent to an almost
0.30-pixel error. Figure 13 shows the attitude estimation error profiles from the GMM-EKF
and EKF. Therefore, the GMM-EKF performs better than the EKF under thruster-induced
disturbance.
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7. Conclusions

Because of misalignments in the thrusters of geostationary satellites and the impulse
characteristic of their torque, the performance of vector measurements taken with a star
tracker decreases as the PSF of the star image is blurred. Thruster modeling and PSF
characteristics were investigated and implemented to examine the influence of the thruster-
induced disturbance on star images. The blurring effect on images could be seen from
our simulation, and thus, this study implemented an attitude extended Kalman filter.
In order to handle the non-Gaussian noise of the star vector measurements, the GMM
was introduced and implemented with an attitude extended Kalman filter to predict the
measurement noise with the aid of a priori knowledge of the attitude quaternion. Four
Gaussian densities were chosen by considering the pixel noise from the thruster-induced
disturbance and weights for each mixture and were automatically updated depending
on the innovation covariance between the star vector measurements and the predicted
measurement from the GMM. Simulation results indicate that the GMM-EKF produces a
better performance than the EKF in regard to attitude estimation. Therefore, the GMM-EKF
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could be considered as a potential approach in geostationary satellite missions for attitude
estimation under thruster firing.
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